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Abstract—Classification is a chief issue in decision science 

and knowledge discovery, hence the recent development of 
several classification methods. Compared to other methods, 
extension theory (ET) does not require a particular learning 
process, and its calculation is both fast and simple. This paper 
proposes improved extension theory (IET) to supersede the 
shortcoming of ET, such as failure to implement data 
classification when attributes are categorical. This study 
assesses IET performance according to six real-world datasets. 
Comparisons with other classifiers (i.e., ET and decision trees) 
illustrate the effectiveness of the proposed IET. 
 

Index Terms—Extension theory, Classical domain, 
Classification, Mixed numeric and categorical data 
 

I. INTRODUCTION 

xtension theory (ET), first proposed by Cai [1], is a 
pattern classification algorithm. Given a set of n labeled 

examples )},(,),,(),,{( 2211 nnn YXYXYXD   with input 

vectors d
iX   and class labels },,,{ 21 miY   , ET 

classifies an unseen pattern  kdkkkk xxxxX ,,,, 321   to the 

class kY  with the highest membership grade. Identifying a 

class with the highest membership grade requires defining a 
set of matter-element models and an extended correlation 
function. An ordered ternary ),,( vcNR   is necessary to 

describe a matter for transformation called a matter-element. 
Three fundamental elements are included in a matter-element 
(R): the name of the matter (N), the characteristic of the 
matter (c), and the value of the matter characteristic (v). A 
matter may have numerous characteristics. Assuming that C 
is a characteristic vector, then  ]...,,,[ 21 dcccC  , and 

assuming that V is the same as C, thus also a vector, then 
]...,,,[ 21 dvvvV  , and a multidimensional matter-element is 

defined as follows: 
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If the value of a characteristic has a classical domain or 
range, the matter-element can be defined for the classical 
domain as follows [2]:  

















































),(

),(

),(

),,(
222

111

22

11

U
d

L
dd

UL

UL

dd vvc

vvc

vvcN

vc

vc

vcN

VCNR


 (2) 

The first step of the extension classification method is to 
formulate matter-element models of m categories, performed 
as follows:  
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Similarly, a matter-element Rp of P can be described as 
follows: 
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where Vp are the ranges of C, called the neighborhood 

domains. The value range ),( U
tj

L
tj vv  of the classical domain 

for each characteristic can be obtained from previous 
experience, or determined according to the lower and upper 

bounds of the field-test records. The value range ),( U
tp

L
tp vv  

of the neighborhood domain can be obtained from previous 
experience, or determined from the maximum and minimum 
values of each characteristic in the statistical records [2-5]. 

After the formulation of the element-matter models of 
classification categories, ET defines an extended correlation 
function by K(x) to quantify the relationship between an 
element and a set. The correlation functions have numerous 
forms dependent on application. A common extended 
correlation function can be defined as Equation (5) [4]. The 
extended correlation function is shown in Figure 1. Figure 1 
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shows that: (1)  0)(,  kttjtjkt xKvx , that is, the classic 

set, indicating the degree to which ktx  belongs to tjv ; (2)  

0)(1,  kttjtjtpkt xKvvx , that is, the extension set, 

meaning that element  ktx  is apparently outside tjv , but still 

has a probability of becoming a part of the set if conditions 
change; (3) 1)(,  kttjtjkt xKvx , that is, the negative set, 

implying that element ktx  cannot be in tjv . 
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The membership grade of the unseen pattern 
kX   with the 

class j  is calculated as Equation (7), where tjW  denotes 

the significance of every class feature in the classification 
process. The maximum value of the membership grade 
determines the class label of the unseen pattern 

kX .  

mjxKW
d

t
kttjtjkj ,,2,1,)(

1

 


   (7) 

 

ktx
L
tjv U

tjv

)( kttj xK

U
tpvL

tpv

 
Figure 1. Extended correlation function [3] 

 
Extension theory has shown promising results in fault 

diagnoses [2-4][6] and in tracking the maximum power point 
of photovoltaic (PV) arrays [5]. Traditional extension 
classification methods rely on experiences to set rules for the 
classical domain [2], which is a tedious and complicated step 
in the classification process. Liu [7] proposed a modified 
extension theory (MET) to overcome the above shortcoming. 
Experimental results indicate that the MET consistently 
achieved better or comparable results than the traditional ET. 
For more details on MET, refer to Liu [7]. However, MET is 
limited to numeric data. Therefore, this study presents a 
improved extension theory (IET) based on MET to supersede 
the shortcoming of limiting to numeric data. The experiments, 
using six real-world datasets, demonstrated that IET 
surpasses ET in terms of classification accuracy. 
Additionally, the IET is superior or comparable to other 
classification method presently in use, such as DT. 

The remainder of this paper is structured as follows: 

Section 2 introduces the proposed modified extension theory, 
Section 3 presents an evaluation of the proposed method, and 
finally, the last section states several conclusions and 
suggestions for future considerations.  

II. IMPROVED EXTENSION THEORY 

This study modifies the MET of Liu [7] in order to 
overcome the shortcoming of limiting to numeric data. This 
work incorporates the use of the concept of frequency-based 
center (FBC) into MET to deal with categorical data. The 
proposed method is hereafter called the improved extension 
theory (IET). This section will present the mathematical 
descriptions of IET. The proposed IET is described as 
follows: 
Step 1: Choose values of the classical domains ),( U

tj
L
tj vv  for  

mj ,,3,2,1  and dt ,,3,,2,1  . To 

determine the range of the classical domain for the 
characteristic ct of class wj, a largest sphere centered 

on class-center jX  was constructed, which excludes 
all training examples from other classes. Attaining 
this sphere involves setting the sphere radius to 
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where 0  is an arbitrary small number and 

),,,,( 321
j

d
jjjj xxxxX  . For a numeric 

characteristic, j
tx  is represented by the mean of all 

values for that characteristic ct in the corresponding 

class wj. For a categorical characteristic, j
tx  is 

represented by a proportional distribution of all its 
values for that characteristic ct in the corresponding 
class wj, which is called a frequency-based center 
(FBC), proposed by Ordonez [8]. The example in 
Figure 2 displays 3 categorical characteristics. The 
number in each rectangle in Figure 2(a) refers to 
occurrences of each characteristic value (ctl: the l-th 
value of a characteristic ct) counted from the 
examples of a class. Figure 2(b) is an example of FBC 

resulting from Figure 2(a). The computation of t
ijd  in 

Equation (9) is regarded as Equation (10). 
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where )( ittj xf  refers to the frequency of the 

characteristic value xit, counted from examples of a 

class wj. The example iX  is included in a set Lj if  

ji wY   and 
ji

j rXXd ),( . For a numeric 

characteristic, the range of the classical domain 

),( U
tj

L
tj vv  can be determined based on the values of 

the characteristic ct of the examples in Lj as equations 
(11) and (12). For a categorical characteristic, the 
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classical domain of the characteristic ),( U
tj

L
tj vv  

becomes a set containing all values of the 
characteristic ct of training examples that are in Lj.  
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Figure 2. Frequency-based center (FBC) 

 

Step 2: Read the testing pattern  kdkkkk xxxxX ,,,, 321  . 

Step 3: Calculate the correlation degrees of the testing pattern 

kX  for each characteristic of each matter-element 

model (class), using equations (13)-(15).  
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Since 
2

L
tj

U
tj vv   in Equation (6) has been replaced by 

tjv  in Equation (13) to provide useful summaries of 

asymmetrical data, an additional feasibility checking 

routine is performed for )( kttj xK  after each 

calculation, as shown in Equation (16).  
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Step 4: The membership grade of the unseen pattern kX  

with the class j  is calculated as Equation (17).  

mjxK
d

t
kttjkj ,,2,1,)(
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 


  (17) 

Step 5: Rank the membership grades and find the maximum 
value of the membership grade to determine the class 
label of the testing pattern. The classification rule is 
shown as Equation (18). 

)())(( jkkj
j

kj wisXoflabelclassthethenMaxif    (18) 

Step 6: Return to Step 2 for the next testing pattern once the 
classification of the first pattern has been completed, 
until they have all been finished. 

 

III. EXPERIMENTAL RESULTS 

This section reveals that IET is superior in effectiveness 
and performance in terms of classification accuracy 
compared to previous classifiers. A comparison with decision 
trees (DT), and extension theory (ET) verifies this claim. The 
performed experiments are on six publicly available datasets 
from the UCI repository (http://archive.ics.uci.edu/ml/). 
Table 1 describes several characteristics of the used domains. 
Comparative results show classification on two different 
types of datasets: pure numeric (Blood) and mixed numeric 
and categorical datasets (Australian, Cars, Cleveland, Crx, 
and Hepatitis). Each experiment involved Ten-fold 
cross-validation. Each dataset was randomly divided into 10 
partitions, and each classifier was given a training set 
comprising 9 partitions from which the classifier returned a 
classification model to classify the remaining partition. Ten 
such trials were run for each dataset with each classifier, 
using a different partition out of the 10, as the test set for each 
trial. Since ET is limited to numeric data, the classical domain 
for a categorical characteristic is represented by a set for all 
values present in the field-test records. Thereafter, 

1)( kttj xK  if the value of the characteristic ct of the 

testing example k falls within the classical domain of the 

characteristic ct of the class wj, else 1)( kttj xK . 
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Table 1. Basic information of the six datasets from UCI 

data set 
number of 
attributes 

number of 
classes 

data 
size 

Australia
n 

14 2 460 

Blood 4 2 748 
Cars 8 3 261 

Cleveland 13 2 296 
Crx 15 2 653 

Hepatitis 19 2 80 
 
Table 2 shows the average error rate over the 10 trials for 

each domain. Clearly, ET is seemingly inappropriate for 
classifying these datasets. For most datasets, DT outperforms 
ET, except for the Hepatitis dataset. Table 2 shows that, on 
average, the accuracy of IET is higher than that of ET. These 
results are encouraging because the proposed IET is 
comparable to that of DT. Statistical significance tests can 
further ascertain these findings. 
 

Table 2. The error rate on classifiers 

Data set IET ET DT 

Australian 16.30% 58.26% 18.26% 

Blood 25.53% 63.90% 24.73% 

Cars 0.38% 0.77% 0.38% 

Cleveland 19.26% 30.74% 20.95% 

Crx 13.48% 64.78% 13.78% 

Hepatitis 11.25% 17.50% 17.50% 

 
The paired t-test was applied to detect statistically 

significant differences in the performance of every pair of 
classifiers. Table 3 shows the results of the paired t-tests. The 
classifiers are listed in descending order of performance, 
grouped into homogeneous subsets labeled with a different 
letter, if the difference between the means of performance 
measurements of the two classifiers in the subset is not 
significantly beyond the prescribed α=0.05 level. Based on 
the compared measurements, the classifier with “A” is 
significantly superior to the classifier with “B”, and the 
classifier with “B” is significantly superior to the classifier 
with “C”. Testing results revealed that for the four datasets 
(Australian, Blood, Cleveland, and Crx), IET constructed a 
classifier not significantly different from DT, but statistically 
significantly more accurate than its antecedent component, 
ET. For the Hepatitis dataset, the accuracy of the classifier 
produced by MET is identical to the best of the other 
classifiers. For the Cars data-set, no statistically significant 
differences emerged between IET and the other classifiers. 
As the experimental results clearly show, IET can function 
effectively for pure numeric, as well as mixed numeric and 
categorical datasets. 
 

Table 3. Results of paired t-test for IET, ET, and DT 

Data set Classifier Result  Data set Classifier Result

Australia
n 

IET A  Cleveland IET A 

 DT A   DT A 

 ET B   ET B 

Blood DT A  Crx IET A 

 IET A   DT A 

 ET B   ET B 

Cars IET A  Hepatitis IET A 

 DT A   DT B 

 ET A   ET B 

 

IV. CONCLUSIONS 

This study proposed improved extension theory (IET), a 
classification method for mixed numeric and categorical 
datasets, and presented an evaluation of its performance. The 
characteristic of IET is to incorporate the concept of   
frequency-based center into MET of Liu [7] for dealing with 
categorical characteristics. The results obtained with IET 
over a number of real-world datasets are encouraging. The 
tests on several real-world datasets demonstrated that the 
performance of IET is superior to that of ET, and comparable 
in performance to decision trees (DT). The simplicity of IET 
and its impressive performance makes it an appealing tool for 
pattern classification.  
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