
 

  
Abstract— Monthly counts of industrial machine part errors 

are modeled using two-state hidden Markov models (HMMs) in 
order to describe the effect of machine part error correction on 
the likelihood of the machine parts to be in a “defective” or 
“non-defective” state.  A Bayesian framework is used for 
parameter estimation. The study finds that the machine part 
error correction does not improve the machine part status of 
individual part, but there is a very strong month-to-month 
dependence of machine part states. A comparison shows that 
the proposed HMM has a better performance than the 
traditional Poisson generalized estimating equations (GEE) that 
directly model the counts.  
 

Index Terms— Hidden Markov Models (HMMs), Machine 
parts errors, Defective and non-defective state, Bayesian 
framework 
 

I. INTRODUCTION 

ndustrial machine parts data have provided information 
useful for addressing questions regarding effectiveness of 

machine part error correction. Using machine part error 
records, it is possible to collect the number of machine part 
errors for each part over an entire time period. This data type 
has been useful in the study of machine part errors.  A model 
for these count data can then be constructed and used to 
estimate the effect of the machine error correction. 

In the study of industrial machine parts, it is reasonable to 
hypothesize an unobserved machine part state that governs 
individual errors with the normal error rate corresponding to 
a “non-defective” state and an excess errors corresponding 
to “defective” state. The probability of being in the 
“defective” or “non-defective” state for a particular part in a 
given month will differ depending on its past state in which 
that part was in and other possible covariates including 
specifically error correction. The terms “defective” and 
“non-defective” are used throughout this paper as labels for 
the two different states,  but it is important to point out that 
the two states reflect periods of high and low machine errors 
which are the surrogates for the concepts of “defective” and 
“non-defective” respectively.  As such there may be periods 

 
Manuscript received December 22, 2013; revised January 29, 2014.  

This work was supported in part by the Department of Manufacturing 
Systems and Processes, the Faculty of Mechanical Engineering, Technical 
University of Liberec, Czech Republic.  

Pornpit Sirima is with the Department of Manufacturing Systems and 
Processes, the Faculty of Mechanical Engineering, Technical University of 
Liberec, Czech Republic (e-mail: sirima_ie@hotmail.com).  

Premysl Pokorny is with the Department of Manufacturing Systems and 
Processes, the Faculty of Mechanical Engineering, Technical University of 
Liberec, Czech Republic (corresponding author, phone:+420-48-535-3366; 
e-mail: premysl.pokorny@tul.cz). 

of frequent machine errors corresponding to a “defective” 
state being predicted by the model that in the reality of the 
machine part do not represent a “defective” period in the 
machine part and vice versa for low use and the “non-
defective” state.  

In this paper we propose the model for “defective” and 
“non-defective” unobserved machine states as a hidden 
Markov chain and since the observations are monthly counts 
of machine part errors, a two-state Poisson hidden Markov 
model (HMM) [1, 2] is used. The major research question is 
whether machine part error correction reduces the 
probability of subsequently entering the “defective” state as 
measured by the machine part errors.  

We consider fitting the two-state hidden Markov model to 
the number of machine part errors per month.  Estimation of 
parameters for the HMM can proceed within a frequentist or 
Bayesian framework. Within the maximum likelihood 
framework, the EM algorithm, also known as the Baum-
Welch algorithm in the HMM literature, can be implemented 
by treating the hidden states as missing values, implementing 
the forward backward recursion in the E-step and finding the 
value of the parameters that maximize the likelihood in the 
M-step [3-4]. Within the Bayesian framework, the MCMC 
technique and Metropolis-Hastings algorithms can be used 
to sample from the posterior distribution of the parameters 
[5]. Reference [6] pointed out that MCMC methods for 
HMMs can also be improved by incorporating the forward-
backward, likelihood and Viterbi recursive algorithms into 
the MCMC algorithm, improving convergence as well as 
computational efficiency. While these algorithms can be 
incorporated to improve the computational efficiency of the 
MCMC, it is important to note that the direct Gibbs 
sampling approach for the HMMs is computationally 
straightforward and intuitive. Moreover, direct Gibbs 
sampling can be implemented in the existing OpenBUGS 
software which, in this paper, is used for fitting the data 
within a Bayesian framework.   

The methodology and application are given in section 2, 
including HMMs, Bayesian models, Gibbs sampling, 
accessing MCMC convergence, and an application.  The 
results are presented in section 3.  Section 4 and 5 give some 
discussion and conclusion, respectively. 

II.  METHODOLOGY AND APPLICATION 

A. Hidden Markov Models 

 
Let 1( ,..., )TTy y=y be the vector of observed variables, 

indexed by time. HMMs [7-8] assume that the distribution of 
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each observed data point ty  depends on an unobserved 

(hidden) variable, denoted s, that takes on values from 1 to 
k . The hidden variable 1( ,..., )TTs s=s characterizes the 

“state” which the generating process is at any time t . 
HMMs further postulate a Markov Chain for the evolution 
of the unobserved state variable and, hence, the process for 

ts is assumed to depend on the past realizations of y  and 

s only through 1ts − : 

 

1( | )t t ijp s j s i λ−= = = ,                                       (1) 

 
where ijλ is the generic element of the transition matrix 

( )ijλ=Λ , with vector of stationary probability π satisfying 

.T T=π Λ π  Figure 1 illustrates the dependency structure in a 
HMM.  Showing that each observation ty  is the 

conditionally independent of all other unobserved and 
observed data, given ts . 

 

 
Fig. 1 Dependency structure in a HMM 
 

B. Bayesian Models 

 
Suppose y  is a vector of observations, 1( ,..., )my y=y , 

and θ  is a vector of parameters, 1( ,..., )kθ θ=θ  that are not 

observable.  
For Bayesian models [9], Let f ( | )y θ represent the 

probability density function of y  given θ , and π( )θ  is a 

prior for θ . Then, the posterior probability density function 
of θ  is given by 

 

 
f ( | )π( )

π( | )
f ( | )π( )d

=
∫

y θ θ
θ y

y θ θ θ

.                        (2) 

 
The goal of Bayesian inference is to get the posterior. In 

particular, some numerical summaries may be obtained from 
the posteriors. For example, to keep things simple, a 
Bayesian point estimator for a univariate θ  is often obtained 
as the posterior mean: 
 

E( | ) π( | )d

f ( | )π( )d
.

f ( | )π( )d

θ θ θ θ

θ θ θ θ

θ θ θ

=

=

∫
∫
∫

y y

y

y

                        (3) 

 
The posterior variance,var( | )θ y , is often used as 

Bayesian measure of uncertainty.  Markov Chain Monte 
Carlo (MCMC) methods are proposed to handle the 
computation.  

 

C.  Gibbs Sampling 

The Gibbs sampling [10] decomposes the joint posterior 
distribution into full conditional distributions for each 
parameter in the model and then sample from them. The 
sampler can be efficient when the parameters are not highly 
dependent on each other and the full conditional 
distributions are easy to sample from. It does not require an 
instrumental proposal distribution as Metropolis methods do. 
However, while deriving the conditional distributions can be 
relatively easy, it is not always possible to find an efficient 
way to sample from these conditional distributions. 

Suppose 1( ,..., )Tkθ θ=θ  is the parameter vector, p( | )y θ  

is the likelihood, and π( )θ  is the prior distribution. The full 

posterior conditional distribution of π( | , , )i j i jθ θ ≠ y  is 

proportional to the joint posterior density; that is, 
π( | , , ) p( | )π( )i j i jθ θ ≠ ∝y y θ θ . For instance, the one-

dimensional conditional distribution of 1θ  given * ,j jθ θ=  

2 j k≤ ≤ , is computed as 

 
*

1

* * * *
1 2 1 2

π( | ,2 , )

     p( | ( ( , ,..., )π( ( , ,..., ) ) .

j j

T T
k k

j k

y

θ θ θ

θ θ θ θ θ θ

= ≤ ≤

= = =

y

θ θ

 (4) 

 
The Gibbs sampler works as follows: 

1. Set 0t = , and choose an arbitrary initial value 

of 0 0 0
1( ,..., )kθ θ=θ . 

2. Generate each component of θ  as follows: 

draw  ( 1)
1

tθ + from  ( ) ( )
1 2π( | ,..., , )t t

kθ θ θ y  

draw ( 1)
2

tθ +  from ( 1) ( ) ( )
2 1 3π( | , ..., , )t t t

kθ θ θ θ+ y  

… 

draw ( 1)t
kθ +  from ( 1) ( 1) ( 1)

1 3π( | , ..., , )t t t
k kθ θ θ θ+ + + y . 

3. Set 1t t= + . If t T< , the number of desired 
samples, return to step 2. Otherwise, stop. 

 
In the MCMC, there are other related processes, called 

convergence, which are described in the following topics. 
 

D.  Assessing MCMC convergence 

Simulation-based Bayesian inference requires using 
simulated draws to summarize the posterior distribution or 
calculate any relevant quantities of interest. We have to 
decide whether the Markov chain has reached its stationary, 
or the desired posterior distribution and to determine the 
number of iterations to keep after the Markov chain has 
reached stationarity. Convergence diagnostics help to 
resolve these issues. Reference [11] discuss about 
convergence diagnostics. The common ones are visual 
analysis via trace plots and kernel density plots. 

E. An Application 

The data were collected from a thermo plastic injection 
molding machine in a car bumper auto parts manufacturer in 
Liberec city, Czech Republic. Altogether 27 machine parts 
were randomly chosen for this study, during the time period 
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from January 2012 to November 2012.  The number of 
machine parts errors were recorded.  

A Hidden Markov model for the number of machine 
part errors itZ  is 

( )|it it itZ Poisθ θ�  

0 1log( )it itCθ λ λ= +                                                    (5) 
1

( 1) 0 1 ( 1) 2| Bin(logit ( ),1)it i t i t itC C C Xβ β β−
− −+ +�  

0 1Bin(1, )itC π�  

where itθ , which  can be viewed as the mean of the Poisson, 

is determined by the unobserved machine part state itC . This 

unobserved machine parts state follows a Markov chain, 
with transition probability modeled by a logistic regression 
with the previous health state ( 1)i tC − . The parameter 1π  

represents the initial probability of being in the “defective” 
machine state at the first month 1it , i.e. 

1
Pr( 1)

iitC = . The 

dummy variables 1itX =  indicates the status of month t  for 

part i as being after error correction (with before correction 
as the reference group, 0itX =  ). Thus, the estimate for the 

coefficient of itX  is of primary interest to see if the 

probability of being in the “defective” state has significantly 
decreased after correction. 

The hidden Markov model (5) is illustrated in Figure 1. 
The total number of machine parts error itZ  in a particular 

month t , is governed by the two state latent variable itC . 

More specifically, itZ  comes from a two state Poisson 

distribution where the two different means of the Poisson 
distribution correspond to the two different values of the 
latent variable itC  which in turn depends on the previous 

state ( 1)i tC − . To make the unobserved states identifiable, we 

assume that the lower mean corresponds to 0itC =  and the 

higher mean corresponds to 1itC = , which is operationalized 

by constraining 1λ to be larger than zero. Thus 

0itC = corresponds to the “non-defective” state and 

1itC = corresponds to the “defective” state. 

 

F. Parameter Estimation 

The MCMC Gibbs sampling for parameter estimation was 
done in a Bayesian framework using MCMC techniques via 
OpenBUGS software. The joint posterior is broken into the 
full conditional posterior distribution with respect to each 
parameter and the Gibbs sampler [18] is used.  Once the 
chain converges, the empirical joint posterior distribution for 
all the parameters can be used to obtain the posterior mean 
and the 2.5% and 97.5% quantiles can be used as the 
credible interval for all the parameters.  The priors were 
chosen to be as noninformative as possible.  In the total 
visits model, 5N(0,10 )priors were used for 0λ , 0β , 1β , 2β , 

and 5N(0,10 )with positive value restriction was used for 

1λ . 

 

The visual analysis, history plots and kernel density plots 
are used for the MCMC convergence diagnostics. We 
performed 25,000 MCMC iterations with 5,000 burn-in 
iterations. 

To evaluate the model performance, the proposed model 
is compared with the traditional Poisson generalized 
estimating equations (GEE)  that directly model the counts, 
using mean square errors (MSE). 

The GEE is expressed as: 
 

( )|it it itZ Poisθ θ�  

0 1log( )it itXθ β β= +  ,                                            (5) 

where 0β  and 1β are regression coefficients, the dummy 

variables 1itX =  indicates the status of month t  for part 

i as being after error correction. We use SPSS software for 
the GEE parameter estimation. 

III.  RESULTS 

The mean number of machine part error was 2.35 per one 
part per one month. As the observed data represent the count 
of machine parts errors, direct modeling of the data via GEE 
is considered. The visual analysis is used for MCMC 
convergence diagnostics. The trace plots are shown in Fig. 
2-6 and the kernel density plots are shown in Fig. 7-11. The 
chains moving around the parameter spaces and the kernel 
densities looking like their distributions indicate that each 
parameter is converged to a stationary density. 

 

 
Fig. 2 Trace of 0λ  

 

 
Fig. 3 Trace of 1λ  

 

 
Fig. 4 Trace of 0β  

 

 
Fig. 5 Trace of 1β  

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



 

 

 
Fig. 6 Trace of 2β  

 

 
Fig. 7 Kernel density of 0λ  

 

 
Fig. 8 Kernel density of 1λ  

 

 
Fig. 9 Kernel density of 0β  

 

 
Fig 10. Kernel density of 1β  

 

 
Fig 11. Kernel density of 2β  

 
 

The posterior summary of the estimated parameters is 
shown in Table 1. 

 
 
 
 

 

TABLE I 
PARAMETER ESTIMATES FROM THE HMM 

Parameter Mean SD 95% Credible Interval 

0λ  0.071 0.063 -0.045 0.198 

1λ  2.649 0.080 2.492 2.808 

0β  -5.469 2.491 -12.08 -3.336 

1β  6.393 1.66 3.655 10.14 

2β  1.284 2.593 -0.3057 7.868 
 
 

Table 1 shows the results of the HMM fit to the machine 
part error counts per month. The estimate of 2β (1.284) 

implies that the odds of transitioning to or remaining in the 
“defective” state in any given month after correction is 
exp(1.284) = 3.611 of what it was before correction. This 
provides evidence in favor of the machine part error 
correction not improving the machine part status of 
individual part. 

  
In addition to this main finding, the results from the model 

also characterize a very strong month-to-month dependence 
of machine part states (1β = 6.393) where the odds of 

remaining in the “defective” state in the current month if an 
machine part was in the “defective” state the last month is 
estimated to be exp(6.393) = 597.647 times the odds of 
newly transitioning to the “defective” state if an individual  
part was “non-defective” in the previous month. 

 
For the model comparison, the mean square errors (MSE) of 
the proposed HMM (3.193) is smaller than the GEE (4.948), 
indicating that it has a better performance.  

 

IV.  DISCUSSION 

We propose a HMM for machine part errors. The model 
assumes there are unobserved machine part states that 
govern the machinery care utilization of a particular machine 
part, and the machine part state is governed only by the 
frequency of errors. 

The main goal of the HMM is to model changing machine 
part states over time not necessarily modeling the changing 
number of errors. In the HMM, the observed machine errors 
are really only a surrogate for “machine parts status”. 
Measurement error is allowed between the observed 
machine errors and the underlying machine state.  For the 
GEE, the goal is to model the changing numbers of machine 
part themselves. As being seen from the model comparison 
using mean square errors (MSE), the GEE does not fit as 
well.  Reference [12] give a review and description of 
several different Markov and latent (hidden) Markov 
models. The proposed HMMs can be applied to other 
similar problems and can be extended to multivariate 
Poisson data. 
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V. CONCLUSION 

 
 The objective of this study is to propose a two-state 
hidden Markov model in order to describe the effect of 
machine part error correction on the likelihood of the 
machine parts to be in a “defective” or “non-defective” state.  
A Bayesian framework is used for parameter estimation. The 
study finds that the machine part error correction does not 
improve the machine part status of individual part, and there 
is a very strong month-to-month dependence of machine part 
states. Using root mean square errors, the proposed HMM is 
compared to the GEE that directly model the counts. The 
results show that the proposed model has a better 
performance. 
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