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Application of Neural Networks in Bridge
Health Prediction based on Acceleration and
Displacement Data Domain
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to model the non-linear relationship between a set of input

Abstract—The health condition of the bridge can be variable and the corresponding outputs without the need for
predicted through sensors’ reading in bridge monitoring. The predefined mathematical equations. Furthermore, neural
sensors measure thg acceleration and displacement of bridgenetworks do not need prior knowledge of the nature to the
response. The data is sent to the local server through the data relationship between the model inputs and corresponding

acquisition. Interpretation of the data applied neural network . .
in the localized server system. This paper aims to define OUtputs. Comparison to traditional methods, neural networks

performance of the acceleration and displacement data domain tolerate relatively imprecise, noisy or incomplete data.
as input in applied neural networks. The architecture of neural Approximate results are less vulnerable to outliers, have
ngtworks’ model used an input layer, one_and two hidden_layers better been filtering capacity and more adaptive. This
with n neurons and an output layer. The input layer consists of enapjes neural networks to overcome the limitations of the

time-acceleration domain and time-displacement domain of the isti thod d ful in b lied
bridge due to earthquake loads. Meanwhile, the output layer existing methods and Successiul in be applied on many

consists of bridge condition level which is determined using Problems within the field of Civil Engineering. _ _ N
finite-element analysis software. The training activation used ~ The neural networks have been applied in Civil
Gradient Descent Back-propagation and activation transfer Engineering since the past decades. Reference [1]
function used Log Sigmoid function. The bridge condition is investigated the use of neural network in some Civil
categorized in a range 0 to 3, which indicates the extent of Engineering system. The training and testing process utilize
bridge health cc_)ndltlon ranging fro_m safe '_[o hlgh-r_lsk level.  gctual field data as the input. The target output is the
The case study is 3 spans of box-girder's bridge subject to four theoretical solution of the problem being analyzed. The
earthquakes loads. The results showed that the prediction of .

results showed that the neural networks are reliable as well

bridge health condition based on displacement data domain )
with one hidden layer is more acceptable compared with based @S the other conventional methods. Some other researchers

on acceleration. The comparison obtains the recommendation of interested to develop the neural networks’ algorittespite
the best of data reading from the sensors to predict the bridge their presently basic form at solving direct mapping problems.
health condition. The application neural networks in the bridge Therefore, currently the total of the applied neural networks in
health prediction can help the authorities to know the condition the Civil Engineering studies have increasedyen in the
of the bridge due to earthquake at monitoring time, as the pridge engineering field, many civil engineering researchers
repair and maintenance of bridges can be performed as early as had applied the neural network in the latest research such as
possible before the bridge was damaged. [3], [4], and [5]. However, there is a little discussion about
which the best of both acceleration and displacement values
for input data in neural networks, especially for bridge
health prediction. Accordingly, the aim of this paper is to
define performance of the acceleration and displacement
data as an input domain in bridge health prediction due to an
earthquake. As of, the civil engineer can make a
NEURAL networks are computer processes that attemMrecommendation to bridge authorities for the choice of
to imitate the working process of human brain. Thoptimal sensors.
activity of neural networks associated with the use of

intelligent. The learning mechanisms in neural networks Il. BRIDGE HEALTH CONDITIONS AFTER EARTHQUAKE
exist to acquire the knowledge. The architectural model of gyjgqe's structure needs to be observed periodically in the
neural networks has been classified as various types baygg| time. In bridge health monitoring, the damage of the
on their training activation. The multi perceptron Iayer:bridge can be known and detected early through data reading
architectures are usually selected to solve many problehy the sensors. The acceleration and displacement data
using neural networks. The neural networks have the abilreading was sent to the local server through data acquisition.
Interpretation of data reading used the neural networks in the
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I. INTRODUCTION
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strain of the bridge. On the other hand [6] studied ttFig. 1. The Fig.1 displayed the peak ground accelerations
acceleration based approach using neural networks. T(PGA) of the earthquakes are 0.1539G (1.51)nits San
objective of research is to predict the displacement Fernando earthquake, 0.8677G (8.51%rftsr New Zealand
building response under earthquake excitation. The inptearthquake, 0.4731G (4.64 R)/for Lomaprieta earthquake,
data are the acceleration, velocity and displacement and 0.3803G (3.73 nfjsfor Landers earthquake.

ground and several stories of building. The others The acceptance criteria of pier damage based on structural
researchers investigated the application of neural netwoiperformance levels in FEMA 356 [14]. The criteria are
in existing bridge evaluation such as [7], and detected Immediate Occupancy (10), Life Safety (LS) and Collapse
bridge damage such as [8] used frequencies and mcPrevention (CP). The IO is defined as the structure still safe
shapes as the input data. Studies about the applicationto occupy which only very limited structural damage has
neural networks on bridge structures under seismic haoccurred after an earthquake. The risk of life-threatening

been conducted by [3], [9], and [10]. injury is expected very low. The LS is defined as some
In structural dynamic, the response of the bridge due structural element and component are severely damaged but
earthquakes commonly is derived from (1) the risk of life-threatening injury is expected low. The CP is
defined as the structure is on the verge of partial or total
[ M }Y'[ +]C }Y FKY =FM[{ ug} (1) collapse and significant risk of injury may exist.

where [M], [C] and [K] respectively is matrix of mass, :

damping and stiffness. Meanwhi¥é, Y, and Y individually
is vector of acceleration, velocity, and displacement of
bridge response. Vectqngis acceleration of earthquake
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Fig. 1. Response acceleration of earthquake data from PEER [13].
y() = av,(0) 3)

I1l. NEURAL NETWORK IN BRIDGE HEALTH PREDICTION

where ¢, «, and grespectively are damping ratio, This study used the Neural Network Back Propagation
frequency and number of mode shape. The acceleration PNN) algorithms. The best performances of BPNN

generated by second time derivative of displacement. THepend on the selection of suitable initial weight, learning
displacement values of a bridge response describe e, momentum, networks architecture model and activation
performance of the bridge under an earthquake loading. flfhction. The weight describes the acceleration or
bridge monitoring, both of acceleration and displacemepkiardation of the input signals. The architecture model for
values can be resulted from measurement by sensors wgfig system has number of input neurons, one and two

installed. The acceleration and displacement values can &$04en layers withn neurons and an output. The input
be produced from finite-element analysis using a COMPUtRLworks consist of time-acceleration domain and time-
program.

The construction era of a bridge is a good indicator gflsplagement domain OT the bridge seismic response
likely performance, with higher damage levels expected Iahnalyss. The numbers of _|np_ut correspon(_j to the numbers of
older construction than in newer construction [11]. The mof&"SOF On the bridge monitoring. Meanwhile the output layer
ages of the bridge structure, the longer loading to have be&Aile level of a bridge health condition due to an earthquake,
accepted. Therefore, bridge structure monitoring ;\é/hmh is resulted by finite-element apaly3|s softwqre. The
necessary done as periodically in order to know the brid@chitecture model of neural networks illustrates in Fig. 2.
health condition at the given time. According to [12]

8 ' ) 1*thidden layer 21 hidden layer
damage of bridge structure is normally defined as tt  neurons 1 neurons
intentional or unintentional changes in material an  mput
geometric properties of the bridge, including changes rcocloration 2 A @ Output

. .. ~ Acceleration
boundary or supporting conditions and structure (Ltom) : @: @_

- - Damage level
Displacement 37 : : (0.1.2.3)

connectivity, which adversely affect the current or futun
serviceability of the bridge. Damage can occur under larg

- - (1ton) ’{@ @,
transient loads such as strong motion earthquakes and
also be accumulated incrementally over long periods of tin
due to factors such as fatigue and corrosion damage. Fig. 2. The architecture model of neural networks with 2 hidden layers
In this paper bridge health condition is focused on the non in the system.

linear behavior of piers due to earthquakes. The analysis of o . _
the simulation model used the finite-element software. The training function used Gradient Descent Back-
Response acceleration data is adopted from [13] as showrpinpagation to minimize the sum squared error (E) between
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the output value of neural network and the given targeacceptability. The bridge model in this study has been

values. The total error is defined as (4). simulated to receive four excitations of earthquake in Fig. 1.
E= 72“’ -a)? 4) Thereby, responses of bridge structure due to some
2 i b earthquakes have applied as input in the training process.

where t denotes target value, denotes activation value of The damage of structure element from finite-element
output layer, and J is set of training examples. The steps analysis is described in Fig. 4. The criteria of bridge damage
repeated until the mean-squared error (MSE) of the outputiS_based on standard of Federal Emergency Management
sufficiently small. Agency [14]. Initial of B is described as operation level,

The final output is generated by a non linear filer which states transition from safe level to 10 level. The 10 is
caller activation function or transfer function. The transfeiMmediate-occupancy; LS is life-safety, and CP is collapse-
function for this model used Log Sigmoid function, whichPrevention. The level before damage is described with S
has a range of [0,1] to obtain the output. This function i(safe level). Fig.4 illustrates the point of high risk damage at
differentiable function and suitable used in BPNNthe top of piers (CP level).
multilayer as shown in (5).

a, =Y (@+e ™) (5)

where
|
Qg :[Z Wijai] +‘9]
i=1

Each i represents one of the units of lay@onnected to
unit j ande; represents the bias.

The weight, w of networks has adjusted to reduce the
overall error. The updated weight on the link connection the Fig.5 and Fig.6 show the response of the bridge model
i andj™ neuron of two adjacent layers is defined as, due to Lomaprieta earthquake. The acceleration and

displacement response of the bridge is measured durin

AW” —/7(6E/6W”-) (©) 11.?35 seconds at rfhe point where ser?sorl and sensor2 will k;qe
where n is the learning rate parameter with range 0 to 1 aflocated. The damage level occurred after 9.25 seconds. This
0E /W is the error gradient with reference to the weight. level consists of 10 level tlindex), LS level (2'index) and

In this study, input data has normalized by a line:CP level (% index) respectively at 9.26, 11.05, and 11.50

Fig. 4. Damage level of bridge model due to the excitation of Lomaprieta,
1989 earthquake

normalization equation as follows: seconds. The time before 9.25 seconds is categorized a safe
o ' level (zero index). The maximum acceleration values of
Z =(Z = Zyin)/ (Znax = Zuin) 7 bridge response are 4.745 frds sensorl and 1.7089 fét

whereZ is the normalized input values,tke original data, Sensor2 (Fig. 5). The maximum displacement value at
Zmax @Nd  Z,,, respectively, the maximum and minimum sensorl is 0.0486m, whereas at sensor2 is 0.00985m (Fig.
values. 6).

IV. A CASE STUDY

The bridge simulation model covered 3 spans of bc
girder concrete. The lengths of the 3 spans are 79m, 11(
and 79m respectively. The 2 sensors were assumed to
installed on the top of piers as shown in Fig. 3. The senst
measure the acceleration and displacement values of
bridge response.

—Sensorl
—Sensor2

Acceleration (m/S)
hA O b o r N

Safelevel=0index Damage level =
1st, 2nd, and3rd infdex

Time (sec)

T\ Sensor 1 ‘r\ Sensor 2 Fi

g. 5. The acceleration response of bridge model due to the excitation of
Lomaprieta 1989 earthquake.

I | Il Il
T T T T

9m 110m 9m

Fig. 3. The 3 spans of box girder bridge model 0.05

0.04 —Sensorl
=—Sensor2

The bridge model in Fig. 3 has been analyzed using t
finite-element software. The non linear time history analys
has been applied in the model so the behavior and conditi
on the model due to earthquake can be known as a detai
the given time. ]

According to FEMA 356, time history analysis shall be Safelevel=0index Damage level =
performed with at least three time-histories data sets Time (sec) 12 andtnder
ground motion. Since three time history data sets are used in
the analysis of structure, the maximum value of eackg. 6. The displacement response of bridge model due to the excitation of
response parameter shall be used to determine design Lomaprieta 1989 earthquake.

Displacement (m)
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The architecture of neural network method in this study BO00" iteration. The error of the validation process
shown in Fig. 2. The study used 1 and two hidden layersitrease since after the 3080@poch. There was over-
finding the best result for prediction of bridge condition. Théitting at the process. The network begins to over-fit the
architectures model for 1 hidden layer has 5 neurons fgata, since the MSE of the validation set will typically begin
input, 5 neurons for hidden and 4 neurons for output laygp rise. The discrepancy of the MSE validation indicates the

The topology of the neural network neurons is 5-5-4ychitectures of the model unsuitable for acceleration data
Whereas the architectures model for 2 hidden layers hagyGmain with one hidden layer.

neurons for input layer, 5 neurons fot' hidden and 5
neurons for 2 hidden layer and 4 neurons for output layer

The topology of neurons can be written as 5-5-5-4. Tt _ 0.07
neurons for input layer consist of time, acceleration aré 0.06
displacement from sensorl and sensor2. The output layel T 0.05
a damage level of the bridge which is categorized into 5 0.04 —— MSE Mean
indexes. The indexes are 0 (zero) for safety level (S), 1 (or § g3 — MSETraining
for 10 level, 2 (two) for LS level and 3 (three) for CP level. U% 0.02 ~~ MSETesting
One of the excitations is the Lomaprieta earthquak oot MSE Validation
which has 234 data for input and output data as shown = o.oo
Table I. The safety level has been described by 186 d: 0 10000 20000 30000 40000 50000

during 9.25 seconds for S=0 output index, 42 data durit Enoch

2.05 seconds for |O=1 output index, 2 data during O'le"g 7. The Means Square Error of npeoucral network model for 1 hidden layer
seconds for LS=2 outpu_t index, and 4 data during 0.15 of acceleration domain

seconds for CP=3 output index.

Fig. 8 illustrates all MSE in the neural networks model

TABLE | . . -
THE EXAMPLE OF INPUT DATA FROM LOMAPRIETA b_ased on displacement have the same trend line and in tune
EARTHQUAKE since 10008 epoch. The error on all processes decreases
along the iterations. The result indicates the architectures
No. of INPUT outputl Model for 1 hidden layer can be accepted and used for
DATA | TIME | ACC1_IDISPLL | ACC2_|DISPL2 predict the damage level based on the displacement data
1 0 0.00E+00 | -9.77E-05 [ 0.00E+00 [ -2.95E-04] S=0 .
2 0.05 | 3.57E-02 |-1.29€-04| 1.18E-03 | -3.29E-04] S=0 domain.
225 112 | -3.066-02 ]| -5.65E-03| 6.44E-01 | 2.456-04 | 10-1 0.07
226 11.25 | 5.59€-02 [-3.37E-03| 1.70€-01 | 2.83€-03 | 10=1 m
227 11.3 -1.36E-01 | -9.34E-04 | -3.18E-01 | 5.81E-03 10=1 g 0.06
228 1135 | 2.58E+00 | 2.74E-03 | -2.27E-01] 8.24E-03 | 10=1 5 005
229 114 | 6.23E-01 | 1.13E-02 [ -8.02E-01] 9.85E-03 | LS=2 = o4
230 | 11.45 | 1.10E+00 | 2.26E-02 | -8.31E-01| 9.58E-03 | Ls=2 o MSE Mean
231 11.5 -1.44E+00| 3.64E-02 | -5.99E-01| 7.66E-03 CP=3 § 0.03 = -MSE Training
232 11.55 |-3.25E+00| 4.69E-02 | 5.41E-02 | 4.70E-03 | CP=3 Z 002 — = MSE Testing
233 116 | -4.75+00] 4.86E-02 | 1.09E-01 | 9.90E-04 | cP=3 c o
234 | 1165 | 3.01E+00 | 4.06E-02 | 8.88E-01 | -3.14E.03| CP=3 g oo T MSE Validation
Note: ACC1 and DISPL1 are acceleration and displacement values = 0
Sensorl. ACC2 and DISPL2 are acceleration and displacement values 0 10000 20000 30000 40000 50000
Sensor2.
Epoch
The _tOtaI numbers O_f _|nput and output _data are 1808'Fig. 8. The Means Square Error of Neural Network model for 1 hidden
which is resulted by finite-element analysis due to four layer of displacement domain
earthquakes excitation. The neural networks used 70% data
for training, 15% data for testing and 15% data for _ ¢o7
validation process. “é 0.06 e
The parameters to indicate the end of training are the < 0.05
mean square error (MSE), maximum of epochs and learning 5 0.04 VISE Mean
H (&)
rate (ITr). The MSE with 0.01 performancg goal has been 5 003 — -MSE Training
used in the networks, whereas the maximum number of & o0z — — MSE Testing
epoch used 50000, and learning rate used 0.1. The network § o2 = ... MSE Validation
have been examined by the computer with specification Intel = (qg
Core i5-2410M, the power of processor is 2.30 GHz with 0 10000 20000 30000 40000 50000
turbo boost up to 2.90 GHz and memory 4 GB. Epoch

The results from the models with one hidden layer are
shown in Fig. 7 and Fig. 8, while the models with 2 hidden
layers are shown in Fig.9 and Fig. 10. The MSE of neural

networks of a model based on acceleration data domain iSThe neural networks model based on acceleration data
seen in Fig.7. The MSE of trammg, testing and \:E%I'dat'oaomain with two hidden layers is shown in Fig. 9. The figure
process have the same trend line along the 10GB0 j,strates all MSE models have the same trend after 10000

Fig. 9. The Means Square Error of Neural Network model for 2 hidden
layer of acceleration domain
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iterations. The MSE values of testing process are higher thawean value are 0.0531 and 0.82937 at 50000 epochs for
other MSE values. The error into the testing process is rdisplacement data domain. The values are 3.89% smaller
used during the training process, but it is used to compatan MSE of acceleration data domain and 1.37% higher
the different models. than R mean of acceleration data domain. The process time
Fig.10 shows the MSE of the model based oneeds 2.46% shorter than the acceleration data domain.
displacement data domain. The MSE of validation has theAnalog with Table Il, the comparison of the acceleration
fluctuation along the iterations before 25000 epochs. Thand displacement data domain for 2 hidden layers has been
fluctuation describes the networks have not been convergshbwn in Table Ill. Table Ill displays the all average of
yet. It means the acceleration data domain more acceptaigigressions (R-mean) is above 0.81% for displacement data
rather than the displacement data domain for two hiddelomain with 2 hidden layers. Similar with Table I, the table

layers’ model. displays the displacement data domain has the smaller MSA
values and the higher R-mean values rather than the
__ 007 acceleration data domain.
B 006 e
= TABLE Il
5 0.05 Comparison of acceleration and displacement domain for 2 hidden layer
LIL] 0.04 — MSE Mean Epochs Acceleration Displacement
o) ' P MSE Mean |R Mean CPU Time [ MSE Mean [RMean |CPU Time
s 0.03 = -MSE Training 5000 0.0611]  0.79973|  391.5625 0.0565 0.81091| 409.0502
g‘ — — MSE Testi 6000 0.0576 0.79704 473.8842 0.0555| 0.81619| 472.527
(g 0.02 estlng 10000 0.0583 0.80678 760.3333 0.0546| 0.81876| 779.771
S 001 | e MSE Validation 15000 0.0578]  0.80832 1153.8 0.0525[ 0.8278| 1193.9
S ' 25000 0.0572 0.80988 1910.9 0.0522| 0.82921 2013.8
0 50000 0.0556 0.81451 3900.6 0.0512| 0.83001 4091.8
0 10000 20000 30000 40000 50000
Epoch The best of MSE and R-mean value are 0.0512 and
) ) 0.83001 at 50000 epochs for displacement data domain. The
Fig.10. The Means Square Error of Neural Network model for 2 hidden P P .
layer of displacement domain values are 4.12% smaller than MSE of acceleration data

domain and 0.94% higher than R mean of acceleration data

The comparison of acceleration and displacement datamain. However, the process time needs 2.39% longer than
domain for 1 and 2 hidden layers model has been obseribd acceleration data domain.
in Table 1l and Table Ill. The comparisons are the averageThe result shows the neural networks model for 1 hidden
of mean square error (MSE mean), regression (R mean) dager model is suitable for the displacement data domain
running time (CPU time). The best performance of MSkecause the results display the values of the MSE mean are
value is the smallest of MSE, because it means the smallestaller and the regression values (R mean) are higher close
of the error occurred in the calculation. However the begt 1 and the CPU time is shorter than acceleration data
regression value is the highest one close to 1. The regresgiomain. The smaller MSE mean defines the error occurred
with value close to 1 defines the prediction value almost calculation to predict the bridge damage is smaller.
100% close to the actual one. The best performance of CMhereas the neural networks model for 2 hidden layers
time is the shortest time to process the calculation in centrabdel is unsuitable with the displacement data domain.
processing unit (CPU). The CPU time is measured ilthough the model has the MSE mean values are smaller
seconds. The CPU time is dependent with CPUand regression values (R mean) are higher close to 1,
computational power and specification of the computer.  however the process time is longer than acceleration data

The both Table Il and Table Il show the MSE valualomain. Therefore for prediction damage level on bridge
decreases since the epoch increases. However CPU timenitoring is recommended to use 1 hidden layer with
increases since the epoch increases. On the other hdigplacement data domain.
regression value increases close to 1 since the epoch
increases. V. CONCLUSION

The bridge health system used several sensors to detect

. __TABLEII _ _ the behavior of a bridge such as bridge deformation and
Comparison of acceleration and displacement domain for 1 hidden Iayea Th ted to data | d t th
— Accoloration Drsplacement damage. The sensors connected to data logger and sent the

P MSE Mean [R Mean | CPU Time | MSE Mean [RMean_[cPuTime|  information data such as displacement and acceleration to
Zggg gggﬁ g;gig‘l‘ 4i§2;;‘1‘ 00623§ 83‘1’222 iggi;i: the local server. The data is used as input by neural networks
10000 00622 079571 738 1031 0055 ososes Tie el Within th_e server system. The archnectu_re of neural network
15000 0.0609] _ 0.80089 10804 0.0s46] 0.82214] 10505]  method in this study used one and two hidden layers.

25000 0.05971 0.80509 1824.3 0.0538] 082635 1797.5 The results denote the models with one hidden layer for
50000 0.0574 0.80689 3846.7 0.0531| 0.82937 3661.6

acceleration data domain had the discrepancy of the MSE
viglidation. The problem indicates the architectures of the

Table Il shows the all average of regressions (R'mean)model unsuitable for acceleration data domain with one
above 80% for displacement data domain with 1 hidden

. : . hidden layer. While the neural networks’ model based on
layer. The table describes the displacement data domain ?s%lacement with a hidden layer have the same trend line

the smaller MSA values and the higher R-mean values ratl?ﬁ{d in tune since the 1000Cepoch. The error on all
than the acceleration data domain. The best of MSE and ;ﬁbcesses decreases along the iteratié)ns.
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The neural networks’ model based on acceleration ddt
domain with two hidden layers illustrates all MSE models
have the same trend after 10000 iterations. The MSE values
of testing process are higher than others MSE values. Thg
error during the testing process is not used during the
training process, but it is used to compare the different
models. While the MSE validation of the neural networks]
based on displacement data domain with two hidden layers
had the fluctuation along the iterations before 25000 epociﬂﬁ.
The fluctuation describes the networks has not reached
convergence.

The comparison of acceleration and displacement dal
domain for one and two hidden layers’ model has been
concluded based on MSE mean value, regression mean value
and CPU time of the network model. Both comparisor{g]
show the MSE mean value decreases since the epoch
increases. However, CPU time increases when the epoch
increases. Whereas regression value increases close tB0L
since the epoch increases.

The average of regressions (R-mean) for displacement
data domain with 1 and two hidden layers is above 80%. THél
value denotes the damage values from the displacement qﬂ?
domain has been predicted 80% close to the actual damage
values. Conversely, the process time for two hidden layers
needs the longer time than the acceleration data domdi+!
Therefore, the bridge health prediction based on
displacement domain data for one hidden layer is mol&]
accurate rather than the acceleration data domain with 1 and
two hidden layers.

According to the results, the neural networks’ method
based on the displacement data has the best performance
since uses one hidden layer in the system. The reason
describes the displacement is derived from second time to
generate the acceleration. The displacement has simpler
physic quantity rather than acceleration so the convergent is
approached faster.

Actually, most bridge monitoring system use the
accelerometer sensors to measure the acceleration of bridge
response, because the accelerometer sensor is simpler to
install in the field. Furthermore, the acceleration from
accelerometer sensors can be modified directly to conduct
the displacement value before entry into the neural networks
system server. Consequently, the monitoring system is
recommended to be used in the neural networks with one
hidden layer based on displacement domain. The
implementation of the intelligent neural network method for
the bridge seismic monitoring system can help the bridge
authorities to predict the stability and health condition of the
bridge structure at any given time.
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