
Reoptimization of Motif Finding Problem
Jhoirene B. Clemente, Jeffrey A. Aborot, Henry N. Adorna,

Abstract—One of the approaches in solving NP-hard prob-
lems is through reoptimization. In this technique, we solve
a locally modified instance of a problem by making use of
known solution to its original instance instead of obtaining a
solution from scratch. In this paper, we present a reoptimization
of motif finding problem. Since the problem is showed to be
self-reducible, we can use a self-reduction method to solve the
reoptimization variant of the problem. Using the method, we
have improved the approximation ratio of the algorithm solving
the reoptimized version as compared to the non-reoptimized
counterpart. Moreover, we showed that if a certain problem
is self-reducible, any problem that obtains a polynomial-time
reduction to it is also self-reducible.

Index Terms—motif discovery, reoptimization

I. INTRODUCTION

Unless P=NP, most of the interesting discrete optimization
problems are NP-Hard, that is we cannot find a polynomial-
time algorithm which solves the problem on a Turing Ma-
chine. The most common approach in solving this kind of
problems is to relax the condition of always finding the
optimal solution for an instance and settle for “good enough”
solutions. The kind of algorithms which are guaranteed to ob-
tain a solution with a certain quality are called approximative
algorithms. The goodness of these approximative algorithms
are measured using an approximation ratio.

Definition 1 (Approximation Algorithm [9]):
An σ-approximation algorithm for an optimization problem
is a polynomial-time algorithm that for all instances of the
problem produces a solution whose value is within a factor
of σ of the value of an optimal solution.

Problems where there exists an approximation algorithm
solving it are called approximable problems. Suppose we
have an instance of a minimization problem I with an
optimal solution Opt(I). Let cost(I,Opt) be the cost of
the optimal solution of the problem instance I . Note that,
an exact algorithm that solves for a given minimization
problem always obtains the minimum possible cost, but not
for approximative algorithms. In order to asses the quality
of the approximation algorithm, we have approximation ratio
σ. An algorithm for a minimization problem is called σ-
approximative algorithm for some σ > 1, if the algorithm
obtains a maximum cost of σ · cost(I,Opt), for any input
instance I . Meanwhile, an algorithm for a maximization
problem is called σ-approximative algorithm, for some σ <
1, if the algorithm obtains a minimum cost of σ·cost(I,Opt),
for any input instance I .

Improving the approximability of a problem involves
improving the approximation ratio σ of a solution to the

Manuscript received January 8, 2014; revised Jan 28, 2014.
All authors in this publication are members of Algorithms and Complex-

ity Lab, Department of Computer Science, University of the Philippines
Diliman

Jhoirene Clemente would like to thank Engineering Research and De-
velopment for Technology (ERDT) for the dissertation grant and PhD
Scholarship

problem. One such group of algorithms that can guarantee the
goodness of solution by a factor of ε are called Polynomial-
Time Approximation Scheme (PTAS). Moreover, a group
that can guarantee the goodness of the solution and the
bound of the running time is called Fully Polynomial-Time
Approximation Scheme (FPTAS) [9].

For real world problems, additional information about the
problems we are solving are available, and so we may not
have to solve them from scratch. One of the approaches is
making use of apriori information, which can be a solution
to a smaller input instance of a problem to solve a larger
instance of it. This approach is called reoptimization. The
idea was first mentioned in [7]. Reoptimization may help to
improve the approximability of the problem or the running
time of the solution to it. In fact, we can obtain a PTAS for a
reoptimization variant of a problem given that the unmodified
problem is approximable [10]. The formal definition of
reoptimization is as follows.

Definition 2 (Reoptimization [10]):
Let Π = (DΠ,RΠ, costΠ, goalΠ) be an NP Optimization
(NPO) problem, where I ∈ DΠ is an instance from the set of
all valid instances of problem Π, SOL ∈ RΠ(I) is a solution
from the set of feasible solutions of Π, costΠ(I, SOL) is a
polynomial-time computable function that evaluates a certain
SOL given I , and a goalΠ ∈ {max,min} which identifies
whether Π is a minimization or a maximization problem. Let
M⊆ DΠ ×DΠ be a binary relation (the modification).

The corresponding reoptimization problem

RM(Π) = (DRM(Π),RRM(Π), costRM(Π), goalRM(Π))

consists of
1) a set of feasible instances defined as

DRM(Π) = {(I, I ′, SOL) : (I, I ′) ∈M

and SOL ∈ RΠ(I)};

we refer to I as the original instance and to I ′ as the
modified instance

2) a feasibility relation defined as

RRM(Π)((I, I
′, SOL)) = RΠ(I ′)

To put it simply, given a problem instance and an optimal
solution for it, we are to efficiently obtain an optimal solution
for a locally modified instance of the problem [3]. Providing
a local modification of a problem instance is answered by the
so called Postoptimality analysis [3]. It answers the question
of how much an instance can be modified such that the set of
optimal solutions are unchanged. Reoptimization for several
optimization problems already exists in the literature. Two
reoptimization variants were presented for the shortest super-
string problem in [2], which involves adding and removing
a string and was shown to improve the approximation ratio
of the current best approximation algorithm. Reoptimization
and approximability for several graph problems involving

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

To extend the definition of cost to assess if an alignment
is a possible motif occurrence on S, we define

cost(S, p) =
t∑
i=1

c(S, lai). (2)

Therefore, let us redefine MFP using the modified cost
function.

Definition 4 (Modified Motif Finding Problem (mMFP)):

INPUT:
• Pattern length l
• Set of t sequences S = {S1, S2, . . . , St} defined over

ΣDNA, where |Si| = n

OUTPUT: A starting position vector p = (a1, a2, . . . , at)
such that cost(S, p) is maximum.

The equivalence of both cost in Equation 1 and a mini-
mization variant of cost in Equation 2 presented in [4]. Since
we can convert any cost function from maximization to a
minimization counterpart, it follows the equivalence of two
cost functions in Equation 1 and 2. For all input instances,
the optimal solution found using the original cost function is
the optimal solution found using the modified cost function
and vice versa.

III. SELF-REDUCIBILITY

In order to use the self reduction methods presented in
[10], we first show that the problem of interest (mMFP) is
self-reducible.

Note that, self-reducibility in Definition 5 is different from
the definition of general self-reducibility in [8], which we
will no longer discuss in this paper. But note however that
self-reducibility implies general self-reducibility.

Definition 5 (Self-reducibility [10]):
We will say that a problem Π is self-reducible if there
is a polynomial-time algorithm, ∆, satisfying the following
conditions.

1) Given an instance I and an atom α of a solution to
I , ∆ outputs an instance Iα. We require that the size
of Iα is smaller than the size of I , i.e. |Iα| < |I|.
Let R(I|α) represent the set of feasible solutions to I
containing the atom α. We require that every solution
SOL of Iα, i.e., SOL ∈ R(Iα), has a corresponding
SOL ∪ {α} ∈ R(I|α) and that this correspondence is
one-to-one.

2) For any set H ∈ R(Iα) it holds that the

cost(I,H ∪ {α}) = cost(I, α) + cost(Iα, H).

An atom, as used in this context, constitutes a solution
for a specific problem instance. For example, in a maximal
clique problem, a solution is a clique with maximum number
or vertices. Since a clique is composed of vertices, the atoms
in this problem are vertices from the given input graph.

Given the definition of self reducibility of a problem. We
prove that the following lemma is true.

Lemma 1: Modified Motif Finding Problem (mMFP) is
self-reducible.

Proof: The set of input instances I of mMFP is a
pair I = (S, l). A solution SOL to mMFP given instance
I is an ordered set (equivalent to what is shown earlier

as starting position vector p but can also be represented
as an ordered set for the purpose of our discussion) p =
{(1, a1), (2, a2), . . . , (t, at)} ∈ R(S, l), where the set of all
atoms, defined by Atoms(S, l), contains all possible starting
positions from S. Hence, an atom α is a pair (i, ai), but
for the sake of simplicity, ai refers to a part of a solution
obtained from ith sequence starting at aith position.

Let us define a reduction function ∆(I, α), which accepts
a pair (S, l) and an atom ai, i.e. ∆((S, l), ai) and produces
a reduced instance Iα which we denote as (Sai , l).

The modified instance (Sai , l) is derived by removing one
sequence Si (corresponding to an atom ai) from S, i.e. Sai
is S \ {Si}. We argue next that ∆(I, α) follows the two
properties stated in Definition 5.

1) For a SOL ∈ R(I) there is a corresponding
SOLα ∪ {α} ∈ R(I|α). Note that the solution
p = {(1, a1), (2, a2), . . . , (t, at)} guarantees exactly
one occurrence of the motif for each sequence. For
any atom α = ai, a solution p ∈ R(S, l) corresponds
to pai ∪ {ai}, i.e.

{(1, a1), (2, a2), . . . , (i− 1, ai−1), (i+ 1, ai+1),

. . . , (t, at)} ∪ {(i, ai)} ∈ R(S|ai).

2) Clearly, the cost(I,H ∪ {α}) = cost(I, α) +
cost(Iα, H), for H ∈ R(Iα) since

cost(S, p) =
t∑

j=1

c(S, laj) + c(S, lai), for j 6= i.

Let us define the concept of reducibility, in particular
which employs a polynomial-time transformation as defined
below.

Definition 6 (Polynomial-Time Reduction):

We say that a language A is polynomial-time reducible
to a language B (A ≤P B), if ∃ a polynomial-time
transformation f , which for every input

x ∈ A↔ f(x) ∈ B.

The problem of finding motifs is modelled as a graph
problem in [6]. Given a set of t sequences in MFP and
a pattern length l, an edge weighted t-partite graph G =
(V,E, cG) is obtained, where the problem is reduced to
finding a maximum weighted clique on a t-partite graph.
Note that the cost is cG, so as not to be confused with our
previous definition c(S, v). We revise the transformation in
[6], instead of an edge weighted t-partite graph, we obtain
a vertex weighted t-partite graph G′ = (V,E, c′). The set
of vertices is the same for both graphs G′ and G. The
transformation from the set of input instance of MFP is as
follows.

Let l and S = {S1, S2, . . . , St} be the set of given input
instances for MFP. Each vertex v ∈ V corresponds to an
l-length string obtained from S, i.e. we have (n − l + 1)
vertices from Si and a total number of (t(n− l+1)) vertices
for all t sequences. An edge e connects to vertices v and w
if both vertices are not obtained from the same sequence Si.
The cost of each vertex given by c′ is c′(v) = c(S, v), i.e.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

equivalent to the computation of c(S, v) we’ve shown earlier
where maximization is involved in the computation. This
shows a reduction of MFP to Maximum Weighted Clique
Problem (MWCP) on a vertex weighted graph. In fact, the
cost of a clique that is equal to the sum of all its vertices
is equal to the cost obtained from a starting position vector
p using Equation 2. It is shown that MWCP has an exact
reduction to Maximum Weighted Independent Set Problem
(MWISP), since a clique on a graph is an independent set to
the corresponding complement of the graph [10]. Moreover,
in [10] the following lemma is presented.

Lemma 2: Maximum Weighted Independent Set Problem
(MWISP) is self-reducible.

Since we proved earlier that mMFP is self-reducible and
we know that there is a polynomial-time reduction from
mMFP to MWISP, following from the above discussion, we
are interested to know if the following theorem is true.

Theorem 1: If problem A is polynomial-time reducible to
problem B(A ≤P B), and B is self-reducible, then A is
self-reducible.

Proof:
Let A = (DA,RA, costA, goalA) and B =

(DB ,RB , costB , goalB) be two NPO problems. Let
IA ∈ DA, SOLA ∈ R(IA), where SOLA is composed of
atoms αA. Similarly, let IB ∈ DB , SOLB ∈ R(IB), where
SOLB is composed of atoms αB .

Given that A ≤P B, then by definition, there exist a
polynomial-time computable function f such that for every
instance IA for problem A, f(IA) is an instance of problem
B and for every solution SOLA to A, f(SOLA) ∈ IB.
Equivalently, as a decision problem, the polynomial-time
reducibility implies

(IA, SOLA) ∈ (DA ×R(IA))

↔

(f(IA), f(SOLA)) ∈ (DB ×R(IB))

By definition of self-reducibility in Definition 5, if B is
self-reducible then we can obtain a self-reduction function
∆B(IB , αB) = IαB

such that |IαB
| < |IB |, and the

following conditions hold

1) For SOLB ∈ R(IB) there is a corresponding
SOLαB

∪ {αB} ∈ R(IB |αB), where SOLαB
∈

R(IαB
).

2) For a subset of atoms HB ⊆ R(IαB
), costB(IB , HB∪

{αB}) = costB(IB , αB) + costB(IαB
, HB).

We then need to show that problem A is also self-
reducible, given that B is self-reducible. Then, there exists
a self-reduction function ∆A(IA, αA) = IαA

. Given the
polynomial-time function f and the self-reduction function
∆B , we realize ∆Ausing ∆B through the following

∆B(f(IA), f(αA)) = f(IαA
),

which inherits the two conditions stated above. More-
over, the reduction function remains polynomial since f is
polynomial-time computable.

IV. REOPTIMIZATION

Let us define a modification M for the input instances of
mMFP. With the assumption that the length of the pattern we
are looking for remains unchanged, the pair (I, I ′) ∈M can
be represented as (S,S ′) ∈M, where S = {S1, . . . , S(t−1)}
and S ′ = S ∪ {St}. The modified instance S ′ is derived
from the original instance by adding a new sequence St to
S. Note that, unlike the self reduction function ∆, the size
of the modified instance may not be necessarily less than
the size of the original instance, as what is the case here.
Formally, the reoptimization variant of mMFP is defined as
follows.

Definition 7 (mMFP Reoptimization (RM(mMFP))):
INPUT: Original instance (S, l), solution p to (S, l), and a
modified instance S ′ OUTPUT: Solution p′ to (S ′, l), such
that p′ obtains the maximum cost(S ′, p′)

A. Self Reduction Method

For self-reducible NPO problems, we can use the self re-
duction methods presented in [10]. The first method proposes
an algorithm which employs a σ-approximation algorithm
Alg. The general algorithm for any self-reducible NPO
problem is also presented in [10]. Specifically for mMFP,
SAlg is shown in Algorithm 1.

Algorithm 1 Algorithm SAlg employing algorithm Alg for
mMFP
Input: Input instance (S, l), where S = {S1, S2, . . . , St}
such that |Si| = n and pattern length l

for all ai ∈ Atoms((S, l)) do
pai := Alg((Sai , l), (i, ai))

end for

Output: Solution pai ∪ {ai} with maximum cost(S, pai ∪
{ai})

The algorithm outputs a starting position vector pai∪{ai},
where pai ∈ R(Sai), and it evaluates to the maximum
cost(S, pai ∪ {ai}) over all possible ai ∈ Atoms(S, l).
The total number of iterations is equal to |Atoms(S, l)| =
t·(n−l+1). The running time of SAlg for mMFP is equal to
(t ·(n− l+1)) times the running time of algorithm Alg. It is
shown in [10] that the self reduction method SAlg, whenever
employed improves the approximation ratio σ as shown in
the following lemma.

Lemma 3: If in any optimal solution Opt ∈ R(I), there
is an atom α with cost(I, α) ≥ δCost(I,Opt), then SAlg is
a (σ − δ(σ − 1))-approximation algorithm.

Given an instance I for mMFP, the range of evaluating a
solution and an atom are 0 ≤ cost(I, SOL) ≤ lt2 and 0 ≤
c(I, α) ≤ lt respectively, we can bound the cost of an atom α
using the cost of the optimal solution for I , i.e. cost(I, α) ≥
δcost(I,Opt), lt ≥ δlt2. Hence, SAlg for mMFP is (σ −
δ(σ − 1))-approximation algorithm, for δ ≤ 1/t.

Note that using the defined reduction function ∆ in Section
II, the reduced instances Sai is a set of sequences obtained
from S − {Si}. Regardless of the value of ai for a specific
sequence i, the reduced instance Sai remains the same.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Therefore, to guarantee that a simultaneous reduction always
produce a modified instance, we restrict that i in ai is distinct
for the set of atoms to be removed. This observation is
necessary to understand the next algorithm we will discuss.

Algorithm SbAlg, as shown below, is a generalization of
SAlg using a set of b atoms [10]. Suppose that in a given
set of sequences, we already know several possible motif
occurrences. Algorithm SbAlg takes advantage of the atoms
corresponding to known motif occurrences, thus obtaining a
much smaller instance for Alg to evaluate. The general algo-
rithm using b atoms is presented in [10]. The corresponding
algorithm for mMFP is shown below.

Algorithm 2 Algorithm SbAlg employing algorithm Alg for
motif finding
Input: Set of sequences, pattern length (S, l), and integer
1 ≤ b ≤ t

for all {a1, . . . , ab} ⊆ Atoms((S, l)) do
S0 := S
for j := 1 . . . b do

Sj := ∆(Sj−1, aj)
end for
S̃OL := Alg(Sb) ∪ {a1, . . . , ab}

end for
Output: Solution S̃OL with maximum cost(S, S̃OL) over
all considered {a1, . . . , ab} ⊆ Atoms(I)

For mMFP, there is no need to explore all possible subset
of b atoms, but only those that will modify the original
instance b times. Moreover, if we will consider all possible
subset H ⊆ Atoms((S, l)), such that |H| = b, and ∀ α ∈ H ,
α is obtained from Si, occurrence of any two atoms in
the set H obtained from the same sequence contradicts our
assumption that motifs occur exactly once per sequence.
Hence, the set of atoms {a1, . . . , ab} in Algorithm 2, have
the following restriction. All atoms ai in the set should come
from distinct sequences. For instance, if we let b = t, the
restriction we impose lead to iterating over the set of all valid
starting position vector in S. Therefore, if we let b = t, the
running time of Algorithm 2 becomes (n− l+ 1)t, which is
the naive way of searching for the optimal solution. If that
is the case, Alg will not be utilized in Algorithm 2, because
Sb is always empty after b reductions. Note that, Algorithm
2 takes more iteration compared to Algorithm 1. Algorithm
2 has an advantage over Algorithm 1 when there exists a
set of atoms which are known to be part of the solution.
In such cases, we don’t have to perform the first for-loop
in Algorithm 2. Instead, we can already reduce the original
instance given the set of atoms and obtain a solution for the
reduced instance using Alg.

We say that H ⊆ SOL ∈ R(I) is F (n)-guessable for
some instance I , if we can determine a set G with |G| ∈
O(F (n)), such that H ⊆ G [10]. The set G is the set of
guesses for H . A variant of Algorithm 2 is when we only
iterate on a set of guesses G instead of all Atoms((S, l)). Let
us denote this algorithm SGAlg. Based from Corollaries 4 and
5 in [10], algorithm SGAlg has the same approximation ratio
with Algorithm 1. Also, if we can obtain a F (n) guessable
set of atoms H with cost cost(I,H) ≥ δcost(I,Opt), then

the running time of SGAlg is O(F (n) · Time(Alg)).

B. Modification

The previous algorithms presented are ideal for cases
where we can identify or guess a set of expensive atoms.
Without these atoms, the algorithms presented still need to
exhaustively search for those atoms that can improve the
approximation ratio of Alg. To further improve on these
results, four major types of modifications were presented in
[10]. These types of modification have corresponding greedy
techniques on how to further improve the approximation
ratio.

Note that, an original instance may be modified in several
ways such that the set of feasible solutions are unchanged.
These types of modification can be categorized as either
progressing or regressing and subtractive. A progressive
modification can be further categorize into two more cat-
egories, subtractive and additive, depending on whether its
a maximization or minimization problem respectively [10].
Specifically for the reoptimization version in Definition 7,
we argue that the type of modification (S,S ′) ∈ M is
progressing and subtractive.

Lemma 4: The relation (S,S ′) ∈ M is progressing sub-
tractive.

Proof: To support our claim, we need to show that
M is progressing and is also subtractive. By definition of
progressing modification in [10], we need to show that for
every pair (S,S ′) ∈M,

R(S) ∩Atoms(S ′) ⊆ R(S ′).

An atom is contained in R(S′), if it is in the ordered set

p′ = {(1, a1), (2, a2), . . . , (t− 1, a(t−1)), (t, at)}.

Note that, R(S) ∩ Atoms(S ′) contains atom from the set
of all feasible solution of S, i.e. atom is in the ordered set
p = {(1, a1), (2, a2), . . . , (t − 1, a(t−1)} and those that are
contained in the set of atoms of the modified instance. Since
all atoms in R(S) belongs to Atoms(S ′), we can ignore
Atoms(S ′) in the relation and remove the possibility that
the two sets may be equal. Hence, R(S) ⊂ R(S ′).

By definition of subtractive progressing modification in
[10], we need to show that there is an optimal solution to
the modified instance S ′ which, after removing a part of it,
becomes feasible for S and not less valuable: ∃ OPT ′ ∈
OPTIMA(S ′), ∃ H ′ ⊆ OPT ′, and OPT ′ ∈ R(S) such
that

cost(S, OPT ′ \H ′) ≥ cost(S ′, OPT ′ \H ′)

Given that we have an optimal solution p′opt for the
modified instance S ′, if we remove some atoms H from it
to become feasible for the original instance S, the computed
cost is equal for both instances.

cost(S, p′opt \H) = cost(S ′, p′opt \H)

In fact, for any set of atom H , it follows that cost(S, H) =
cost(S ′, H), regardless of the given input instance because
computation of cost iterates over all atoms in H .

We say that a cost function is pseudo-additive if for any
disjoint set of atoms H , D ⊆ Atoms(I),

cost(I,H ∪D) ≤ cost(I,H) + cost(I,D).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

The cost function in our mMFP is additive, thus pseudo-
additive because

cost(S, H ∪D) = cost(S, H) + cost(S, D),∑
α∈H∪D

c(S, α) =
∑
β∈H

c(S, lα) +
∑
γ∈D

c(S, lγ).

Given that we have categorized our modification M for
mMFP as progressing subtractive (as claimed in Lemma
4) and its cost function as pseudo-additive. We have the
following theorem, based from Theorem 1 in [10].

Theorem 2: There is a 1/(2−σ)-approximation algorithm
for RM(mMFP) that runs in O(F (n)) · Time(Alg) if H
is F (n)-guessable.

The 1/(2 − σ)-approximation algorithm uses the given
solution as a greedy solution for the modified instance. Based
from the greedy algorithm in [10], it either returns the best
among the given solution p or the solution obtained from
using SGAlg(S ′). Given that the set of atoms in G is F (n)-
guessable, the running time for the algorithm solving mMFP
is O(F (n)) · Time(Alg).

V. CONCLUSIONS

In this paper we have shown the self-reducibility of the
motif finding problem. We also show that any problem that is
polynomial-time reducible to a self-reducible problem is also
self-reducible as shown in Theorem 1. Given that mMFP is
self-reducible, we presented an algorithm which improves the
goodness of the solution of a σ-approximation algorithm Alg
to 1/(2− σ)-approximation algorithm for RM(mMFP).

REFERENCES

[1] D Bilò and A Zych. New advances in reoptimizing the minimum
steiner tree problem. Mathematical Foundations of Computer Science
2012, pages 184–197, 2012.

[2] Davide Bilò, Hans-Joachim Böckenhauer, and Dennis Komm. Reopti-
mization of the Shortest Common Superstring Problem. Combinatorial
Pattern Matching, 293:1–14, 2009.

[3] Juraj Hromkovič and Hans-Joachim Böckenhauer. On the Hardness
of Reoptimization. In Proc. of the 34th International Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM
2008), 4910, 2008.

[4] Neil Jones and Pavel Pevzner. An Introduction to Bioinformatics
Algorithms. 2004.

[5] Tobias Momke. Algorithmic Approaches for Solving Hard Problems
: Approximation and Complexity. PhD thesis, Swiss Federal Institute
of Technology Zurich, 2009.

[6] Pavel A Pevzner and Sing-Hoi Sze. Combinatorial approaches to
finding subtle signals in DNA sequences. Proceedings International
Conference on Intelligent Systems for Molecular Biology ISMB In-
ternational Conference on Intelligent Systems for Molecular Biology,
8:269–278, 2000.

[7] MW Schäffter. Scheduling with forbidden sets. Discrete Applied
Mathematics, 72:155–166, 1997.

[8] VV Vazirani. Approximation Algorithms. Springer-Verlag, Berlin,
2001.

[9] David P Williamson and David B Shmoys. The Design of Approxi-
mation Algorithms. Cambridge University Press, 2010.

[10] Anna Zych. Reoptimization of NP-hard Problems. PhD thesis, ETH
Zurich, 2012.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

