
  

 
 

 

  
Abstract—In this paper,  a new structure is proposed for the 

computational design of variable fractional-delay (VFD) 2-D FIR 
digital filters.   Based on the Taylor series expansion of the desired 
frequency response, a prefilter-subfilter cascaded structure can 
be derived. For the 1-D differentiating prefilters and the 2-D 
quadrantally symmetric subfilters, they can be designed simply by 
the least-squares method. Design example shows that the required 
number of independent coefficients of the proposed system is 
much less than that of the existing structure, while the 
performance of the designed VFD 2-D filters is still better under 
the cost of larger delays.                           
 

Index Terms— Farrow structure, variable fractional-delay 
filter, 2-D FIR filter, least-squares method, 2-D quadrantally 
symmetric filter, subfilter. 
 

I. INTRODUCTION 
onventionally, the transfer function of a variable 
fractional-delay (VFD) 2-D FIR digital filter is given by 

( ) ( )
1 2

1 2
1 2

1 2

1 2 1 2 1, 2 1 2
0 0

, , , ,
N N

n n
n n

n n

H z z p p h p p z z− −

= =

= ∑ ∑        (1) 

where 

( ) ( ) 1 2
1 2

1 2

1 2 1 2 1 2 1 2
0 0

, , , , .
M M

m m
n n

m m

h p p h n n m m p p
= =

= ∑ ∑     (2) 

Hence, (1) can be represented by 
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where the 2-D subfilters 
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and the system can be implemented by a 2-D Farrow structure 
[1]. 
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VFD digital filters belong to the branch of variable digital 

filters which are applied to where frequency characteristics 
need to be adjusted online without redesigning the system. For 
the past decade, several works have been proposed for the 
design of variable digital filters [1]-[17] due to their wide 
applications in signal processing and communication systems. 
By the function, they are generally classified into two main 
categories. One is the filters with variable magnitude 
characteristics such as cutoff frequencies or magnitude 
responses [2]-[8], and the other is the filters with variable 
fractional delay [1][9]-[17]. 

In this paper, the design of VFD 2-D FIR digital filters will 
be investigated. Comparing with the conventional 2-D Farrow 
structure presented recently in [1], a prefilter-subfilter cascaded 
structure is proposed. The structure is developed based on the 
Taylor series expansion of the desired frequency response. In 
[1], there are four types of 2-D quadrantally symmetric/ 
antisymmetric filters [18][19] to be designed. But, only two 
1-D differentiating prefilters and one type of 2-D quadrantally 
symmetric subfilters are needed to be designed in this paper. By 
the closed relationships among the proposed structure, the 
required number of independent coefficients of the designed 
sysem is much less than that in [1] while the performance of the 
designed filters is still better than that in [1] under the cost of 
larger delays.  The phenomenon will become significant for 
wider band VFD 2-D filter design by using higher-order 1-D 
prefilters and lower-order 2-D subfilters. 

This paper is organized as following. In Section II, the 
proposed prefilter-subfilter cascaded structure is derived from 
the Taylor series expansion of the desired frequency response. 
And the design of the mentioned prefilters and subfilters for 
even M is presented in Section III. For simplicity, the general 
least-squares method is applied, and design example will be 
presented to demonstrate the effectiveness of the presented 
method. Finally, the conclusions are given in Section IV. 

 

II. THE PROPOSED STRUCTURE 
For designing a VFD 2-D FIR filter, the desired frequency 

response is given by  
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where ( )1 2,M ω ω  is the desired magnitude response, 1I  and 
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2I  are the prescribed group-delays with respect to 1- axisω  
and 2- axisω , respectively, and [ ]1 2, .0.5,0.5p p ∈ − For 
simplicity, only quadrantally symmetric magnitude response 

( )1 2,M ω ω  is considered in this paper. By Taylor series 
expansion, 
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for sufficiently large M. In this paper, the case for odd M  is 
considered first, and the case for even M  will be discussed in 
Section IV. Let ˆ2 1M M= + , then (6) becomes  
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By (5) and (7), the transfer function of the VFD 2-D FIR filter 
is represented by 
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and the proposed structure is shown in Fig. 1. In (8), the 
quadrantally symmetric subfilters ( )

1 22 ,2 1 2,m mG z z  are 

characterized by  
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where gN  is assumed to be even while the Type III 

linear-phase prefilters ( )i iD z , 1, 2,i =  are characterized by  
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After mathematical management, the frequency response of (8) 
can be represented by 
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Obviously, the integers 1I  and 2I  in (5) can be set as 

2 2
gdi NN

iI = + , 1, 2.i =  
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III. DESIGN OF 2-D VFD FIR DIGITAL FILTERS WITH ODD M 
In this paper, it will be dealt with first for the design of the 

prefilters ( )1 1D z  and ( )2 2D z , and then they are applied for 

the design of the subfilters  ( )
1 22 ,2 1 2,m mG z z . Design examples 

will be given to demonstrate the effectiveness of the presented 
method. 

A. Design of the prefilters ( )1 1D z  and ( )2 2D z  

By (7) and (8), the prefilters ( )1 1D z  and ( )2 2D z  are used 

as differentiators with magnitudes 1ω−  and 2ω− , respectively, 
and their specifications depend on the magnitude response 

( )1 2,M ω ω  in (5). For example, when the designed filter is an 
elliptically low-pass VFD filter with 
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the prefilters ( )1 1D z  and ( )2 2D z  are designed with passband 

edges  1pω  and 2pω , respectively, while their stopband edges 

are  1sω  and 2sω , respectively. 
  Defining 
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Fig. 1. The proposed structure of a VFD 2-D FIR digital filter. ( 5M = ) 
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the magnitude responses ( )ˆ
i iD ω  of the prefilters can be 

represented by 

 ( ) ( )ˆ , 1, 2T
i i i i iD iω ω= =d s      (15) 

where the superscript T  denotes a transpose operator. Hence, 
the objective error functions for designing the prefilters in 
least-squares sense can be defined by  
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(12a) can be represented by  
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Therefore, the objective error function for designing the 
subfilters ( )

1 22 ,2 1 2,m mG z z  can be defined by  
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The least-squares solution can be obtained by differentiating 
(21) with respect to the coefficient vector g  and setting the 
result to zero, which yields 
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TABLE I 
COMPARISONS FOR THE PROPOSED METHOD AND  

THE CONVENTIONAL METHOD [1]. 
Example Example 1 
Method Proposed Conventional 

Filter order 
1 2 30d dN N= =  

20gN =  
20N =  

Number of 
independent 
coefficients 

1139 3969 

Average delays 
1
-direction:ω 25 

1
-direction:ω 25 

1
-direction:ω 10

1
-direction:ω 10

( ), %m rmsε  0.21486344 0.24878285 

mpε  0.01013381 0.01140162 

msε  0.00844768 0.00992308 

( )1, %rmsτε  0.00141645 0.02759631 

( )2 , %rmsτε  0.00241521 0.05946121 

1τε  0.03280007 0.09599047 

2τε  0.03488614 0.12677654 
 

C. Design examples  
In this subsection, design examples are presented and the 

results are compared with those of the conventional method [1]. 
To evaluate the performance, several measured criterions are 
defined as below: 
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where ( )1 2 1 2, , ,di p pτ ω ω  and ( )1 2 1 2, , ,i p pτ ω ω  denote the 
desired and actual group delays, respectively, with respect to 

- directioniω , 1, 2i = . Meanwhile, the numbers of independent 
coefficients are also taken into account for comparison, which 
are computed as below: 
 Proposed method (including scale factors):  

 ( ) ( )
2 2 2

2
ˆ ˆ ˆ1 1 4 3gN

dN M M M+ + + + +  (26a) 

 Conventional method [1]:  

 ( ) ( ) ( )2 22 2
2 21 1N N

c sM M+ + + ( ) ( )2 22 1 1N N
c sM M+ + +  (26b) 

where 

 2

1
2

, for even ,

1 , for odd .

M
c s

M
c s

M M M

M M M+

⎧ = =⎪
⎨

+ = =⎪⎩
 (27) 

To compute the errors in (25), the frequencies 1ω  and 2ω  are 
uniformly sampled at step size 100π , and the variable 
parameters 1p  and 2p  are uniformly sampled at step size 
1 50 . 
Example 1: In this example, an elliptically symmetric low-pass 
VFD FIR filter is designed and the desired magnitude response 
has been given in (13). When 1 0.45pω π= , 2 0.6pω π= , 

1 0.7sω π= , 2 0.85sω π= , 1 2 30d dN N= = , 20gN = , 

5M = , the obtained magnitude responses for ( ) ( )1 2, 0,0p p = , 

( )0.25,0.25 , ( )0.5,0.5 , ( )0.5, 0.5−  are shown in Fig. 2(a), the 

group-delay responses at ( ) ( )1 2, 0.25,0.25p p =  and 

( )0.5, 0.5−  are shown in Fig. 2(b) and (c), while the variable 
group-delay responses and magnitude responses for both 

2 0ω = , 2 0p =  and 1 0ω = , 1 0p =  are shown in Fig. 2(d) 
and (e), respectively. The errors defined in (25) are tabulated in 
Table I, accompanying those of the conventional method with 

20N = . 
 

IV. CONCLUSION 
In this paper, a prefilter-subfilter cascaded structure for the 
design of VFD 2-D FIR digital filters has been proposed, which 
is derived based on the Taylor series expansion of the desired 
frequency response. By the specified relationships among the 
presented structure, it has been shown that the required number 
of independent coefficients is much less than that of the 
existing structure, while the performance of the designed filters 
is still better. Design example hse been presented to 
demonstrate the effectiveness of the presented method.  
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



  

 
 

 

 

REFERENCES  

[1] J.-J. Shyu, S.-C. Pei and Y.-D. Huang, “Two-dimensional Farrow 
structure and the design of variable fractional-delay 2-D FIR digital FIR 
filters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 2, pp. 
395-404, Feb. 2009. 

[2] T.-B. Deng and T. Soma, “Design of 2-D variable digital filters with 
arbitrary magnitude characteristics,” Signal Processing, vol. 43, no. 1, pp. 
17-27, Apr. 1995.  

[3] R. Zarour and M. M. Fahmy, “A design technique for variable 
two-dimensional recursive digital filters,” Signal Processing, vol. 17, no. 
2, pp. 175-182, June 1989. 

[4] T.-B. Deng, “Design of separable-denominator variable 2-D digital filters 
with guaranteed stability,” Signal Processing, vol. 81, no. 1, pp. 219-225, 
Jan. 2001. 

[5] T.-B. Deng and T. Soma, “Design of zero-phase recursive 2-D variable 
filters with quadrantal symmetric,” Multidimensional Systems and Signal 
Processing, vol.6, pp.137-158, 1995. 

[6] T.-B. Deng, E. Saito and E. Okamoto, “Efficient design of SVD-based 
2-D digital filters using specification symmetry and order-selecting 
criterion,” IEEE Trans. Circuits Syst.Ⅰ, Fundam. Theory Appl., vol. 50, 
no. 2, pp. 217-226, Feb. 2003. 

[7] T.-B. Deng, “Design of linear-phase variable 2-D digital filters using 
matrix-array decomposition,” IEEE Trans. Circuits Syst.Ⅱ, Analog Digit. 
Signal Process., vol. 50, no. 6, pp. 267-277, Jun. 2003. 

[8] J.-J. Shyu, S.-C. Pei and Y.-D. Huang, “Design of variable 2-D FIR 
digital filters by McClellan transformations,” IEEE Trans. Circuits Syst.
Ⅰ, Reg. Papers, vol. 56, no. 3, pp. 574-582, Mar. 2009. 

[9] C. W. Farrow, “A continuously variable digital delay elements,” in Proc. 
1988 IEEE Int. Symp. Circuits and Systems, vol. 3, June 1998, pp. 
2641-2645. 

[10] T. I. Laakso, V. Valimaki, M. Karjalainen and U. K. Laine, “Splitting the 
unit delay: Tools for fractional delay filter design,” IEEE Signal 
Processing Mag., vol. 13, pp. 30-60, Jan. 1996. 

[11] T.-B. Deng and Y. Lian, “Weighted-least-squares design of variable 
fractional-delay FIR filters using coefficient symmetry,” IEEE Trans. 
Signal Process., vol. 54, no. 8, pp. 3023-3038, Aug. 2006. 

[12] H. Zhao and J. Yu, “A simple and efficient design of variable fractional 
delay FIR filters,” IEEE Trans. Circuits Syst.Ⅱ, Exp. Briefs, vol. 53, no. 
2, pp. 157-160, Feb. 2006. 

[13] K. M. Tsui, S. C. Chan and H. K. Kwan, “A new method for designing 
causal stable IIR variable fractional-delay digital filters,” IEEE Trans. 
Circuits Syst.Ⅱ, Exp. Briefs, vol. 54, no. 11, pp. 999-1003, Nov. 2007. 

[14] T.-B. Deng, “Symmetric structures for odd-order maximally flat and 
weighted-least-squares variable fractional-delay filters,“ IEEE Trans. 
Circuits Syst.Ⅰ,Reg. Papers, vol. 54, no. 12, pp. 2718-2732, Dec. 2007. 

[15] J.-J. Shyu, S.-C. Pei, C.-H. Chan, Y.-D. Huang and S.-H. Lin, “A new 
criterion for the design of variable fractional-delay FIR digital filters,” 
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 2, pp. 368-377, Feb. 
2010. 

[16] T.-B. Deng and W.-S. Lu, “Weighted least-squares method for designing 
variable fractional delay 2-D FIR digital filters,“ IEEE Trans. Circuits 
Syst.Ⅱ, Analog Digit. Signal Process., vol. 47, no. 2, pp. 114-124, Feb. 
2000. 

[17] C.-C. Tseng, “Design of 1-D and 2-D variable fractional delay allpass 
filters using weighted least- squares method,” IEEE Trans. Circuits Syst.
Ⅰ, Fundam. Theory Appl., vol. 49, no. 10, Oct. 2002. 

[18] S.-C. Pei and J.-J. Shyu, “Symmetric properties of two-dimensional 
sequences and their applications for designing linear-phase 2-D FIR 
digital filters,” Signal Processing, vol. 42, no. 3, pp. 261-271, Mar. 1995. 

[19] R. Zhao and X. Lai, “A fast matrix iterative technique for the WLS design 
of 2-D quadrantally symmetric FIR filters,” Multidimensional Systems 
and Signal Processing, vol.22, pp.303-317, 2011. 

 

 
 
 

   

  
(a) 

    
(b) 

   
(c) 

     
(d) 

 

     
(e) 

 
Fig. 2. Design of an elliptically symmetric low-pass VFD FIR filter. (a) 
Magnitude responses at ( ) ( )1 2 ,, 0,0p p =  ( ) ,0.25,0.25  ( ) ,0.5,0.5  

( ).0.5, 0.5−  (b) 1- directionalω and 2- directionalω group-delay 

responses in the passband at ( ) ( )1 2, 0.25,0.25p p = . (c) 1-ω  
directional and 2- directionalω  group-delay responses in the passband 

at ( ) ( )1 2, 0.5, 0.5p p = − . (d) Variable group-delay response in the 

passband and magnitude response at 2 0ω = , 2 0p = . (e) Variable 

group-delay response in the passband and magnitude response at 1 0ω = , 

1 0p = . 
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