

Abstract—Software architecture is the process of defining

solution that meets all of the technical and operational

requirements. It involves a set of related software elements and

their relationships to be constructed afterwards in the rest of

development phases. A good software architecture design

obviously ensures the quality of software product. Typically,

the changes of software architecture model during the

development phases may effect the expected design rationales,

its performance and the complexity of the software product.

In this paper, we propose a tool called “xADL: Software

Architecture Changes Effect Detection Tools – xSACEDT” in

order to detect the effects of the software architecture changes.

The original software architecture model, written in xADL, will

be compared with the new model. All of the modification issues

will be detected and reported. Moreover, the effects on

requirement checklists and its design quality attributes are also

traced and alerted.

Index Terms—Effect detection, Architecture model, quality

attribute, software architecture, design rationale

I. INTRODUCTION

OFTWARE architecture [1] has become crucial and

mandatory for the large scale software design and

development. It is a key to control the complexity and

performance of the software product. Therefore, the

software architectural design method is commonly

conducted to ensure the expected quality of the software

product even before writing the source codes and during the

maintenance period.

In general, as shown in figure 1, the software architectural

design method considers the given software requirements

specification as an input which provides a list of mandatory

functional and non-functional requirements. A preliminary

software architectural design model should be outlining the

overall functional checklists.

Right after the modeling of software architectural model,

the process of assessment takes place in order to estimate the

expected quality attributes. In case of the model does not

meet with the user needs and system constraints, it should be

Manuscript received January 08, 2013; revised January 30, 2013.

Artit Udomsomruedee is with Department of Software Engineering,

Faculty of Engineering, Chulalongkorn University, Bangkok Thailand

(email: artit.u@student.chula.ac.th).

Wiwat Vatanawood is with Department of Software Engineering,

Faculty of Engineering, Chulalongkorn University, Bangkok Thailand

(email: wiwat@chula.ac.th).

reconsidered for the modification of its software elements

and their relations to solve the predicted problems.

The software architectural model will be analysed and

transformed, known as "Software Architecture Evolution."

Figure 1. Software architecture design method [2]

In the recent days, the UML diagrams is the most popular

representation of the design model. However, it is still

difficult to manipulate and analyze the UML diagrams by

machine. Therefore, it should be transformed into the meta

design model using any meta-language. In our approach, we

select xADL meta-language, one of the famous architectural

description language in which we can provide our software

architectural models in XML format. The XML format is

standard and easier to be manipulated by machine.

The more software systems become large scale and highly

complicated, the more people get involved in the software

architectural design process. The need of automated tool is

supportive. According to the related research works [3, 4, 5]

of the software architecture evolution, the following

problems or limitations may occur:

 Complex software architectural design is difficult to be

considered by hand.

 Software architect or designer difficultly identifies the

related requirements, quality attributes and the

implementing classes that will be effected by the changes

of the software architectural model.

 The effect detection of the software architecture changes

by hand is often mistaken.

 No supporting tools are available to classify the

differences between two versions of the design model.

In this paper, the related works are shown in section 2.

The proposed detection of software architecture changes is

described in section 3. In section 4, our supporting tool is

demonstrated and the section 5 is the conclusion.

Effect Detection of Software Architecture

Changes in xADL

Artit Udomsomruedee and Wiwat Vatanawood

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

mailto:wiwat@chula.ac.th

II. RELATED WORK

A. Architecture Description Language

The architecture description language [5, 6] is designed to

describe software elements and their relationships in formal

manner. However, the xADL [6] is one of the architecture

description languages which provide the extensible structure

of the software architectural model using XML format. The

software architectural model is defined as the following

elements:

Component: an element which represents the

interconnected components that construct software

architecture. Each component is referred by a unique

identifier and its description. A component communicates in

and out of its boundary via the connection port called

interface.

Interface: an element which represents the connection

port of the interconnection between components. An

interface is attached to a component. The directions of the

interconnection are specified as input or output direction.

Connector: an element which represents the bridge of the

interconnection between components.

Link: an element which represents the path between the

interfaces.

Basic elements of xADL are shown in figure 2. The Agent

and Environment components are connected via ActionCon

connector. The interfaces are assigned and the links are

drawn.

The xADL modeling tools are available to support and

encourage the development of the software architectural

model in xADL. These tools include Apigen [8], xArch [9],

ArchStudio4 [10], and ArchStudio5 [11], which are

architecture-centric development environment.

Figure 2. Example xADL, showing the Agent and

Environment component, connected with the ActionCon

connector [4]

B. Rationale-Based architecture model

In [12], the rationale-based architecture model for

design traceability and reasoning is proposed to describe

design rationale issues and theirs implementation along with

the supporting tool. The main advantages of the design

rationale are listed as follows for architects and designers:

 To understand the reason of the designed elements.

 To analyse the impact of changes in software architecture.

 To trace and analyse the root cause of the design.

 To encourage the check of the completeness of the design

and maintenance.

III. PROPOSED APPROACH

In our approach, the software architectural model is

attached with the related requirements description checklist

and the design quality attributes. As we mentioned earlier, a

software architectural model in xADL consists of a set of

model elements - components, interfaces, connectors, and

links. Each element is attached with the additional

information to ease the traceability.

We propose three additional activities into the typical

software architecture design method shown earlier in figure

1. These activities are "the project requirements description

management", "the design description management", and

"the software architecture change detection", shown in the

shaded activities of figure 3.

Figure 3. Software architecture design method based on

design description.

The project requirements description management will

provide the designer to key in the expected requirements

checklist as a baseline to be traced. While, the design

description management will provide the designer to key in

the design rationale issues and quality attributes and they are

then assigned to any element of software architectural model

if needed. Whenever the design model is changed, the new

design model will be detected against the previous design

model and its design rationale. That is what our third tool

called, the software architecture change detection will come

to help the designer locate the changes and report the

possibility of the ripple effects to the expected requirements

and related design quality.

In order to clarify our activities mentioned, the following

steps of the implementation are described along with the

figure 4-6.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

Figure 4. Project requirements description manager and

design description manager method.

A. Project Requirements Description Manager

The basic information regarding software project is

essential for us in this step. The project name, description

and the list of mandatory requirements are stored and

expected to be traceable. In general, both functional and

non-functional requirements checklists are recommended to

be identified and stored in this step. A file of basic

information, in our specific format, is allowed to be

imported. Vice versa, the stored basic information is allowed

to be exported as well.

B. Design Description Manager

In addition to the requirements checklist, the quality

attributes regarding functionality, reliability, usability,

efficiency, maintainability, and portability will be assigned

to any software architectural model element in this step. The

xADL architectural model will be read using DOM parser

[13]. Each architectural element in term of component, or

connector, or interface and link will be parsed and listed to

be ready. Then, the designer will be provided with a GUI

window to do the assignment easily. We intend to attach

these requirements and design rationale items from the

assignment, called "Design description tag", as an annotation

or comment tag in the target xADL architectural model. That

makes the xADL architectural design model still valid to the

original xADL schema standard, as shown in figure 5.

Figure 5. Sample design description tag stored with xADL

files.

The design description tag is defined as follow:

<! -- [ProjectName] | [[ComponentID], [RequirementsID]*,

[QualityAttributesID]*]* -->

where [ProjectName] represents the project name,

[ComponentID] represents the unique identifier of any

component, [RequirementsID] represents the unique

identifier of any requirements item, [QualityAttributesID]

represents the unique identifier of any quality attribute. The

symbol * represents the repeatable item, so that the

[RequirementsID] and [QualityAttributesID] are repeatable

for each [ComponentID].

Figure 6. Structural difference checker and report generator

method.

C. Sax Parser

During the evolution of the software architectural design,

the previous architectural model is changed into a new one.

We use a Sax parser [14] to read the xADL definition of

both design models and generate the equivalent Java objects

to both design models. Practically, the java object

representing the specific design model will be efficiently

handled in the programming language.

D. Structural difference checker

The structural difference between the previous design

model and the corresponding new design model will be

detected in this step. A hash table [15] is exploited in our

detecting algorithm to locate the changes and categorize

them into three categories, Added, Removed, and Modified

Category. We are capable of identifying the difference

between the renamed component and the added component.

E. Report Generator

The report is divided into two parts. The first part shows

the effects of the software architecture changes in terms of

the added, removed, modified elements - components,

connectors, interfaces, and links. While, the second part

shows the possibility of the impacts on the corresponding

software requirements, quality attributes, and even the

implementing classes of the functions.

IV. DEMONSTRATE

In order to demonstrate the resulting report of our

"xSACEDT-Tools", we select an architectural model of an

arcade game from [16] and revise into an on-line arcade

game. The original arcade game's architectural model is

drawn in figure 7, using ArchStudio editor. Then, the on-line

arcade game's architectural model is redrawn in figure 8 as

to be a new on-line system. Both design models are drawn

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

and defined in xADL. The software architectural design

method in figure 3, is conducted.

Figure 7. Arcade game architecture design.

Figure 8. On-line game architecture design.

The software architecture changes are listed and shown in

Table 1.
TABLE I

CHANGE RESULT DATA

No Element Name Type
Difference

Classification

1. ConntrollerEngine Component Add-in

2. DatabaseClient Component Add-in

3. DatabaseServer Component Add-in

4. ConnectorCE Connector Add-in

5. ConnectorDBClient Connector Add-in

6. ConnectorDBServer Connector Add-in

7. CCEInf1 Interface Add-in

8. CCEInf2 Interface Add-in

9. CDBCInf1 Interface Add-in

10. CDBCInf2 Interface Add-in

11. CDBSInf1 Interface Add-in

12. CDBSInf2 Interface Add-in

13. CEInf1 Interface Add-in

14. CEInf2 Interface Add-in

15. CEInf3 Interface Add-in

16. DBCInf1 Interface Add-in

17. DBCInf2 Interface Add-in

18. DBSInf1 Interface Add-in

19. Link1-1 Link Add-in

20. Link1-2 Link Add-in

21. Link1-3 Link Add-in

22. Link1-4 Link Add-in

23. Link1-5 Link Add-in

24. Link6 Link Add-in

25. Link7 Link Add-in

26. Link8 Link Add-in

27. USBInf1 Interface Modify

(Description)

28. Link1 Link Remove

29. Link2 Link Remove

It says that three additional components are found, named

ConntrollerEngine, DatabaseClient, and DatabaseServer.

Moreover, three additional connectors, twelve interfaces and

eight links are found in the new model. Only one interface is

modified and two links are removed.
TABLE II

CHANGE IMPACT RESULT DATA

(REQUIREMENTS EFFECT)

No Requirement Name Relate to components

1. 1 - Game engine development Game

2. 3 - Connector Input Testing KeyBoardDriver,

MouseDriver

3. 5 - Display output testing DisplayDriver

4. 6 - Online Game Implementation ConntrollerEngine,

DatabaseClient,

DatabaseServer

In table 2, there are four requirements items will possibly

be impacted according to the listed components. It says that

the connector input testing will possibly impacted by the

changes of KeyBoardDriver, and MouseDriver components.
TABLE III

CHANGE IMPACT RESULT DATA

(QUALITY ATTRIBUTES EFFECT)

No Quality Attributes Relate to components

1. Efficiency ConntrollerEngine,

DatabaseClient,

DatabaseServer,

DisplayDriver,

KeyBoardDriver,

MouseDriver

2. Functionality ConntrollerEngine,

DatabaseClient,

DatabaseServer,

DisplayDriver, Game,

KeyBoardDriver,

MouseDriver

3. Maintainability ConntrollerEngine,

DatabaseClient,

DatabaseServer

4. Portability ConntrollerEngine,

DatabaseClient,

DatabaseServer

5. Reliability DisplayDriver,

KeyBoardDriver,

MouseDriver

6. Usability DisplayDriver,

KeyBoardDriver,

MouseDriver,

DatabaseServer

In table 3, the quality attributes listed as Efficiency,

Functionality, Maintainability, Portability, Reliability, and

Usability, are possibly impacted according to the listed

components. For example, the usability of the software may

be impacted by the changes of DisplayDriver,

KeyBoardDriver, MouseDriver, and DatabaseServer

components.
TABLE V

CHANGE IMPACT RESULT DATA

(IMPLEMENTATIONS EFFECT)

No Class Name Relate to components

1. com.arcade.core.Engine Game

2. com.arcade.Input KeyBoardDriver,

MouseDriver

3. com.arcade.Output DisplayDriver

Finally, table 4 also shows the implementing classes

which will be effected by the listed components.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

V. CONCLUSION

In this paper, we propose an alternative software

architecture design method for the large scale software

product. The changes of the consecutive architectural design

model will be detected and located using our proposed

supporting tool, called xSACEDT tool. In our approach, the

essential information on project description, the related

requirements, and design quality attributes is attached into

the architectural model as an annotation or comment tag in

xADL. The resulting xADL is still valid and conform to the

schema standard. We demonstrate the final report of the

impacts and effects found after the detection. It is potentially

useful during the evolution of the software architectural

design model.

REFERENCES

[1] SEI, What Is Software Architecture?

http://www.sei.cmu.edu/architecture/.

[2] M. Mei Rong, Changlin Liu and Guangquan Zhang, “Modeling

Aspect-oriented Software Architecture Based on ACME,” The 6th

International Conference on Computer Science & Education (ICCSE

2011) August 3-5, 2011.

[3] D. Garlan and B. Schmerl, “Ævol: A tool for defining and planning

architecture evolution,” in Proc. ICSE’09, Vancouver, BC, May 16–

24, 2009.

[4] D. Perry and A. Wolf, “Foundations for the study of software

architecture,” ACM SIGSOFT Software Eng. Notes, vol. 17, no. 4,

pp. 40–42, 1992.

[5] B. Schmerl and D. Garlan. AcmeStudio: Supporting style-centered

architecture development. Proc. ICSE’04, Edinburgh, Scotland, May

23–28, 2004, pp. 704–05.

[6] D. Garlan, R. Monroe, and D, wile. ACME: Architecture Description

Interchange Language. In Proceedings of CASCON'97, November

1997

[7] Nelis Boucke, Alessandro Garcia and Tom Holvoet, “Composing

architectural crosscutting structures in xADL,” Early Aspects 2007

Workshop, LNCS 4765, pp. 115–138, 2007.

[8] ISR, Institute for Software Reteach. Apigen tool set for the xadl

language, http://www.isr.uci.edu/projects/xarchuci/tools-

apigen.html.

[9] ISR, Institute for Software Reteach. xArch tool t set for the xadl

language, http://www.isr.uci.edu/architecture/xarch/.

[10] ISR, Institute for Software Reteach. Archstudio 4.0 tool set for the

xadl language, http://www.isr.uci.edu/projects/archstudio-

4/www/archstudio/.

[11] ISR, Institute for Software Reteach. Archstudio 5.0 tool set for the

xadl language, http://www.isr.uci.edu/projects/archstudio/.

[12] Antony Tang, Yan Jin and Jun Han, “A rationale-based architecture

model for design traceability and reasoning,” The Journal of Systems

and Software 80 (2007) 918–934.

[13] Document Object Model. http://www.w3.org/DOM/. January 19,

2005.

[14] Simple API for XML. http://www.saxproject.org/. April 27, 2004.

[15] Hash Table. http://en.wikipedia.org/wiki/Hash_table.

[16] Arcade Game Maker Pedagogical Product Line: Architecture

Documentation, Volume 2 - Software Architecture Views,

http://www.sei.cmu.edu/productlines/ppl/software_architecture_view

s.html.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

http://www.sei.cmu.edu/architecture/
http://www.w3.org/DOM/
http://www.saxproject.org/

	I. INTRODUCTION
	II. RELATED WORK
	A. Architecture Description Language
	B. Rationale-Based architecture model

	III. PROPOSED APPROACH
	A. Project Requirements Description Manager
	B. Design Description Manager
	C. Sax Parser
	D. Structural difference checker
	E. Report Generator

	IV. DEMONSTRATE
	V. Conclusion
	References

