

Abstract—We address in this paper the sparse-dense matrix

product (SDMP) problem i.e. where the first (resp. second)
matrix is sparse (resp. dense). We first present initial versions
of loop nest structured algorithms corresponding to the most
used sparse matrix storing formats i.e. DNS, CSR, CSC and
COO. We then derive other versions by applying the techniques
of loop interchange, loop invariant motion and loop unrolling.
A theoretical multi-fold performance study permits to establish
accurate comparisons between the different versions. Our
contribution is validated through a series of experiments
achieved on a set of sparse matrices of different sizes and
densities. This leads to the choice of the best version, namely the
one using COO format where a GAXPY-Row kernel combined
with loop unrolling permitted to outperform the other versions
by an improvement ratio of 20-30%.

Index Terms— Algorithm complexity, compressing/storing
format, loop nest optimisation, performance evaluation, sparse
matrix product

I. INTRODUCTION

PARSE computing corresponds to algorithms processing
large sized sparse matrices. These latter are widely used
in real world applications covering diverse domains

such as electromagnetism, semi-conductors, robotics, image
processing, networks and graphs, molecular dynamics, fluid
dynamics, etc [1], [2], [3], [4], [5], [6]. The kernels used in
these applications are mostly from sparse linear algebra [7].
The sparse-dense matrix product (SDMP) where the first is
sparse and the second is dense is one among these frequent
kernels, particularly used in iterative methods for solving
linear systems or optimisation problems [4]. It is also used
for building Peano space-filling curves [8], data completion
in inverse problems based on the Steklov-Poincaré discrete
approach [9] which uses matrix conditioning [10], Krylov
and block Lanczos methods [11].

Several works have been devoted to the SDMP problem
[8], [11], [12]. But we have to mention some points that
remain not studied as far as we know. As a matter of fact, in
[12], the authors designed theoretical algorithms but did not
take into account the important point of the matrix

S. Ezouaoui, is a doctoral student at the University of Tunis El Manar,
Faculty of Sciences of Tunis, University Campus - 2092 Manar II – Tunis,
Tunisia (phone: ++21696276502; e-mail: zouaoui.sana29@gmail.com).

Z. Mahjoub is Professor of Computer Science at the University of Tunis
El Manar, Faculty of Sciences of Tunis, University Campus - 2092 Manar
II – Tunis, Tunisia (e-mail: zaher.mahjoub@fst.rnu.tn).

L. Mendili and S. Selmi have obtained in 2010 their B.S degree in CS at
the University of Tunis El Manar, Faculty of Sciences of Tunis, University
Campus - 2092 Manar II – Tunis, Tunisia, (e-mails: Mendili.hiba@
gmail.com ; amatoallah44@hotmail.fr)

access/storing modes and data locality. Others [4], [8] did
not study the impact of sparse storing formats.

It is noteworthy that optimising loop nest structured
algorithms such as the SDMP one particularly requires
avoiding useless operations, improving data locality
optimising memory accesses and reducing cache missing.

On the other hand, we have to underline that processing
large sparse murices requires, for reasons of space-time
complexity reduction, the use of compressing (or storing)
formats (SCF). These latter may be either general i.e.
adapted to any sparse structure e.g. DNS (DeNSe), CSR
(Compressed Sparse Row), CSC (Compressed Storage
Column) and COO (COOrdinate)…), or particular such as
MSR (Modified Storage Row), BND (BaNDed), DIA
(Diagonal)… , [5], [6], [7].

Our aim here is the determination of the best SCF for the
SDMP i.e. leading to the best performances. For this
purpose, starting from original algorithms, we derived a
series of others corresponding to four SCF’s, namely DNS,
CSR, CSC and COO.

The remainder of the paper is organised as follows. In
section II, we present and compare several algorithms for the
SDMP corresponding to the four chosen SCF’s. Section III
is devoted to an experimental study in order to validate our
theoretical contribution.

II. THEORETICAL STUDY

Let us recall that a matrix is called sparse if it has a large
(resp. weak) number of zero (resp. non zero) elements [5].
Let NNZ be the number of nonzero elements. As previously
mentioned, processing sparse matrices requires using
particular SCF’s restricted to the nonzero elements. The
study of the SDMP is in fact based on the Sparse Matrix
Vector Product (SMVP) where the matrix is sparse and the
vector is dense. It is well known that, for a matrix of size N,
the SMVP requires 2*NNZ flops [5]. Therefore, the SDMP
will require 2N*NNZ flops.

A. DNS versions
The standard algorithm (for dense matrix product C=AB)

has the structure of three perfectly nested loops, denoted IJK
(see version (a) below) and is of cubic complexity. From this
original version, we include both logical tests and scalar
replacements in order to avoid useless operations and reduce
the number of accesses to matrix A. Obviously, five other
versions may be derived by means of the loop interchange
(LI) technique i.e. IKJ, KJI, KIJ, JKI, JIK [4], [6]. Some of
these lead to both better data locality and computing kernel
(see Table I, where R is for Row and C for Column) [4], [6].
As will be seen below, in addition to LI, another loop nest
optimisation will be introduced.

Performance Evaluation of Algorithms for
Sparse-Dense Matrix Product

S. Ezouaoui, Z. Mahjoub, L. Mendili and S. Selmi

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 18 March 2013) IMECS 2013

Keeping the IKJ version having the best kernel i.e.
GAXPY-R (in a C programming environment, see (b)
below), we can apply the loop invariant motion (LIM)
technique [13] (see (c) below) in order to reduce the number
of logical tests. It is known that LIM is an efficient code
optimisation procedure for loop nests. In our case, it consists
in moving to the second level the instruction’s=A(i,k)’ and
the following IF test. Table I recapitulates a comparative
study on the whole 6 versions as far as the number of
accesses, number of tests, access mode and kernel are
concerned.

DNS_IJK
DO i=1, N

DO j=1, N
DO k=1, N

s=A(i,k)
IF (s≠0) THEN

C(i,j)=C(i,j) + s*B(k,j)
ENDIF

ENDDO
ENDDO

ENDDO
(a)

DNS_IKJ
DO i=1, N / first level /

DO k=1, N / second level /
DO j=1, N / third level /

ss==AA((ii,,kk))
IIFF ((ss≠≠00)) TTHHEENN

C(i,j)=C(i,j) + s*B(k,j)
ENDIF

ENDDO
ENDDO

ENDDO
(b)

DNS_IKJ_V1
DO i=1, N

DO k=1, N / second level /
ss==AA((ii,,kk))
IIFF ((ss≠≠00)) TTHHEENN

DO j=1, N
C(i,j)=C(i,j) + s*B(k,j)

ENDDO
ENDIF

ENDDO
ENDDO

(c)

We thus notice, from Table I, that versions V1 of KIJ and
IKJ lead to the best results (number of accesses and logical
tests) i.e. N2 (resp. NNZ) accesses to A (resp. B) instead of
N3 (resp. N*NNZ) for the 4 other versions.

Let us add that the kernel used by both IKJ and JKI is
GAXPY (same access mode for the three matrices).
Therefore, a better data locality leading to less cache misses.
Indeed, in order to reduce these latter, data must be
processed according to their storing mode (i.e. row-wise or
column-wise). We recall that in C (resp. Fortran), arrays are
stored row-wise (resp. column-wise). Thus, we have to keep
the version suited to the programming environment and
leading to the best performances [14].

B. CSR, CSC and COO versions
The design of the SDMP algorithm where A is stored

either in CSR, CSC or COO format, may be easily derived
from the corresponding SMVP algorithm [4]. Hence, we get
a first version for each SCF i.e. CSR_JIK, CSC_JIK and
COO_JI. We then apply improving techniques such as scalar
replacement and loop interchange in order to have better
data locality (see versions (e), (f) and (g) below).

Using the LI technique, two other versions i.e. IJK and
IKJ were directly derived from the initial CSR_JIK and
CSC_JIK. As for COO, we derived a new version i.e. IJ
from the initial JI (see Part I in Table II).

Let us precise that, due to the non affine loop bounds
(i.e. array elements) of loop K in the JIK versions of both
CSR and CSC, versions KIJ and KJI cannot be directly
derived. Indeed, we first transformed the K loop bounds into
affine (in fact constant) ones through the use of an IF test
instruction (see (e-1)). This could be done since we know
that array IA in CSR_JIK (resp. JA in CSC_JIK) have NNZ
elements. The IF test instruction will restrict iterations only
to the right ones (see version (e-1) below).

The derived versions, namely KJI, KIJ, JKI of CSR and
KJI, KIJ, JKI of CSC are recapitulated in Table II (see Part
II).

CSR_JIK_V1
DO j=1, N

DO i=1, N
iai=IA(i) ; iai1=IA(i+1)-1
DO k=iai,iai1

C(i,j)=(i,j)+A(k) *B(JA(k),j)
ENDDO

ENDDO
ENDDO

(e)
CSR_JIK intermediate version

DO j=1, N
DO i=1, N

DO k=1, NNZ
IF (IA(i) ≤k≤ IA(i+1)-1) THEN

C(i,j)=C(i,j)+A(k) *B(JA(k),j)
ENDIF

ENDDO
ENDDO

ENDDO
(e-1)

CSR_KIJ_V1
DO k=1, NNZ

ak= A(k); jak= JA(k)
DO i=1,N

IF (IA(i) ≤k≤ IA(i+1)-1) THEN
DO j=1,N

C(i,j)=C(i,j)+ak*B(jak,j)
ENDDO

ENDIF
ENDDO

ENDDO
(e-2)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 18 March 2013) IMECS 2013

CSC_IKJ_V1
DO i=1, N

jai=JA(i) ; jai1=JA(i+1)-1
DO k= jai, jai1

iak=IA(k) ; ak=A(k)
DO j=1,N

C(iak,j)= C(iak,j)+ak*B(i,j)
ENDDO

ENDDO
ENDDO

(f)

COO_IJ_V1
DO i=1, NNZ

iai=IA(i); jai=JA(i)
DO j=1, N

C(iai,j)=C(iai,j)+A(i) *B(jai,j)
ENDDO

ENDDO
(g)

TABLE I
DNS RECAPITULATION TABLE

Version
A B C

KernelInitial version V1 Access
mode

Initial version V1 Access
mode

Access
mode# Access # Test # Access # Test # Access # Access

IJK N3 N3 N3 N3 R N*NNZ N*NNZ C R DOT-R
JIK N3 N3 N3 N3 R N*NNZ N*NNZ C C DOT-C
KIJ N3 N3 N2 N2 C N*NNZ NNZ R R AXPY-R
KJI N3 N3 N3 N3 C N*NNZ N*NNZ R C AXPY-C
IKJ N3 N3 N2 N2 R N*NNZ NNZ R R GAXPY-R
JKI N3 N3 N3 N3 C N*NNZ N*NNZ C C GAXPY-C

TABLE II
SCF’S COMPARISION

SCF Version
Initial version (# access) V1 (# access) A B C

Kernel
IA JA A IA JA A AM AM AM

CSR

Pa
rt

 I

JIK 2N*NNZ N*NNZ N*NNZ 2N² N*NNZ N*NNZ R C C DOT-C
IJK 2N*NNZ N*NNZ N*NNZ 2N N*NNZ N*NNZ R C R DOT-R
IKJ 2N*NNZ N*NNZ N*NNZ 2N N*NNZ N*NNZ R R R GAXPY-R

Pa
rt

 II

JKI 2N2
*NNZ N2

*NNZ N2
*NNZ 2N2

*NNZ N*NNZ N*NNZ C C C GAXPY-C
KJI 2N2

*NNZ N2
*NNZ N2

*NNZ 2N2
*NNZ NNZ NNZ C R C AXPY-C

KIJ 2N2
*NNZ N2

*NNZ N2
*NNZ 2N*NNZ NNZ NNZ C R R AXPY-R

CSC

Pa
rt

 I JIK 2N*NNZ N*NNZ N*NNZ N*NNZ 2N² N*NNZ C C C GAXPY-C
IJK 2N*NNZ N*NNZ N*NNZ N*NNZ 2N N*NNZ C R C AXPY-C
IKJ 2N*NNZ N*NNZ N*NNZ NNZ 2N NNZ C R R AXPY-R

Pa
rt

 II

JKI 2N2
*NNZ 2N2

*NNZ N2
*NNZ N*NNZ 2N2

*NNZ N*NNZ R C C DOT-C
KJI 2N2

*NNZ 2N2
*NNZ N2

*NNZ NNZ 2N2
*NNZ NNZ R C R DOT-R

KIJ 2N2
*NNZ 2N2

*NNZ N2
*NNZ NNZ 2N*NNZ NNZ R R R GAXPY-R

COO
JI 2N*NNZ N*NNZ N*NNZ N*NNZ N*NNZ N*NNZ R C C DOT-C
IJ 2N*NNZ N*NNZ N*NNZ N N N*NNZ R R R GAXPY-R

AM : Access mode (Row/Column) ; Part I : first 3 directly derived versions ; Part II : second three indirectly derived versions (loop
restructuring, body modification)

TABLE III
INDIRECTLY DERIVED VERSIONS AND CORRESPONDING COO VERSIONS

SCF Version A B C Kernel COO
AM AM AM

CSR
JKI_JK R C C DOT-C JI

KJI_KJ R R R GAXPY-R IJ

KIJ_KJ R R R GAXPY-R IJ

CSC
JKI - JK C C C GAXPY-C --
KJI_KJ R R R GAXPY-R IJ
KIJ -KJ R R R GAXPY-R IJ

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 18 March 2013) IMECS 2013

Starting from versions KIJ for both CSR and CSC, we may
apply the loop invariant motion technique and move the
logical test to an upper level, thus reducing accesses. This
technique applied for versions KIJ and KJI permits to reduce
accesses to arrays A and JA in CSR versions (resp. arrays A
and IA in CSC versions).

Hence, from three initial versions (see Part I of Table II),
we derived 16 other versions i.e. 5 for CSR, 8 for CSC and 3
for COO, so a total of 19 (see Table II). Notice that the
number of accesses to array B always remains the same (i.e.
N*NNZ). Table II recapitulates the results obtained for the
three formats. It is easy to remark that through comparative
intra-SCF versions, CSR_IKJ_V1, CSC_IKJ_V1 and
COO_IJ_V1 are (theoretically) the best when coded in C
language as we did (row-wise storing). Indeed, they perform
firstly 2 to 3 (out of 3) row accesses to A, B, and C and
secondly less accesses to these arrays. We precise that in the
COO format, we choosed a row-wise storing for A.

As to the second group of versions (see Part II in Table
II), we could derive 3 versions for CSR as well as for CSC.
Notice here that loop invariant optimisation permitted to
reduce the number of accesses to arrays JA and A (resp. IA
and A) in CSR (resp. CSC) versions i.e. from N2

*NNZ to
NNZ (see CSR version (e-2) above). As to array IA in
CSR-KIJ (resp. JA in CSC-KIJ) version, we reduce from
2N2

*NNZ to 2N*NNZ.
Remark on the other hand, that those three versions lead

for CSR to kernels GAXPY-C (JKI), AXPY-R (KIJ) and
AXPY-C (KJI) which is not interesting, since we intend to
use in our experiments a C environment for which the
GAXPY-R kernel, already obtained with CSR-IKJ, is the
best. We have to finally say that, in the three directly derived
CSR versions, the numbers of accesses to arrays A, B and C
are fewer than in the last three versions.

As to the last three versions for CSC, they led to
kernels DOT-R (KJI), DOT-C (JKI) and GAXPY-R (KIJ),
the last being the best kernel in a C environment.

C. Relations between SCF’s and derived versions

If we consider any version among the 3 last versions
(indirectly) derived for CSR and CSC, we can easily remark
that a restructuring permits to eliminate a loop (among the
three) namely the I loop scanning the rows (resp. columns)
of array A in CSR (resp. CSC) versions. In fact, this
elimination procedure requires the creation of a new list,
denoted ROW, of size NNZ and involving, in CSR (resp.
CSC) versions, the row (resp. column) indices of array A
corresponding to the row indices of array C (resp. B). Table
III recapitulates these facts (see algorithms (h) and (i)
below).

We have to notice that these 2-loop CSR and CSC
versions are identical to COO versions (see previous section,
algorithm (g)). Indeed, from Table III, we see that (i)
CSR_JKI_JK is equivalent to COO-JI, (ii) CSR_KJI_KJ,
CSR_KIJ_KJ, CSC_KJI_KJ and CSC_KJI_KJ are equiva-
lent to COO_IJ. However, CSC_JKI_JK have no correspon-
ding. As a matter of fact, COO_JI has a GAXPY-R kernel,
since array A elements are stored row-wise whereas in
CSC_JKI_JK, we have a GAXPY-C kernel.

CSR_JKI _JK
DO j=1, N

DO k=1, NNZ
C(ROW(k),j)=C(ROW(k),j)+A(k) *B(JA(k),j)

ENDDO
ENDDO

(h)
CSC_JKI_JK

DO j=1,N
DO k=1, NNZ

C(IA(k),j)=C(IA(k),j)+A(k) *B(ROW(k),j)
ENDDO

ENDDO
(i)

III. EXPERIMENTAL STUDY

A series of experimentations have been achieved in order
to evaluate the practical performances of the derived
versions and validate our theoretical study. For this purpose,
we have chosen 10 matrix sizes (N) in the range 1000-10000
and 6 densities (D=5%, 10%, 20%, 30%, 40% and 50%).
The matrices were randomly generated. Remark that it seems
useless to process larger matrices, since we can use block
methods for the SDMP were we reduce to blocks of lower
sizes. We therefore experimented 8 versions of DNS, 6 of
CSR, 9 of CSC and 4 of COO. Let us add that we also
studied the impact of loop unrolling [5], [13], [15] when
applied to the kernel DOT-R for the three formats DNS,
CSR et COO. As to the CSC format, its DOT kernel is not
interesting since the number of array accesses is quite large.
We present in the following excerpts of the results obtained
for a density of 5% (similar results were obtained with the
other values). We precise that we used an i7 work station
(3.4 GHz clock, 4GB RAM, 64Ko L1 cache, 256 KO L2
cache and 8 MO L3 cache) under openSUSE OS. Our
algorithms were coded in C.

A. Intra-algorithm Comparison

─ DNS : the best running times were obtained with IKJ_V1
(see Table I and Fig.1). This is due to the following
reasons: (i) data locality optimisation (row-wise storing in
a C environment, row-wise accesses), (ii) minimisation of
the number of logical tests (N2) after loop invariant
motion (LIM) from level 3 to level 2. Remark that for
d=5 and any N, IKJ is about 20% better than IJK. This
ratio increases with d (for any N) and reaches 50% in
average. Moreover, IKJ_V1 is about 15 times faster than
IKJ for d=5. This factor naturally decreases with d for
fixed N (reaches 2 for d=50 and any N). Thus we can
conclude that the improvement is essentially due to LIM.

─ CSR : The experimentations (see Fig. 2) confirm the
theoretical results (see Table II). Indeed, IKJ_V1 is the
best since the GAXPY-R kernel reduced cache misses.

─ CSC : The best results are obtained with IKJ_V1. This
may be justified by the reduced number of accesses to
arrays JA and A as previously mentioned (see Table II).
Moreover, matrices B and C are accessed row-wise (see
Fig.3).

─ COO : IJ_V1 is the best since it firstly adopts a row-wise
access to the matrices i.e. GAXPY-R (see Table II) and
secondly performs a reduced number of accesses to arrays
IA and JA (see Fig. 4).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 18 March 2013) IMECS 2013

B. Loop unrolling technique

Given a (normalised) DO loop, loop unrolling (LU) consists
in first choosing an integer u (named LU factor), duplicating
the loop body u times, then iterating the loop with a step
equal to u (instead of 1). It is well known that LU reduces
cache misses [5]. Thus, we applied LU by choosing values
for u in [2 20] and obtained interesting results. Indeed, about
a 44% improvement (in average) could be reached with
u=12 for version DNS_IJK_V1 (see Table VI). As to
version COO_IJ_V1 (GAXPY-R kernel), a 24-25%
improvement could be obtained (u=16). However, for
version COO_JI_V1 (DOT kernel), an improvement of only
1% was reached (u=4, see Table IV). Concerning CSR, for
version CSR_IJK_V1 (DOT-R kernel), we reached an
improvement of 27-38% (u=12).

C. Inter-algorithms comparison

─ Before applying the LU technique, version DNS-IKJ_V1
is the best among all. Fig. 5 depicts the improvement
ratios in terms of d for N=10000. The ratio is defined by
ratio=(1-run_opt/run_v)*100 where run_opt is the
running time of version DNS_IKJ_V1 and run_v is the
running time of any other version. We hence remark that
DNS is followed by COO, then CSC and CSR. In fact, in
average, version DNS_IKJ_V1 is 7% better than the best
COO_JI_V1, 12-14% better than the best CSC version
i.e. CSC_IKJ_V1, and 16-18% better than the best CSR
version i.e. CSR_IKJ_V1 (see Fig. 5). Notice that the
dramatic reduction of the number of logical tests (from N3

to N2) associated to an efficient data locality and direct
accesses are the main reasons that ‘boosted’ version
DNS_IKJ_V1. Let us add that even if version
CSR_IKJ_V1 has a GAXPY_R kernel, it is outperformed
by version CSC_IKJ_V1 which has an AXPY_R kernel
for the latter has less accesses to array A, IA and JA (see
Table II).

Fig. 3 Running times for CSC versions

Fig. 4 Running times for COO versions

Fig. 2 Running times for CSR versions

TABLE VI
UNROLLING IMPROVEMENT RATIOS (%) FOR DNS, CSR AND COO

VERSIONS (DENSITY=5%)

N u=2 u=4 u=8 u=12 u=16

D
N

S_
IJ

K 8000 11.24 21.19 23.88 43.64 25.83

9000 10.76 20.94 23.91 43.87 25.94

10000 10.39 20.51 23.80 43.78 25.79

C
SR

_I
JK

N u=2 u=6 u=8 u=12 u=16

8000 19,92 30,67 31,26 31,93 31,93

9000 18,61 28,08 29,10 29,65 29,65

10000 16,63 25,84 26,69 27,19 27,19

C
O

O
_I

J

N u=2 u=4 u=8 u=16 u=20

8000 15.60 21.10 23.85 25.08 7.34

9000 15.27 20.86 23.87 24.73 6.67

10000 15.26 20.89 23.94 25.12 7.04

C
O

O
_J

I

N u=2 u=4 u=8 u=12 u=16

8000 0.87 1.48 -11.52 -10.20 -24.20

9000 0.42 1.90 -8.15 -11.53 -26.77

10000 0.23 1.35 -15.80 -11.74 -24.94

The ratio is defined as follows:
ratio=(1- run. time with unrolling /run. time without unrolling)*100
A negative ratio means that run.time with unrolling is larger than
run. time without unrolling

Fig. 1 Running times for DNS versions

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 18 March 2013) IMECS 2013

Remark that If no LIM nor scalar replacement is done,
version DNS_IKJ would be the worst and we would have
the following ranking : CSR_IKJ, COO_IJ, CSC_IKJ,
DNS_IKJ. Notice in addition that version CSC_IKJ has
an AXPY-R kernel whereas both versions CSR_IKJ and
COO_IJ have a GAXPY-R kernel, thus better access
mode and data locality (see Table V, excerpts for d=5%).

─ After applying the LU technique, we have a new ranking
i.e. COO_IJ_V1 (u=16), DNS_IKJ_V1, CSC_IKJ_V1,
CSR_IKJ_V1. In fact, in average, COO_IJ_V1 (u=16), is
19-20% better than DNS_IKJ_V1, 30% better
than CSC_IKJ_V1 and 32-33% better than CSR_IKJ_V1
(see Fig. 6).

IV. CONCLUSION

We studied in this paper, diverse algorithms for the sparse
dense matrix product associated to four sparse compressing
formats. Efficient optimisation techniques have been applied
and led to interesting improvements. The version corres-
ponding to the COO format (i.e. where the sparse matrix is
stored in three list arrays of size NNZ), namely COO_IJ_V1
(u=16), once optimised gave the best results and was
followed by versions corresponding to the formats DNS,
CSC and CSR. If we exclude DNS, the COO leader version
is about 30% better than the versions corresponding to the
two others. However, the space complexity of the COO
format requires NNZ-N more integers than the others.

Another result to underline is that the technique of loop
interchange (LI) permitted to discover a particular relation
between the CSR, CSC and COO formats versions. Indeed,
LI applied to CSR and CSC versions led to COO versions.

Finally, our work induces some interesting points, we
intend to study in the near future. We may cite (i) the dense-
sparse matrix product (DSMP) problem ; (ii) the general
case of the sparse-sparse matrix product problem (SSMP) ;
(iii) the sparse matrix chain product problem [16], [17] ; (iv)
the parallelisation of SDMP algorithms.

ACKNOWLEDGMENT

Special thanks are addressed to Dr. O. Hamdi-Larbi for
her valuable help.

REFERENCES

[1] A. Buluç and J. R. Gilbert, “Challenges and advances in parallel
sparse matrix-matrix multiplication”. In Proc of ICPP’08, Portland,
Oregon, USA, 2008, pp. 503–510.

[2] T. A. Davis & Y. F. Hu, “The university of Florida sparse matrix
collection”, ACM Transactions on Mathematical Software, vol. 38,
no. 1, pp. 1–25, Nov. 2011.

[3] F. G. Gustavson, “Two fast algorithms for sparse matrices:
multiplication and permuted transposition”, ACM Transactions on
Mathematical Software, vol. 4 no. 3, pp. 250–269, Sep.1978.

[4] E. Garcia, J. L. L. Pey, T.Juan, T.Lang and J. J. Navarro, “Block
algorithms to speed up the sparse matrix by dense matrix
multiplication on high performance worstations”, MA Rep., UPC-
DAC-1995-3, University Polytechnics of Catalunya, Barcelona,
Spain ,1995.

[5] O. Hamdi-Larbi, N. Emad and Z. Mahjoub, “On sparse matrix-vector
product optimization,In Proc.AICCSA’05,Cairo, Egypt, 2005, pp.23.

[6] P. D.Sulatycke and K. Ghose, “Caching–efficient multithreaded fast
multiplication of sparse matrices”, In Proc. of the 12th. Int. parallel
processing symposium on international parallel processing
symposium, Orlando, FL, USA, 1998, pp. 117–123.

[7] Y.Saad, “Iterative methods for sparse linear systems”, 2nd ed, SIAM
Press, 2003, pp 92–95, 380 –385.

[8] M. Bader and A. Heinecke, Cache oblivious dense and sparse matrix
multiplication based on peano curves”. In Proc. of the PARA 08,
Lecture Notes in Computer Science. Springer 2008. Available:
https://para08.idi.ntnu.no/docs/submission_155.pdf

[9] M. Azaiez, F. Ben Belgacem and H. El Fekih, “On Cauchy's problem
II: completion, regularization and approximation”, Inverse
Problems, vol. 22, no. 4, pp. 1307–1336, Aug.2006.

[10] R. Ben Fatma, “Completion data for the Helmholtz equation:
Application to some problems Inverse”, Ph.D. dissertation, Dept.
Math, National school of engineering of Tunis, Tunisia, 2012.

[11] G.W. Howell, ““ Wide or Tall” and “Sparse Matrix Dense Matrix”
Multiplications”, In Proc. HPC '11, Proceedings of the 19th High
Performance Computing Symposia, 2011, pp. 159−165.

[12] G.Greiner and R. Jacob, “The I/O Complexity of Sparse Matrix
Dense Matrix Multiplication”, LATIN 2010: Theoretical Informatics,
in Lecture Notes in Computer Science 2010, Vol. 6034, 143−156.

[13] A. V. Aho, M. S.Lam, R.Sethi and J. D.Ullman, “Compilers:
Principles, Techniques, & Tools”. 2nd edi, Pearson Addison Wesley,
2007, pp. 592, 738.

[14] V. Loechner, B. Meister and P. Clauss, “Precise Data Locality
Optimization of Nested Loops”, The Journal of Supercomputing, vol.
21, no. 1, pp. 37−76, Jan. 2002.

[15] J. J. Dongarra and A. R. Hinds, “Unrolling Loops in Fortran”,
Software-Practice and Experience, vol. 9, no. 3, pp. 219−226, Mar.
1979.

[16] E. Cohen, (1998, December), “Structure prediction and computation
of sparse matrix products”, Journal of Combinatorial Optimization,
vol. 2, no. 4, pp. 307–332, Mar. 1979.

[17] F. Ben Charrada, S. Ezouaoui and Z. Mahjoub, “Greedy algorithms
for optimal computing of matrix chain products involving square
dense and triangular matrices”, RAIRO - OR, vol. 45, no.1, pp. 1−16,
Jan. 2011.

This paper was changed at 3/3/2013. Modifications are made in Table VI
page 5 and in the unrolling improvement of CSR algorithm (between 27-
38%).

Fig. 5 Ratio in terms of density for the optimal version of each format

Fig. 6 Ratio in terms of density for the optimal version of each format
(after unrolling)

TABLE V
TIME (S) FOR DNS, CSR AND COO VERSIONS WITHOUT OPTIMIZATION

(D=5)
N CSR_IKJ COO_IJ CSC_IKJ DNS_IKJ

5000 28 35 36 297

6000 49 61 62 513

7000 79 97 99 814

8000 118 146 149 1215

9000 168 207 211 1728
10000 230 285 290 2370

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 18 March 2013) IMECS 2013

