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Abstract—Wafer fabrication in the semiconductor industry 

is probably one of the most complex manufacturing processes. 

Maintaining high yields through the statistical process control 

as a sole monitoring method for quality control is obviously 

inefficient in such highly complicated operations. We thus 

present in this paper a sequence analysis method, which is one 

of the advanced data mining techniques, to identify and extract 

unique patterns from manufacturing data that can reveal and 

differentiate low performance processes from the normal ones. 

We also provide the program coding, implemented with the R 

language, for easy experimental repetition.  

 
Index Terms—Sequence analysis, sequence patterns, data 
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I. INTRODUCTION 

ANY modern manufacturing process engineers are 

now facing with the problem of timely yield analysis 

from large scale and multi-dimensional data that are 

automatically generated daily from hundreds of operational 

units in the production line. Semiconductor manufacturing 

is one of the most highly complex production processes in 

which they are composed of hundreds of steps. The major 

tasks in most semiconductor industries are: production of 

silicon wafers from pure silicon material, fabrication of 

integrated circuits onto the raw silicon wafers, assembly by 

putting the integrated circuit inside a package to form a 

ready-to-use product, and testing of the finished products 

[9]. A constant advancement in the semiconductor industry 

is due mainly to persistent improvement of the wafer 

fabrication process. 

The fabrication process consists of a series of steps to 

cover special material layers over the wafer surface. Wafers 

re-enter the same processing machines as each layer is 

successively covered. Some defects in this complicated 

process can make the final products fail the test. Early fault 

detection during this critical manufacturing process can 

obviously improve product quality and reliability.  
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Recent trend in intelligent manufacturing is to apply the 

variety of data mining techniques to automatically identify 

patterns and causal relationships leading to poor yield. In 

this paper, we expand the frontier of data mining application 

to the manufacturing process area by proposing an advanced 

sequence data mining technique. Our proposed technique 

can be viewed as a compliment of the classical statistical 

process control in that it can help engineers detecting 

process variations in a semi-automatic manner. 

Sequence is an ordered set of elements in which each 

element can be numerical, categorical, or a mixture of 

attributes. The order of elements could be determined by 

their occurring time or positions. If the order is by time and 

the elements of a sequence are real values, it is a time series. 

When the sequence elements are discrete, it is a categorical 

sequence [13]. Sequence mining is a recently active field of 

research in knowledge discovery and data mining. The 

applications of the available techniques are mostly in the 

areas of bioinformatics and financial analysis. In this paper, 

we demonstrate the potential application of sequence data 

mining to discover the operational sequences of tools 

causing low yields in the complex manufacturing process.  

II. RELATED WORK 

In recent years, many manufacturing tools are equipped 

with sensors to facilitate real-time monitoring of the 

production process. These tool-state and production-state 

sensor data provide an opportunity for efficient control and 

optimization. Unfortunately, such measurement data are so 

overwhelming that timely detection of any fault during the 

production process is difficult. Therefore, automatic and 

advanced process control method is required. 

Ison and colleagues [7] proposed a decision tree 

classification model to detect fault of plasma etch 

equipment. The model was built from the five sensor signal 

data. Goodlin et al [4] proposed to build a specific control 

chart for detecting specific type of faults. They collected 

tool-state data directly from the etcher. These data consist of 

19 variables. The work of Spitzlsperger and colleagues [14] 

was also based on the statistical method. They adopted the 

multivariate control chart method to maintain changes in the 

mean and standard deviation coefficients by remodeling 

technique. 

Later interest in fault detection has been shifted toward 

the non-parametric approaches. He and Wang [5] proposed 

to use the k-nearest neighbor rule for fault detection. 

Verdier and Ferreira [16] also applied the k-nearest 

neighbor method, but they proposed to use the adaptive 

Mahalanobis distance instead of the Euclidean distance. 
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Tafazzoli and Saif [15] proposed a combined support vector 

machine methodology for process fault diagnosis. Ge and 

Song [3] applied support vector data to the principal 

component analysis method to detect process abnormalities. 

Most work on fault detection methods has studied the 

process control problem with a few features of tool-state 

and process-state measurement data. McCann and his team 

[10] proposed a rather different setting in which the 

measurement data from the wafer fabrication process 

contain as much as 590 features. They applied feature 

selection technique to select only 40 features for further 

analysis.  

In this work, we apply a data mining technique that can 

handle 150 features of sequential data, rather than 

independent and discrete data as proposed in all the 

previous work. Sequence data mining of manufacturing 

process appeared in the literature just a few years ago [11], 

[12]. Our work presented in this paper is different from 

others in that we apply sequence analysis as an exploratory 

tool, instead of the classification tool. Moreover, we adopt 

the open source paradigm for the purpose of reproducible 

experimentation.  

 

III. A CLUSTER-BASED SEQUENCE ANALYSIS METHOD 

A. Description of Manufacturing Process Data 

In our sequence analysis, we use the data named SETFI 

(SEmiconductor Tool level Fault Isolation) simulated by 

Advanced Analytics, Intel [1]. This dataset closely emulates 

the actual highly complex nature of most semiconductor 

manufacturing processes. The dataset contains 4000 records 

of wafer lots, each lot went through hundreds of operations 

along the wafer fabrication process. During the process each 

wafer goes through sequence of operations in batch, which 

is called lot in this dataset. The sequences of operations 

might be different from lot to lot, but they involve only 

twenty kinds of equipments or tools, numbering from 1 to 

20. Tool distribution in the wafer fabrication process is 

graphically shown in Fig.1. At each operational unit, 

however, only a single tool is in operation. 

At the end of the fabrication process, a number of 

inspection steps are carried out to measure the product 

performance. Wafer lots that fail the inspection tests need 

re-processing. These low quality products require special 

attention. Low performance metric is often caused by a 

small subset of tools. Identifying such problematic tools at 

an early stage can obviously improve yield performance of 

the semiconductor manufacturing. Some data instances of 

the SETFI dataset are shown in Table 1. The first data 

instance contains information of a wafer lot number 3699 

that starts the process with a tool number 2 and ends with a 

tool number 3. Its performance metric is 2841.763. 

The original dataset has 300 operational units, each unit 

has a timestamp of the operation. In this study, we ignore 

the timestamps as our main objective is categorical sequence 

analysis, not a time series. We also remove the first column 

(Lot#) because it plays no role to the discovered sequence 

patterns. According to the data source document, missing 

values in this dataset are around 25%.  

TABLE 1 

DATA EXAMPLES OF SOME WAFER LOTS 

 

Lot# Op_1 … Op_300 Performance 

3699 2 … 3 2841.763 

1427 9 …  2779.744 

 2 … 3 2721.452 

… … … … … 

1753 7 … 5 2732.957 

 

 

 
Fig.1 Distribution of tools applied in the wafer operational units 

 

B. A Cluster-Based Sequence Mining Technique 

From the manufacturing process dataset that contains 

information of 300 operational units of 4000 wafer lots, we 

firstly perform data-preprocessing. The data preparation for 

our analysis method starts with the extraction of 301 

features (or variables) containing the tools used in the 300 

operational units plus the performance metric, which is the 

last column in the SETFI dataset. Then imputing missing 

information with the NA constant value, followed by the 

data exploration. We investigate our data characteristic by 

clustering the data with the pamk() function that is 

available in the fpc package of R language [6], [17]. This 

function is an extension of the partitioning around medoid 

algorithm [8] that also suggests appropriate number of 

clusters considering from the optimum average silhouette 

width. The pamk() function returns two clusters as follows: 

Cluster 1: contains 2028 records,  

 minimum performance =  2781.227, 

 maximum performance = 3293.183. 

Cluster 2: contains 1972 records,  

 minimum performance =  2177.438, 

 maximum performance = 2783.146. 

 

From all 4000 wafer lots, the maximum performance is 

3293.183, whereas the minimum one is 2177.438. The mean 

performance value is 2787.924. Therefore, it can be seen 

from this preliminary result that the wafer fabrication 

process dataset can be divided based on the performance 

metrics into two disjoint groups: a group of wafers that are 

approximately above average (cluster 1), and another group 

of those that are below average (cluster 2). We call cluster 1 

a group of high lots, and cluster 2 a group of low lots. We 

then design the analysis framework (as shown in Fig.2) to 

differentiate these two groups, and also to compare against 

the average group of wafer lots. 
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Fig.2 A Framework of cluster-based manufacturing process 

sequence analysis 

 

After the data instance extraction step (in Fig.2), all 4000 

wafer lots are separated into three groups: low, median, and 

high performance groups. The number of wafer lots in each 

group are around 200 to 201 data instances. Performance 

characteristics (maximum, minimum, mean, and standard 

deviation) of these three groups are summarized in Table 2. 

The tasks of data preparation, clustering, and sequence 

pattern extraction are performed through the R commands 

with the coding provided in Fig.3. To run the program, users 

call the main function: mainTC(). This is the only function 

in our program. 

The SETFI dataset is in a file ‘com.csv’. The first 

command in the program is to read the data and store in the 

variable ‘dat’. The first column, which is the lot number, is 

then removed. Then the dataset has been sorted in 

descending order according to the performance value. The 

ordered data of 4000 wafer lots are called ‘dat3all’. This 

dataset is then divided into four subsets, i.e., ‘low’, ‘mid’, 

‘high’, and ‘all’, and stored in the variable named ‘my.dat’. 

The performance metric in the last column is then attached 

to the dataset, and call this new dataset ‘cdat’. It is then 

clustered by the pamk() function, and the result is in the 

variable ‘re’. The program calls seqdef, seqecreate, and 

seqefsub functions from the library TraMineR [2].  

Default parameter of the function mainTC() is the ‘low’ 

data. To extract sequence patterns from other subsets, the 

parameter has to be specified. For example, mainTC(high) 

is to extract patterns from a group of wafer lots with high 

performance. The parameters ‘from’ and ‘to’ are for 

identifying data columns to be analyzed. Parameter ‘per’ is 

a percentage to split data into high, low, and median groups. 

The last parameter is minimum support, ‘min’, in which 0.7 

has been set as default.  

TABLE 2 

PERFORMANCE CHARACTERISTICS OF WAFER LOTS 

Wafer 

Lots 

Performance 

Maximum Minimum Mean S.D. 

Low 

(200 lots) 

2574.012 2177.438 2503.816 66.95 

Median 

(201 lots) 

2790.671 2778.334 2784.345 3.70 

High 

(201 lots) 

3293.183 2992.259 3062.469 63.95 

All  

(4000 lots) 

3293.183 2177.438 2787.924 125.84 

 

 

library(TraMineR) 

library(fpc) 

mainTC <- function(from=1, to=300, lot='low',  

                                  per=0.05, min=0.7) 

{ dat <- read.csv('com.csv');  dat <- dat[-1] 

  dat3 <- dat 

  dat3all <- dat3[with(dat3, order(res)),] 

  my.dat <- switch(lot,  

                       low = dat3all[1:(per*nrow(dat3)),], 

                       mid = dat3all[(0.5*nrow(dat3)- 

                                 (per*nrow(dat3))/2):(0.5*nrow(dat3)+ 

                                 (per*nrow(dat3))/2-1),], 

                       high = dat3all[((1-per)*nrow(dat3)):4000,], 

                       all = dat3all) 

    #--------------   

  cat('\n*************\nPerformance, max=', 

          max(my.dat[601]),'min=',min(my.dat[601]),'\n') 

   # use  300 cols  -- and use performance col 601. 

  cdat <- my.dat[,c(1:300,601)] ; re <- pamk(cdat) 

  my.ind <- re$pamobject$clustering 

  # print each cluster 

  cat(lot,'lot +++++ has',re$nc,'clusters\n 

         cluster #0=all data in this lot\n') 

  for (i in 0:re$nc) 

    { if (i==0) {data.used <- cdat}  

           else 

                {data.used <- cdat[my.ind==i,] } 

       mvad.seq <- seqdef(data.used, var=from:to,  

                                        missing=NA)  

            #  Event sequence analysis 

       mvad.seqe <- seqecreate(mvad.seq) 

       fsubseq <- seqefsub(mvad.seqe, pMinSupport=min,  

                                      maxK=3) 

       cat('--------\nCluster#',i,'of',lot, 

              'lot--Max Performance=',max(data.used[301]),', 

               min=', min(data.used[301]),'of', 

               nrow(data.used) ,'records\n') 

       print(fsubseq[1:50])  

            # plot the 15 most frequent sequences 

       plot(fsubseq[1:15], 

               main = paste('Cluster#',i,'has ',nrow(data.used),  

                            'records at',lot,'lot ,Columns :Col', 

                             from,'-',to,'--Max Performance=', 

                             max(data.used[301]),',min=', 

                             min(data.used[301])) ) 

       } 

 } 

Fig. 3 R programming for data clustering and sequence pattern 

extraction 
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IV. SEQUENCE ANALYSIS RESULTS 

To analyze the wafer fabrication lot patterns, we have to 

run the sequence extraction program four times, varying a 

lot parameter as ‘low’, ‘mid’, ‘high’, and ‘all’ in each 

execution. Users may call these executions in one time and 

save the output in a file ‘out.txt’ with the following 

commands: 

sink('out.txt') 

for(t in c('low', 'mid', 'high', 'all')) { mainTC(lot=t) }  

sink() 

The results of all executions that were written in a file 

‘out.txt’ can be illustrated in Fig.4. Each discovered 

subsequence is attached with the support and count values. 

The interpretation of these subsequence extraction results is 

straightforward. For instance, the first subsequence in a low 

performance lot is that tool number 2 had been applied prior 

to the tool number 5 (displayed as 2>5) with a frequency 

count of 200 from the total 200 records in this group. That 

means this subsequence support value is a proportion of 

200/200, or equal to 1.000 as shown in Fig.4. The possible 

maximum support value is 1, whereas the minimum is 0. 

The higher this support value, the more frequent a sequence 

had occurred. 

************* 

Performance, max= 2574.012 min= 2177.438  

low lot +++++ has 2 clusters 

cluster #0=all data in this lot 

-------- 

Cluster# 0 of low lot--Max Performance= 2574.012 

,min= 2177.438 of 200 records 

   Subsequence Support Count 

1        (2>5)   1.000   200 

2        (3>1)   1.000   200 

3        (3>4)   1.000   200 

4  (3>4)-(4>5)   1.000   200 

… 
49 (2>5)-(4>5)   0.990   198 

50 (2>5)-(5>1)   0.990   198 

Computed on 200 event sequences 

  Constraint Value 

 countMethod  COBJ 

-------- 

Cluster# 1 of low lot--Max Performance= 2500.938 

,min= 2177.438 of 74 records 

         Subsequence Support Count 

1              (1>4)       1    74 

2        (1>4)-(4>3)       1    74 

… 
49 (3>2)-(5>3)-(3>1)       1    74 

50 (3>2)-(5>3)-(3>2)       1    74 

Computed on 74 event sequences 

  Constraint Value 

 countMethod  COBJ 

-------- 

Cluster# 2 of low lot--Max Performance= 2574.012 

,min= 2500.235 of 126 records 

         Subsequence   Support Count 

1              (1>2) 1.0000000   126 

2        (1>2)-(1>2) 1.0000000   126 

… 
-------- 

Cluster# 2 of all lot--Max Performance= 3293.183 

,min= 2781.227 of 2028 records 

   Subsequence   Support Count 

1        (3>2) 0.9995069  2027 

2        (2>5) 0.9990138  2026 

… 
50 (3>4)-(1>2) 0.9876726  2003 

Computed on 2028 event sequences 

  Constraint Value 

 countMethod  COBJ 

Fig.4 Sequence extraction results from all groups of wafer lots 

The focus of our sequence analysis is the ability to 

differentiate frequent manufacturing process patterns of low 

performance lots from the high performance lots. From the 

clustering results, we concentrate our analyses on the 

bottom low lots (containing 74 records) that show the 

lowest performances comparative to the top high lots (with 

46 records) that show the highest performances. The 

sequences of these two groups are shown in Fig.5. Long 

chaining subsequences such as (1>3)-(3>2)-(2>1) can be 

interpreted as the sequence of tool number 1 followed by 

tool number 3 used in the two operational units is normally 

preceding the other two tool sequences, that is, 32 and 

21, respectively. In our experimentation, we set the 

number of sequence items to be at most three (due to the 

memory space limitation), and to display only the top-50 

sequences. All sequences in Fig.5 have support value 1. 

 

 (Low) Subsequence  

1              (1>4)        

2        (1>4)-(4>3)        

3              (1>5)        

4        (1>5)-(2>4)        

5              (2>3)       

6        (2>3)-(3>1)        

7        (2>3)-(3>2)        

8        (2>3)-(4>3)        

9              (2>4)        

10       (2>4)-(2>4)        

11       (2>4)-(2>5)        

12 (2>4)-(2>5)-(2>4)        

13 (2>4)-(2>5)-(5>2)        

14       (2>4)-(3>1)        

15       (2>4)-(3>2)        

16       (2>4)-(3>4)        

17       (2>4)-(5>2)        

18       (2>4)-(5>3)        

19             (2>5)        

20       (2>5)-(1>5)        

21       (2>5)-(2>3)        

22       (2>5)-(2>4)        

23 (2>5)-(2>4)-(3>2)        

24       (2>5)-(3>2)        

25       (2>5)-(5>2)        
26             (3>1)        

27       (3>1)-(2>3)        

28       (3>1)-(4>2)        

29       (3>1)-(5>2)        

30             (3>2)        
31       (3>2)-(1>4)        

32       (3>2)-(2>3)        

33 (3>2)-(2>3)-(3>1)        

34 (3>2)-(2>3)-(3>2)        

35       (3>2)-(2>4)        

36 (3>2)-(2>4)-(3>2)        

37       (3>2)-(3>1)        

38 (3>2)-(3>1)-(5>2)        

39       (3>2)-(3>2)        

40 (3>2)-(3>2)-(5>3)        

41       (3>2)-(3>4)        

42       (3>2)-(4>3)        

43       (3>2)-(5>1)        

44 (3>2)-(5>1)-(3>1)        

45 (3>2)-(5>1)-(5>3)        

46       (3>2)-(5>2)        

47       (3>2)-(5>3)        

48 (3>2)-(5>3)-(2>4)        

49 (3>2)-(5>3)-(3>1)        

50 (3>2)-(5>3)-(3>2)       

 (High) Subsequence 

1              (1>3) 

2        (1>3)-(2>1) 

3        (1>3)-(2>3) 

4        (1>3)-(3>2) 

5  (1>3)-(3>2)-(2>1) 

6  (1>3)-(3>2)-(2>3) 

7  (1>3)-(3>2)-(3>2) 

8  (1>3)-(3>2)-(5>3) 

9        (1>3)-(3>4) 

10 (1>3)-(3>4)-(2>1) 

11 (1>3)-(3>4)-(3>2) 

12       (1>3)-(4>1) 

13       (1>3)-(5>2) 

14 (1>3)-(5>2)-(2>1) 

15       (1>3)-(5>3) 

16             (1>4) 

17       (1>4)-(1>3) 

18 (1>4)-(1>3)-(3>2) 

19       (1>4)-(2>1) 

20 (1>4)-(2>1)-(3>2) 

21       (1>4)-(2>3) 

22 (1>4)-(2>3)-(3>2) 

23       (1>4)-(2>4) 

24       (1>4)-(2>5) 

25 (1>4)-(2>5)-(2>3) 
26 (1>4)-(2>5)-(3>2) 

27 (1>4)-(2>5)-(4>5) 

28       (1>4)-(3>2) 

29 (1>4)-(3>2)-(4>2) 

30       (1>4)-(3>5) 
31       (1>4)-(4>1) 

32 (1>4)-(4>1)-(2>3) 

33       (1>4)-(4>2) 

34 (1>4)-(4>2)-(2>1) 

35 (1>4)-(4>2)-(2>4) 

36 (1>4)-(4>2)-(4>5) 

37       (1>4)-(4>5) 

38 (1>4)-(4>5)-(3>2) 

39 (1>4)-(4>5)-(4>2) 

40       (1>4)-(5>3) 

41 (1>4)-(5>3)-(2>1) 

42 (1>4)-(5>3)-(3>2) 

43 (1>4)-(5>3)-(4>2) 

44             (2>1) 

45       (2>1)-(1>3) 

46 (2>1)-(1>3)-(3>2) 

47 (2>1)-(1>3)-(5>3) 

48       (2>1)-(1>4) 

49 (2>1)-(1>4)-(2>1) 

50 (2>1)-(1>4)-(2>3) 

Fig. 5 Frequently occurred tool sequences of low performance lots 

(left) compared to those in high performance lots (right) 
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Fig. 6 Top-14 sequences of low performance lots  
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Fig. 7 Top-14 sequences of high performance lots  
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To compare the highly occurred tool sequences of low 

performance lots against the high performance lots, we 

graphically draw the diagrams (Figs.6 and 7) of top-14 tool 

sequences. From the diagrams, we can notice that the top 

performance lots involve sequences of tools 1,2, and 3, 

whereas the low performance sequences involve the tools 1 

and 5. We then decompose the chaining sequences of the 

top-50 sequences in the three groups, that are low, median, 

and high performances, down to a single sequence to find a 

unique sequence in the low performance as well as the high 

performance group. The outcome is shown in Fig. 8. We 

then draw the experimental conclusion that a unique pattern 

in the low performance group is a sequence of tool 51, 

and a unique pattern in the high performance group is 13. 

 

Low Median High 

  13 

14  14 

15 15  

 21 21 

23 23 23 

24  24 

25 25 25 

31 31  

32 32 32 

34 34 34 

 35 35 

 41 41 

42 42 42 

43 45 45 

51   

52 52 52 

53 53 53 

 
Fig. 8 Unique pattern comparison among low, median, and high 

performance groups 

 

V. CONCLUSIONS 

For most highly complex manufacturing processes such 

as semiconductor industries, hundreds of metrology data are 

available for process engineers to analyze for the purpose of 

maintaining efficient operations and getting optimum yield 

of high quality products. For such a large volume of 

measurement data, automatic data analysis technique is 

essential. We thus investigate the application of advanced 

mining technique, namely sequence data mining, to help 

analyzing problematic sequences in the wafer fabrication 

process of semiconductor industries.  

We designed an analysis framework to group operational 

process data into three categories: processes with low, high, 

and moderate performance metrics. Process data in each 

category were then analyzed with the sequence mining 

program written in R language. We found from the 

experimental results that the frequently occurred sub-

sequences of each category show unique patterns. Sequence 

analysis technique presented in this paper is semi-automatic 

in the sense that unique pattern inspection has to be done by 

human. We thus plan to further our research towards the 

design and implementation of an automatic tool to timely 

detect process trends leading to low performance products.  
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