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Abstract—This paper presents an energy-aware workload
dispatching simulator for heterogeneous clusters. Most clusters
in a data center are composed of different kind of machines.
Among these machines, the front-end nodes distribute incoming
requests to the back-end workers. The main concern in such
system traditionally focuses on computation performance, but
energy consumption has emerged as an equally important issue
recently. This work designs a workload dispatching simulator
that is capable of identifying the energy usage of a heteroge-
neous cluster. The main target of the proposed simulator is
to find out how a workload dispatching algorithm affects the
energy consumption. The simulator consists of a configurable
traffic generator, a workload dispatcher, and a set of server
nodes. The traffic generator randomly produces workloads that
are constrained by the average job number, and the average
job size. The workload dispatcher assigns jobs according to
some popular workload dispatching algorithms. Each server
node can report its ID, idle power consumption, maximum
power consumption, and computing capability. A set of records
collected from a real heterogeneous cluster is examined using
this simulator. The goal of this work is to develop a simulator
that assists data center managers to estimate the availability,
service quality, and energy consumption of their heterogeneous
computation resources.

Index Terms—Heterogeneous Clusters, Workload Dispatch-
ing, Energy-Aware Simulation.

I. INTRODUCTION

ACluster hosting Web applications contains many dif-
ferent types of hardware devices over the course of

its construction. Sever nodes in such cluster have different
energy consumption patterns and computation capabilities.
The workload of an Internet data center is highly dynamic
[1], [2], [3]. It is necessary to have a sophisticated workload
distributor to assign jobs at any given time to maintain the
required service quality. Such distributors dynamically dis-
patch user requests upon their arrival. In a highly fluctuated
environment, the dispatching policy becomes a key issue for
the overall performance of a cluster.

Managing energy cost is crucial for Internet service
providers to make profit. Prior studies [4], [5] often use
energy usage minimization as the optimal solutions. Such
approaches work well for the flat rate electricity tariffs.
However, recent emergency of Smart Grid and the promotion
of time-based electricity pricing [6] complicate the situation.
A time-based electricity pricing scheme, such as Time-Of-
Use (TOU) rate, has a higher rate during peak periods, and
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a lower rate during off-peak periods. Minimizing energy
usage does not always translate into the lowest energy cost
when a time-based tariff is adopted. A profit-driven service
provider requires an energy-aware tool to implement suitable
power management. A simulator is necessary for the highly
dynamic Internet environment.

This paper presents an energy-aware workload dispatching
simulator that assists data center administrators capturing
the probable energy usage profiles with various dispatching
algorithms and workload patterns. The simulator imitates
the behavior of real-world workload dispatching to a het-
erogeneous cluster. A model is built to represent the key
characteristics of a heterogeneous cluster. A set of emulated
workloads based on real-world traffic traces is used to test
this simulator. The result shows that the simulator produces
a power usage profile that is very similar to the real-world
data.

II. RELATED WORK

There are many energy-aware workload dispatching al-
gorithms for cluster-based web servers. Few attempts are
pursued to examine these algorithms. The proposed simulator
helps to fill this void. This section briefs some energy-aware
workload dispatching algorithms.

Pinheiro et al.[7] propose an energy-conscious switch-
ing technique that adjusts on-power capacity at the coarse
granularity of cluster-based server systems. This technique
enables an economic framework for dynamic server resource
allocation that allows informed trade-offs of service quality
during shortages. Their system dynamically turns cluster
nodes on when it is needed for handling heavy workloads,
and off when the workload is lighter. Their approach is one
of the first studies that explore the energy related issues
on cluster-based systems. However, their algorithm assumes
the targeted cluster comprised of homogeneous machines.
In a homogeneous cluster, using round-robin to dispatch
workload is a rational choice, since each machine has the
same capability for solving problems, and the same power
consumption profile.

Heath et al.[8] propose an approach for conserving energy
in heterogeneous clusters hosting Web services. Their ap-
proach consolidates workloads into a subset of server nodes
while other machines are turned off. A model is built to
represent the request distribution among servers, and the
types of nodes and resources. The power consumption model
of each node is based on the OS-reported utilization rate.
They find that the power consumption of a node is a linear
function of its utilization rate. Their approach models the
requests as the fraction of each resource they require. In their
model, a content-oblivious workload dispatcher is employed.
Their goal is to minimize the power-to-throughput ratio.
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A Web server that is implemented based on their model
achieves 42% energy savings on a small cluster.

Chen et al.[3] find that the major cause of energy inef-
ficiency in data centers is the idle power. A server node
consumes over 50% of the peak power even running at
only 10% of CPU utilization. They propose a dynamic
server provisioning technique. Their approach automatically
provisions resources in data centers by taking energy savings
and application performance into account. This technique
employs ON/OFF control strategies aiming at energy saving
with desired performance levels. In their approach, each node
is limited with the maximum login rate and the maximum
number of connections. Their work uses load-balancing as
the workload dispatching algorithm.

Abbasi et al.[9]propose a two-tier management mecha-
nism for Internet data centers. They assume that computing
power aware server provisioning may not always be effective
or sufficient with modern servers because of the cooling-
computing power trade-off. Their reason is that consolidat-
ing the workload on fewer servers tends to decrease the
computing power (since modern servers are not energy-
proportional), but the consolidated servers may create hot
spots that typically demand greater cooling power. In some
cases, the cooling power increase may outweigh the com-
puting power decrease. The occurrence of cooling-computing
power trade-off depends on many factors such as regional
climate type, number and type of server nodes, size of data
center, etc.

Until recently, it remains a difficult problem to manage
power for heterogeneous clusters [10]. The current energy
management for heterogeneous clusters is either node addi-
tion/removal(or ON/OFF control) or workload dispatching.
For ON/OFF control, an energy management mechanism
needs to decide not only how many but also which server
nodes should be turned on. This approach is also needs to
have the information of workload and server characteristics.
For energy-efficient workload dispatching, existing studies
usually consider homogeneous clusters only. Identifying the
optimal workload dispatching for a heterogeneous cluster
remains a task for further exploring [10].

III. MODELING HETEROGENEOUS CLUSTERS

Most data centers use commercially off-the-shelf products
as server machines. It is very common that recently pur-
chased servers co-work with some older and workable ones
in a cluster. Therefore, heterogeneity is inevitable in such
environment.

A heterogeneous cluster is regarded as a collection of
server nodes where the number of their types is greater than
or equals to two. This work assumes each server node is
capable of point-to-point communicating with the workload
dispatcher. The workload dispatcher in a cluster is the front-
end node to Internet. In the simulation environment, as shown
in Fig. 1, Internet messages are simulated using a traffic
generator.

A. Traffic Generator

The targeted simulator employs a traffic generator to
simulate work requests from users. The algorithm of traffic
generating is shown in Fig. 2.

Fig. 1. Model of a Heterogeneous Cluster

1: Traffic Generator (R) {
1 ≥ R ≥ 0;
Generate a job queue Q to make the targeted cluster with
utilization rate R.}

2: empty Q
3: N ← RAND(0, Nmax) {
N is the size of Q.
Nmax is the maximally possible queue size.
RAND is a uniformly distributed random number gen-
erator that generates a random values the two given
arguments.}

4: for i = 1 to N do
5: x← RAND(0, Xmax) {

x is a random number.
Xmax is a predefined value representing the maxi-
mally possible value of x.}

6: if x
Xmax

≤ R then
7: J ← RAND(0, Jmax) {

J is a random real number representing the com-
puting capability required by a job.
Jmax is a predefined value representing the maxi-
mally possible computing capability of a job.}

8: push J into Q
9: end if

10: end for
11: return Q

Fig. 2. Algorithm of Traffic Generating
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This traffic generator requires an input value R repre-
senting the expected server utilization rate. R is the server
utilization rate when the workloads are randomly dispatched
to the back-end worker nodes. A job queue Q is produced by
this traffic generator. Each job is represented as the required
computing capability for finishing this job. The unity of the
computing capability is defined as the computing capability
required for the reference server node to finish a job in a
unit processing time, e.g. one second.

The size N of the job queue Q is randomly generated
using a uniformly distributed random number generator Ru.
N is ranging from 0 to the maximally possible queue size
Nmax. For each job slot in Q, the following procedure is
executed to determine whether to push a job assignment into
Q or not.

1) A random number x is generated using Ru.
2) x is ranging from 0 to a predefined value Xmax, where

Xmax > 0.
3) Whether ( x

Xmax
≤ R) is checked.

4) If the result is true, a job assignment is performed as
the follows.

5) A randomly generated job J is ranging from 0 to the
maximumly possible computing capability Jmax.

6) J is pushed into Q.
Suppose the sum of the computing capability of each

server node is S. Nmax and Jmax are constrained by the
Eq. (1). That is, the product of the expected values of N and
J shall not be greater than the maximally possible computing
capability.

S ≥ E(N)× E(J) (1)

B. Workload Dispatcher

The workload dispatcher retrieves a job from the job
queue Q, and assigns it to a node according to the adopted
algorithm. The pseudo code of the workload dispatcher is
shown in Fig. 3.

This workload dispatcher takes 4 arguments that are the
job queue Q, the server node set S, the last enabled node
L, and the callback function CALLBACK of the selected
workload dispatching algorithm. The job queue Q is gen-
erated by the traffic generator, as described in the previous
section. The server node array R contains all the active nodes
in the simulated cluster. This array is initialized and defined
by the simulator. L represents the server node that is assigned
with a job by this workload dispatcher. L is initialized
with 0, if there is no prior assignment. Using the callback
function makes the workload dispatching algorithm can be
dynamically invoked. This work implements 12 dispatch-
ing algorithms including Round-Robin(RR), Random(RND),
Least Utilization First (or Load Balanced)(LUF), Least
Power First(LPF), Least Delay First(LDF), Least Pending
Tasks First(LPTF), Least Power-to-Utilization First(LPUF),
Least Power-to-Task First (or Least Power-to-Throughput
First)(LP2TF), Least Time-to-Task First(LTTF), Least Delay-
to-Task First(LDTF), Least Utilization-to-Task First(LUTF),
and Least Pending-Task-to-Task First(LP3TF). GetInfo()
returns the following information of the given node:

1) Identity of the node
2) Consumed energy

1: Workload Dispatcher (Q,S, L,CALLBACK) {
Q is the job queue generated by the traffic generator;
S is a set of server nodes;
L is the last node assigned with a job;
CALLBACK is the callback function of the adopted
workload dispatching algorithm.}

2: M ← SizeOf(S) {
M is the size of the working set of server nodes.
Function SizeOf returns the size of the given set.}

3: if M > 0 then
4: N ← SizeOf(Q)
5: for i = 0 to N − 1 do
6: J ← Q[i]
7: for j = 0 to M − 1 do
8: T ← (L+ j)%M + 1
9: if CALLBACK(GetInfo(L), GetInfo(T ))

then
10: Break current loop {

Check whether the current job J should be
assigned to node T .
If there is no need for further checking,
CALLBACK returns true.
Function GetInfo returns the node informa-
tion. }

11: end if
12: end for
13: Assign job J to node R[T ]
14: L← T
15: end for
16: for k = 0 to M − 1 do
17: DoJob(k,R[k]) {

Function DoJob(k,R[k]) makes node k perform
job R[k].}

18: end for
19: end if
20: return X

Fig. 3. Pseudo Code of Workload Dispatcher

3) CPU utilization
4) Power to CPU utilization ratio
5) Number of pending tasks
6) Average latency
7) Consumed computing power
8) Number of finished tasks

CALLBACK examines this information to find out a
suitable candidate to process an incoming job.

C. Server Node

In a server computer, CPU utilization is often consid-
ered as the major indicator of power consumption. Other
components in a server computer are driven by instructions
issued by the CPUs. Vasan et al. [11] find that a linear
model for power consumption based on CPU utilization
works effectively across a variety of servers. Based on their
findings, this work assumes the power consumption model
of a sever node as:

P (t) = Pidle + Pdynamic ∗ U(t) (2)
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1: Server Node ()
2: U ← 0 {
U is the CPU utilization rate of this node. }

3: G← the remaining portion the an undergoing job of this
node

4: if G > 0 then
5: C ← the computing capability of this node
6: if G ≥ C then
7: G← G− C
8: U ← 1
9: else

10: Q← Number of jobs in the job queue of this node
11: if Q > 0 then
12: V ← C −G
13: Consume jobs until V = 0 or Q = 0
14: U ← 1
15: if V = 0 then
16: U ← G

C
17: G← 0
18: end if
19: else
20: U ← G

C
21: G← 0
22: end if
23: end if
24: else
25: Q← Number of jobs in the job queue of this node
26: if Q > 0 then
27: V ← C −Q
28: Consume jobs until V = 0 or Q = 0
29: U ← 1
30: if V = 0 then
31: U ← G

C
32: G← 0
33: end if
34: else
35: U ← G

C
36: G← 0
37: end if
38: end if
39: return U

Fig. 4. Process of a Server Node

In Eq. (2), P (t) is the power consumption of a server node
at time t. Pidle is the power consumption of a node when
its CPU utilization is 0%. Pdynamic represents the power
dynamic range, which is the difference between the power
consumption at utilization rate 0% and at 100%. U(t) is the
CPU utilization rate of a server node at time t. With Eq. (2),
the energy consumption of the server node during a period
t0 to t1 can be easily obtained by

∫ t1
t0
P (t)dt.

The role of a server node is to process the assigned jobs.
Each server node has its own job queue. The workload
dispatcher assigns a job to the job queue of the selected
node as described in Fig.3. The process of a server node is
illustrated in Fig. 4.

D. Computing Capability of a Server Node

In a heterogeneous cluster, some nodes have greater com-
puting capability than others. To make the comparison and

1: Computing Capability ()
2: Num← Number of child processes to be forked.
3: Count← Number of loops to be processed.
4: Perf ← 0
5: Start← Start time.
6: for i = 0 to Num− 1 do
7: Fork a child process.
8: end for
9: if This is the parent process then

10: for each child process do
11: Wait until the child process is ended.
12: end for
13: End← End time.
14: Perf ← End− Start
15: else
16: V ar ← 0
17: for i = 0 to Count− 1 do
18: V ar ← some calculations.
19: end for
20: Exit this child process.
21: end if
22: return Perf

Fig. 5. A Simple Multiprogramming Performance Tester

calculation intuitive, this work defines the term reference
server node. A reference server node is the server node with
the unity, which is 1.0, computing capability. A server node
of any type can be assigned as a reference server node, even
this node is not managed by the simulated cluster. Suppose a
server node has the computing capability of 2, this node can
finish a job twice as quick as the reference server node. To
calculate the computing capability, this study uses a similar
process employed by Linux Benchmark system for obtaining
BogoMIPS. The process is described in Fig. 5.

IV. REAL-WORLD DATA

This study uses the data recorded from a heterogeneous
cluster to test the target simulator. This cluster consists of 40
computers that are 4 IBM X3200 M3 servers featuring one
2.53 GHz quad-core 8 threads Intel Xeon X3440 processor
and 2 GB memory per server, 4 IBM X3550 M3 servers
featuring two 2.40 GHz quad-core 8 threads Intel Xeon
E5620 processor and 12 GB memory per server, 2 Tatung
TSS 2520 Servers featuring two 2.40 GHz Xeon processors
and 4GB memory per server, and 30 power-saving computers
(ACER Veriton N260). Each power-saving computer runs
with a dual-core 1.66GHz Intel ATOM N280 processor and
1 GB memory. All server nodes use Linux 2.6 as their
operation system. Apache 2.2 and MySQL 5 are installed
on each server node.

This study uses standard smart meters as the measurement
instruments instead of using digital multi-meters (DMMs),
which are employed in many prior studies. The instrumen-
tation for measuring the power consumption consists of two
standard smart meters manufactured by Tatung Company, i.e
the S4E solid state meters. Tatung S4E meter is also one of
few types of electronic electricity meter that are currently
adopted by Taiwan Power Company, TaiPower. This study
collects the power consumption information of this cluster
for several weeks, which are 6082 quarter-hours, to be exact.
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Fig. 6. Power Consumption vs. CPU Utilization

TABLE I
POWER CONSUMPTION CHARACTERISTICS OF SERVER NODES

P (t) = Pidle + Pdynamic ∗ U(t)
Node Type Idle Power Dynamic Range Computing

Pidle Pdynamic Capability
IBM X3200 M3 63.723 W 10.47 W 12.61
IBM X3550 M3 93.867 W 88.035 W 31.62
Tatung TSS 2520 194.94 W 182.68 W 2.02

Acer Veriton N260 20.81 W 4.41 W 1.0

A. Power Consumption Patterns of Servers

In order to get the power consumption patterns based on
the CPU utilization, this study uses sar (a Linux tool) to
record the CPU activity. The interval parameter to sar is
set to 60 seconds. One machine of each type runs sar as a
daemon process to record its CPU utilization over the courses
of this data gathering. Each of the machines that run sar
also connects to a Mastech 9803R Bench Digital Multimeter
(DMM) for recording its power usage. Each DMM reports
4 records per minute to an external computer through an
RS-232 cable.

This study associates and synchronizes the recorded CPU
utilization and the power usage information to get the cor-
relation between CPU utilization and power consumption of
each machine. This relationships of the measured machines
are shown in Figure 6. The result validates the assumption
given in Eq. (2). The performance tester is also executed
on each test machine. The power consumption patterns and
their computing capability of all types of nodes are shown in
Table I. In this study, the ACER Veriton N260 is defined as
the reference server node, which has the the unity computing
capability.

B. Power consumption data of different periods

The collected data sets cover three periods.

1) Idle Period: The first period is during the winter break
when the servers are almost always idle. This period
is from time unit 1 to 2400.

2) Busy Period: The second period is the preparation
period for the new semester when all the servers are
busy at installing and upgrading the required software
packages, serving requests from students, updating
accounts and performing maintenance activities by
staffs, and assisting teachers for preparing their course
materials. During the second period, the servers usually
have the highest utilization rate of a semester. This
period is from time unit 2401 to 3840.

Fig. 7. Power Consumption of the Test Cluster

TABLE II
RMSE AND NRMSE OF THIS SIMULATION

Idle Busy Normal Overall
Period Period Period

vmax 2514.4 W 2535.8 W 2529.6 W 2535.8 W
vmin 1655.7 W 1656.1 W 1655.8 W 1655.7 W
RMSE 9.38 W 15.89 W 11.23 W 11.88 W

NRMSE 1.09% 1.83% 1.28% 1.35%

3) Normal Period: During the third period, the servers
support the regular computation and web host services.
This period is from time unit 3841 to 6802.

Fig. 7 shows the recorded power consumption data. The
workload dispatching algorithm used in the test cluster is
Round-Robin.

A simulation is conducted using the server utilization
data gathered from the test cluster. This series of server
utilization rates is fed into the simulator as the input to
the traffic generator. The simulation result is shown in Fig.
8. To measure the differences between values obtained by
the simulator and the values actually recorded, this study
uses the root-mean-square error (RMSE) and normalized
root-mean-square error (NRMSE). RMSE is defined as:

RMSE(θ̂) =

√
E((θ̂ − θ)2), where θ̂ is the simulated

value, and θ is the recorded value. NRMSE is defined as:
NRMSE = RMSE

vmax−vmin
, where vmax and vmin are the

maximum value and the minimum value in the recorded
data, respectively. RMSE and NRMSE of this simulation are
shown in Table II.

V. CONCLUSION

The overall NRMSE is under 2%. Simulating the busy
period produces the highest NRMSE, which has the RMSE
of 15.89 W. The differences are mainly introduced by the
following factors:

1) Power consumption of the infrastructure. The power
lines and supporting infrastructure consume some en-
ergy that is not modeled in this simulator.

Fig. 8. Simulation Result
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2) Efficiency of the power supply unit (PSU). PSUs are
known to have different efficiency at different load
level. However, this is not considered in the proposed
design.

3) Granularity of the computing capability modeling. This
study uses simple coarse-granularity profiling to model
the computing capability of different types of server
nodes. This approach may affect the accuracy of the
simulation.

Although there is difference between the real data and the
simulation result, this study considers that the proposed de-
sign is good enough for empirical practice for the following
reasons:

1) Users only need to gather the the relationship between
CPU utilization rates and the corresponding power
consumption to build the power profile for each type
of server node. This can be easy conducted by using a
DMM and a software package, such as sar.

2) Profiling computing capability used in this study is
easy and intuitive. The validation conducted in the pre-
vious section proves this approach is accurate enough
to profile the power consumption pattern of the targeted
cluster.

Such simple design enables data center managers to use
inexpensive tools and simple programming to construct a
workload dispatching simulator for estimating the energy
usage of their heterogeneous clusters. With such simulator,
some applications can be easily provoked, such as: estimating
the energy cost with time-based tariffs, impacts of applying
different workload dispatching schemes, changes in service
quality when some server nodes are replaced or removed,
etc. These applications eventually improve the energy effi-
ciency and energy cost management for data centers adopted
heterogeneous clusters.
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