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Abstract—This article is concerned with paramet-
ric continuous-time convex programs pertaining to
a class of concave-convex fractional optimal control
problems with linear state constraints. Some basic
properties of parametric continuous-time convex pro-
gramming problems are derived. These properties
will provide an important foundation for construct-
ing a parametric computational procedure for solving
the concave-convex fractional optimal control prob-
lems with linear state constraints.
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1 Introduction

In this article, we shall pay our attention to a class of
nonlinear optimal control problems with linear state con-
straints. Such a problem is called the continuous-time
concave-convex fractional programming problem (in short,
the problem (CCFP)). The problem (CCFP) is a gener-
alization of the so-called continuous-time linear program-
ming problem. The theory of the problem (CLP), which
was originated from the “bottleneck problem” proposed
by Bellman [1], has received considerable attention for a
long time, one can consult [2]. The optimization problem
in which the objective function appears as a ratio of two
real-valued function is known as a fractional program-
ming problem. Due to its significance appearing in the
information theory, stochastic programming and decom-
position algorithms for large linear systems, the various
theoretical and computational issues have received par-
ticular attention in the last decades. For more details
on this topic, we may refer to Stancu-Minasian [11] and
Schaible et al. [5, 8, 9, 10]. In the literature, a number
of optimality principles and duality models for linear and
nonlinear fractional programming problems have been ex-
tended to some continuous-time fractional programming
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problems, one can refer to Zalmai [21, 22, 23, 24], Bector
et al. [3], Stancu-Minasian and Tigan [12] and Husain
and Jabeen[7]. However, these works focused on the de-
velopments of optimality principles and duality relations,
the computational issues were not addressed. Recently,
Wen et al. [13, 14, 15, 16, 17, 18, 19, 20] established com-
putational procedures for some classes of continuous-time
linear and fractional programming problems.

The most likely known methods for solving conven-
tional fractional programming is the so-called paramet-
ric method, one can refer to Schaible [9] and Stancu-
Minasian[11]. Its main idea is to convert the original
problem to non-fractional problems by separating numer-
ator and denominator with help of a parameter. In this
article, we shall discuss the possibility of extending the
parametric method to the problem (CCFP). By using
the methodologies adopted in Wen [13, 14] and Wen et
al. [17], we shall establish a theoretical foundation for
developing a computational procedure for (CCFP).

The rest of this paper is organized as follows. In Section
2, we propose the auxiliary parametric continuous-time
convex programming problem (CCPλ) and review its du-
ality properties. In Section 3, we derive the equivalence
between the problems (CCFP) and (CCPλ). Moreover,
we introduce and analyze the discretization problems de-
rived from (CCPλ) in Section 4. By using the different
step sizes of discretization problems, we construct a se-
quence of feasible solutions for (CCPλ). The convergent
property of the constructed feasible solutions can also be
obtained. The paper ends with concluding remarks in
Section 5.

For the remainder of this article, for any given optimiza-
tion problem (P), we denote by V (P) the optimal objec-
tive value of (P); that is, V (P) will be obtained by taking
the supremum or infimum.

2 Parametric Continuous-Time Convex
Programming Problems

Let L∞([0, T ],Rp) be the space of all measurable and
essentially bounded functions from a time space [0, T ]
into the p-dimensional Euclidean space Rp and let
C([0, T ],Rp) be the space of all continuous functions from
[0, T ] into the Rp. The continuous-time concave-convex
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fractional programming problem (CCFP) is formulated
as follows:

max.

µ+

∫ T

0

ϕ(x(t))dt

ξ +

∫ T

0

φ(x(t))dt

s. t. Bx(t) ≤ g(t) +

∫ t

0

Kx(s)ds for all t ∈ [0, T ]

x ∈ L∞([0, T ],Rq
+),

where

• x(t) is the decision variable, T > 0 is a given time
horizon, and the superscript “⊤” denotes the trans-
pose operation of matrices.

• B and K are p × q matrices, g ∈ C([0, T ],Rp
+) and

Rp
+ = {(x1, · · · , xp)

⊤ : xi ≥ 0 for i = 1, · · · , p};

• ϕ(·) is a scalar function that is concave and con-
tinuously twice differentiable and µ ∈ R+; φ(·) is
a nonnegative scalar function that is convex and
continuously twice differentiable and ξ > 0. More-
over, there exists a feasible solution x(t) such that

µ+
∫ T

0
ϕ(x(t))dt ≥ 0.

We also assume that B = [Bij ]p×q and K = [Kij ]p×q are
constant matrices satisfying

(A1) Kij ≥ 0 for all i = 1, · · · , p and j = 1, · · · , q;

(A2) Bij ≥ 0 and
∑p

i=1 Bij > 0 for all i = 1, · · · , p and
j = 1, · · · , q.

In this section, we are going to propose an auxiliary prob-
lem associated with (CCFP) which will be formulated
as the parametric continuous-time convex programming
problem. For any λ ∈ R+, let

θ(λ) := ϕ− λφ.

We consider the following parametric continuous-time
convex programming problem:

(CCPλ) :

max. µ− λξ +

∫ T

0

θ(λ)(x(t))dt

s. t. Bx(t) ≤ g(t) +

∫ t

0

Kx(s)ds for t ∈ [0, T ]

x(t) ∈ L∞([0, T ],Rq
+).

In deriving the relations between (CCFP) and (CCPλ),
the solvability of (CCPλ) is a key condition. Hence dis-
cussing the solvability of (CCPλ) is a top priority of this
study. In order to discuss the solvability of (CCPλ), it is

necessary to realize the dual relations of (CCPλ). In the
literature, the dual properties of continuous-time convex
programming problems have been studied by by Hanson
[6] and Wen [14]. According to Hanson [6], the dual prob-
lem (DCCPλ) can be defined as follows:

min. µ− λξ +

∫ T

0

{
θ(λ)(u(t))− u(t)⊤∇θ(λ)(u(t))

}
dt

+

∫ T

0

{
g(t)⊤w(t)

}
dt

s. t. B⊤w(t)−
∫ T

t

K⊤w(s)ds ≥ ∇θ(λ)(u(t))

for t ∈ [0, T ],

w(·) ∈ L∞([0, T ],Rp
+) and

u(·) ∈ L∞([0, T ],Rq),

where ∇θ(λ) = ∇ϕ− λ∇φ is the gradient of θ(λ).

By the same arguments given in Wen [14], the weak and
strong duality properties can be realized as below.

Proposition 1 (Weak Duality between (CCPλ) and
(DCCPλ)) Let λ ≥ 0. Considering the primal-dual pair
problems (CCPλ) and (DCCPλ), for any feasible solu-
tions x(0)(t) and (u(0)(t),w(0)(t)) of problems (CCPλ)
and (DCCPλ), respectively, we have that the objective
value of (CCPλ) at x(0)(t) is less than or equal to the
objective value of (DCCPλ) at (u(0)(t),w(0)(t)); that is,
V (CCPλ) ≤ V (DCCPλ).

Proposition 2 (Strong Duality between (CCPλ) and
(DCCPλ)) Let λ ≥ 0. There exist optimal solutions
x(∗,λ)(t) and (u(∗,λ)(t),w(∗,λ)(t)) of the primal-dual pair
problems (CCPλ) and (DCCPλ), respectively, such that
x(∗,λ)(t) = u(∗,λ)(t) and V (CCPλ) = V (DCCPλ).

3 The relations between (CCPλ) and
(CCFP)

In order to realize the relations between the problem
(CP) and the problem (CCPλ), we define a function
F : R+ → R by F(λ) = V (CCPλ) for all λ ≥ 0. Using
the solvability of the problem (CCPλ) and by a similar
argument with [11, Theorem 4.5.2], we can obtain the
following results.

Proposition 3 The following statements hold true.

(i) The real-valued function F(λ) is convex, hence is
continuous.

(ii) If λ1 < λ2, then F(λ1) > F(λ2); that is, the real-
valued function F(·) is strictly decreasing.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



Many useful relations between (CCPλ) and (CCFP) are
given below.

Proposition 4 The following statements hold true.

(i) Given any λ ≥ 0, then F(λ) > 0 if and only if λ <
V (CCFP). Equivalently, F(λ) ≤ 0 if and only if
λ ≥ V (CCFP).

(ii) Suppose that x̄(t) is an optimal solution of (CCFP)
with V (CCFP) = λ∗. Then x̄(t) is an optimal so-
lution of (CCPλ∗) with V (CCPλ∗) = 0; that is
F(λ∗) = 0.

(iii) If there exists a λ∗ ≥ 0 such that F(λ∗) = 0, then
the optimal solution of the problem (CCPλ∗) is also
an optimal solution of (CCFP) and V (CCFP) = λ∗.

By the above propositions, it can be shown that the prob-
lem (CCFP) is solvable. Let 1 = (1, 1, · · · , 1)⊤ ∈ Rp and

ρ̂ := max
j=1,···,q

{∑p
i=1 Kij∑p
i=1 Bij

,
∇jϕ(0)− λ∇jφ(0)∑p

i=1 Bij

}
≥ 0.

We define w⋆(t) = ρ̂ eρ̂(T−t)1 for all t ∈ [0, T ] and define
η⋆ ≥ 0 such that

η⋆ = max


µ+

∫ T

0

ϕ(0)dt+

∫ T

0

g(t)⊤w⋆(t)dt

ξ +

∫ T

0

φ(0)dt

, 0

 .

(1)

Corollary 1 There exists a unique λ∗ in the closed in-
terval [0, η⋆] such that F(λ∗) = 0. That is,

• 0 ≤ V (CCFP) ≤ η⋆, and

• if x̄(λ∗)(t) is an optimal solution of the problem
(CCPλ∗), then it is also an optimal solution of the
problem (CCFP).

From the above discussions, it follows that solving the
problem (CCFP) is equivalent to determine the unique
root of the nonlinear equation F(λ) = 0. However, it
is notoriously difficult to find the exact solution of every
(CCPλ). In the next section, given a λ in the closed in-
terval [0, η⋆], we shall utilize the discrete approximation
procedure developed by Wen [14] to find the approximate
value of F(λ) and to estimate its error bound.

4 A Discrete Approximation Method for
(CCPλ)

Now, we are going to propose the discrete approximation
method to solve the parametric problem (CCPλ). In this

case, the discrete problem derived from problem (CCPλ)
will be a finite-dimensional linear programming problem.
For each n ∈ N, we take

Pn =

{
0,

T

n
,
2T

n
, · · · , (n− 1)T

n
, T

}
as a partition of [0, T ], which divides [0, T ] into n subin-
tervals with equal length T/n. For l = 1, · · · , n, we define

b
(n)
l =

(
b
(n)
1l , b

(n)
2l , · · · , b(n)pl

)⊤
∈ Rp

+, (2)

where

b
(n)
il = min

{
gi(t) : t ∈

[
(l − 1)T

n
,
lT

n

]}
. (3)

According to the continuous-time convex programming
problem (CCPλ), its discrete version can be defined as the
following finite-dimensional convex programming prob-
lem

(P(λ)
n ) :

maximize µ− λξ +
T

n

n∑
l=1

θ(λ)(xl)

subject to Bxl −
T

n
K

l−1∑
r=1

xr ≤ b
(n)
l for l = 1, · · · , n

xl ∈ Rq
+ for l = 1, · · · , n,

According to Dorn [4], the dual problem (D(λ)
n ) of (P(λ)

n )
is defined by

(D(λ)
n ) :

minimize µ− λξ +
T

n

n∑
l=1

{
θ(λ)(ul)− ul

⊤∇θ(λ)(ul)

+(b
(n)
l )⊤wl

}
subject to B⊤wl −

T

n
K⊤

n∑
r=l+1

wr ≥ ∇θ(λ)(ul)

for l = 1, 2, · · · , n
wl ∈ Rp

+ for l = 1, · · · , n and

ul ∈ Rq for l = 1, · · · , n,

The weak duality theorem for (P(λ)
n ) and (D(λ)

n ) is given
below.

Proposition 5 (Weak Duality between (P(λ)
n ) and

(D(λ)
n )) Let x = (x1, · · · ,xn) and (u,w) with u =

(u1, · · · ,un) and w = (w1, · · · ,wn) be feasible solutions

of (P(λ)
n ) and (D(λ)

n ), respectively. Then

T

n

n∑
l=1

θ(λ)(xl)

≤ T

n

n∑
l=1

{
θ(λ)(ul)− ul

⊤∇θ(λ)(ul) + (b
(n)
l )⊤wl

}
.
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That is, V (P(λ)
n ) ≤ V (D(λ)

n ).

The strong duality property holds true as shown below.

Proposition 6 (Strong Duality between (P(λ)
n ) and

(D(λ)
n )) There exist optimal solution x̄ = (x̄1, · · · , x̄n)

of primal problem (P(λ)
n ) and optimal solution (ū, w̄) of

dual problem (D(λ)
n ) with ū = (ū1, · · · , ūn) and w̄ =

(w̄1, · · · , w̄n) such that x̄ = ū and

T

n

n∑
l=1

θ(λ)(x̄l)

=
T

n

n∑
l=1

{
θ(λ)(ūl)− ū⊤

l ∇θ(λ)(ūl) + (b
(n)
l )⊤w̄l

}
.

It can be shown that the feasible sets of the problems
(P(λ)

n ) are uniformly bounded for all n ∈ N and λ ∈ R.
To see this, let

σ = min {Bij : Bij > 0} , (4)

κ = max
j=1,···,q

{
p∑

i=1

Kij

}
(5)

and

ζ = max {gi(t) : i = 1, · · · , p and t ∈ [0, T ]} . (6)

Then we have the following useful results.

Lemma 1 Given any n ∈ N and λ ≥ 0, if (x
(λ,n)
1 ,x

(λ,n)
2 ,

· · · ,x(λ,n)
n ) is a feasible solution of the primal problem

(P(λ)
n ), where x

(λ,n)
l = (x

(λ,n)
1l , x

(λ,n)
2l , · · · , x(λ,n)

ql )⊤ ∈ Rq
+,

then

0 ≤ x
(λ,n)
jl ≤ ζ

σ
exp

(
qκT

σ

)
(7)

for all j = 1, · · · , q and l = 1, · · · , n. This says that the
feasible sets of the problems (P(λ)

n ) are uniformly bounded

in the sense that the bounds of x
(λ,n)
jl are independent of

n and λ.

In general, the sequence of feasible sets {F (D(λ)
n )}∞n=1

needs not to be uniformly bounded. It can be shown
that there exist uniformly bounded optimal solutions to
dual problems (D(λ)

n ). To see this, we define

F =

{
x = (x1, · · · , xq)

⊤ ∈ Rq : 0 ≤ xj ≤
ζ

σ
exp

(
qκT

σ

)}
.

Then F is a compact set. Let

ĉ(λ) := max
j=1,···,q

max
x∈F

|∇jθ
(λ)(x)|, (8)

where ∇jθ
(λ)(x) denotes the jth component of ∇θ(λ)(x).

Lemma 2 The dual problem (D(λ)
n ) has an optimal so-

lution (ũ(λ,n), ŵ(λ,n)) with ŵ(λ,n) = (ŵ
(λ,n)
1 , · · · , ŵ(λ,n)

n )

such that ũ(λ,n) is also an optimal solution of (P(λ)
n ) and

0 ≤ ŵ
(λ,n)
il ≤ ĉ(λ)

σ
· exp

(
κT

σ

)
(9)

for all i = 1, · · · , p and l = 1, · · · , n.

Besides, we can construct the feasible solutions of the
problems (CCPλ) by virtue of the optimal solution of

the problem (P(λ)
n ). Let (x̄

(λ,n)
1 , x̄

(λ,n)
2 , · · · , x̄(λ,n)

n ) be an

optimal solution of (P(λ)
n ). For j = 1, · · · , q, we define the

step functions x̄
(λ,n)
j : [0, T ] → R as follows:

x̄
(λ,n)
j (t) =

 x̄
(λ,n)
jl , if

(l − 1)T

n
≤ t <

lT

n
x̄
(λ,n)
jn , if t = T,

(10)

where l = 1, · · · , n. Then we can form a vector-valued
function x̄(λ,n) : [0, T ] → Rq by

x̄(λ,n)(t) =
(
x̄
(λ,n)
1 (t), x̄

(λ,n)
2 (t), · · · , x̄(λ,n)

q (t)
)⊤

. (11)

In this case, we say that x̄(λ,n)(t) is a natural solution

of (CCPλ) constructed from (x̄
(λ,n)
1 , x̄

(λ,n)
2 , · · · , x̄(λ,n)

n ).
After some algebraic calculations, it is not hard to show
the feasibility of natural solutions of (CCPλ), which will
be presented below.

Lemma 3 Let (x̄
(λ,n)
1 , x̄

(λ,n)
2 , · · · , x̄(λ,n)

n ) be an op-

timal solution of (P(λ)
n ). Then the natural solu-

tion x̄(λ,n)(t) of problem (CCPλ) constructed from

(x̄
(λ,n)
1 , x̄

(λ,n)
2 , · · · , x̄(λ,n)

n ) is a feasible solution of
( CCPλ). Moreover, we have

F(λ) = V (CCPλ) ≥ V (P(λ)
n ) (12)

for all n ∈ N.

Furthermore, it also can be shown that

lim
n→∞

V (P(λ)
n ) = V (CCPλ).

To see this, we need some setting. We define a vector-
valued step function g(n) : [0, T ] 7→ Rp as follows:

g(n)(t) =
(
g
(n)
1 (t), g

(n)
2 (t), · · · , g(n)p (t)

)⊤

where,

g
(n)
i (t) =

 b
(n)
il , if

(l − 1)T

n
≤ t <

lT

n
b
(n)
in , if t = T ,

(13)
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for i = 1, · · · , p, l = 1, · · · , n, and b
(n)
il is defined in (3).

For further discussion, we define

ρ = max
j=1,···,q

{∑p
i=1 Kij∑p
i=1 Bij

,
1∑p

i=1 Bij

}
, (14)

ϵ̄n = max
i=1,···,p

sup
t∈[0,T ]

{
gi(t)− g

(n)
i (t)

}
, (15)

δn(λ) = max
i=1,···,p

max
l=1,···,n

{
T

n
w̄

(λ,n)
il

}
. (16)

Let (x̄(λ,n), w̄(λ,n)) be an optimal solution of dual prob-

lem (DCP(λ)
n ), where w̄(λ,n) = (w̄

(λ,n)
1 , · · · , w̄(λ,n)

n ),

w̄
(λ,n)
l = (w̄

(λ,n)
1l , · · · , w̄(λ,n)

pl )⊤ and x̄(λ,n) is an optimal

solution of (P(λ)
n ). We define a function ŵ(λ,n)(t) :

[0, T ] 7→ Rp as follows:

ŵ(λ,n)(t) = w̄
(λ,n)
l +δn(λ)ρe

ρ(T−t)1 for t ∈
[
l − 1

n
T,

l

n
T

)
(17)

and

ŵ(λ,n)(T ) = w̄(λ,n)
n + δn(λ)ρ1,

where 1 = (1, 1, · · · , 1)⊤ ∈ Rp. If x̄(λ,n)(t) is the natu-
ral solution of (CCPλ) constructed from x̄(λ,n), then we
also say that (x̄(λ,n)(t), ŵ(λ,n)(t)) is a natural solution of
problem (DCCPλ) constructed from the optimal solution

(x̄(λ,n), w̄(λ,n)) of problem (D(λ)
n ). The following results

are useful.

Lemma 4 Let x̄(λ,n) and (x̄(λ,n), w̄(λ,n)) be an optimal

solutions of (P(λ)
n ) and (D(λ)

n ), respectively. Let ŵ(λ,n)(t)
be defined as in (17). Then the following statements hold
true.

(i) The natural solution (x̄(λ,n)(t), ŵ(λ,n)(t)) is a feasi-
ble solution of dual problem (DCCPλ).

(ii) We have

0 ≤ Ôbj
(
x̄(λ,n)(t), ŵ(λ,n)(t)

)
− V (D(λ)

n )

≤ δn(λ)

∫ T

0

ρeρ(T−t)g(t)⊤1dt, (18)

where Ôbj
(
x̄(λ,n)(t), ŵ(λ,n)(t)

)
is the objective value

of (DCCPλ) at (x̄
(λ,n)(t), ŵ(λ,n)(t)).

By Lemma 4, we see that the natural solution x̄(λ,n)(t)
of problem (CCPλ) constructed from an optimal solution

of (P(λ)
n ) is an approximate solution of (CCPλ), and its

error bound can be estimated as follows.

Theorem 1 The following statements hold true.

(i) We have

0 ≤ V (CCPλ)− V (P(λ)
n ) ≤ εn(λ), (19)

where

εn(λ) := ϵ̄n · p · δn(λ) · (n+ exp (ρT )− 1) (20)

+δn(λ)

∫ T

0

ρ · exp (ρ(T − t)) (g(t))⊤1dt.

(ii) We have

lim
n→∞

V (P(λ)
n ) = V (CCPλ) = V (DCCPλ).

(iii) Let x̄(λ,n)(t) be the natural solutions of (CCPλ).
Then the error between the optimal objective value
of (CCPλ) and the objective value of x̄(λ,n)(t) is less
than or equal to εn(λ).

Furthermore, by Lemmas 1 and 2 the convergence of the
sequence of natural solutions {x̄(λ,n)(t)}∞n=1 of problem
(CCPλ) can be demonstrated.

Theorem 2 For any given λ ≥ 0, the sequence
{x̄(λ,n)(t)} defined in (10) has a convergent subsequence
{x̄(λ,nk)(t)} which weakly-star converges to x̄(λ,⋆)(t) such
that the limit x̄(λ,⋆)(t) is an optimal solution of (CCPλ).

5 Concluding Remarks

This article extends the traditional parametric method
for fractional programming programs to (CCFP). Some
properties of the auxiliary parametric continuous-time
convex programming problem (CCPλ) pertaining to
(CCFP) are derived. By these properties we conclude
that solving (CCFP) is equivalent to determine the root
of the nonlinear equation F(λ) = 0. These properties
make it possible to develop a numerical algorithm for
solving (CCFP). However, the performance of the devel-
oped numerical algorithm will heavily depend on the ef-
fective solutions of the auxiliary problems ( CCPλ). Be-
sides, it is notoriously difficult to find the exact solution
of every (CCPλ). These might pose the major difficulty
in solving problems (CCFP) effectively. Motivated by the
difficulty, in the further study of this article, we shall re-
fine the discrete approximation method developed in this
article and extend the interval-type algorithm by Wen
[13] to solve (CCFP) with approximation. The related
results are now in progress.
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