
 

 
Abstract— Generating a schedule for a professional sports 

league is an extremely demanding task. Good schedules have 
many benefits for the league, such as higher incomes, lower 
costs and more interesting and fairer seasons. This paper 
presents the format played in the Finnish major ice hockey 
league in the 2013-2014 season. The format is very complicated 
requiring computational intelligence to generate an acceptable 
schedule. We have used the PEAST algorithm to schedule the 
league since the 2008-2009 season. We report our 
computational results especially for the 2013-2014 season. 
 

Index Terms— sports scheduling; real-world scheduling; 
PEAST algorithm 

I. INTRODUCTION 

N the past decades professional sports leagues have 
become big businesses; at the same time the quality of the 

schedules have become increasingly important. This is not 
surprising, since the schedule directly impacts the revenue 
of all involved parties. For instance, the number of 
spectators in the stadiums, and the traveling costs for the 
teams are influenced by the schedule. TV networks that pay 
for broadcasting rights want the most attractive games to be 
scheduled at commercially interesting times in return. 
Furthermore, a good schedule can make a tournament more 
interesting for the media and the fans, and fairer for the 
teams. Nurmi et al. [1] report a growing number of cases 
where academic researchers have been able to close a 
scheduling contract with a professional sports league owner. 
Excellent overviews of sports scheduling can be found in 
[2]-[5]. An extensive bibliography can be found in [6] and 
an annotated bibliography in [7]. 

In a sports tournament, n teams play against each other 
over a period of time according to a given timetable. The 
teams belong to a league, which organizes games between 
the teams. Each game consists of an ordered pair of teams, 
denoted (i, j) or i-j, where team i plays at home - that is, uses 
its own venue (stadium) for a game - and team j plays away. 
Games are scheduled in rounds, which are played on given 
days. A schedule consists of games assigned to rounds. A 
schedule is compact if it uses the minimum number of 
rounds required to schedule all the games; otherwise it is 
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relaxed. If a team plays two home or two away games in 
two consecutive rounds, it is said to have a break. In 
general, for reasons of fairness, breaks are to be avoided. 
However, a team can prefer to have two or more 
consecutive away games if its stadium is located far from 
the opponent’s venues, and the venues of these opponents 
are close to each other. A series of consecutive away games 
is called an away tour. 

In a round robin tournament each team plays against each 
other team a fixed number of times. Most sports leagues 
play a double round robin tournament (2RR), where the 
teams meet twice (once at home, once away), but quadruple 
round robin tournaments (4RR) are also quite common. A 
mirrored double round robin tournament (M2RR) is a 
tournament where every team plays against every other team 
once in the first n – 1 rounds, followed by the same games 
with reversed venues in the last n – 1 rounds. 

TABLE I.  A DOUBLE ROUND ROBIN TOURNAMENT WITH SIX TEAMS 

R1 R2 R3 R4 R5 

1 – 6 3 – 1 1 – 5 2 – 1 1 – 4 

2 – 5 5 – 4 2 – 4 5 – 3 3 – 2 

4 – 3 6 – 2 3 – 6 6 – 4 6 – 5 

R6 R7 R8 R9 R10 

4 – 2 1 – 2 3 – 4 1 – 3 2 – 3 

5 – 1 3 – 5 5 – 2 2 – 6 4 – 1 

6 – 3 4 – 6 6 – 1 4 – 5 5 – 6 

 

Table I shows an example of a compact double round 
robin tournament with six teams. The schedule has no 
breaks for team 1, three-in-a-row home games for team 6 
and a four-game away tour for team 4. 

Sports scheduling involves three main problems. First, 
the problem of finding a schedule with the minimum number 
of breaks is the easiest one. De Werra [8] has presented an 
efficient algorithm to compute a minimum break schedule 
for a 1RR. If n is even, it is always possible to construct a 
schedule with n – 2 breaks. For an M2RR, it is always 
possible to construct a schedule with exactly 3n – 6 breaks. 

Second, the problem of finding a schedule that minimizes 
the travel distances is called the Traveling Tournament 
Problem (TTP) [9]. In TTP the teams do not return home 
after each away game but instead travel from one away 
game to the next. However, excessively long away trips as 
well as home stands should be avoided. The TTP is recently 
shown to be strongly NP-complete [10]. 

Third, most professional sports leagues introduce many 
additional requirements in addition to minimizing breaks 
and travel distances. We call the problem of finding a 
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schedule which satisfies given constraints [1] the 
Constrained Sports Scheduling Problem (CSSP). The goal is 
to find a feasible solution that is the most acceptable for the 
sports league owner - that is, a solution that has no hard 
constraint violations and that minimizes the weighted sum 
of the soft constraint violations. 

Scheduling the Finnish major ice hockey league is an 
example of a CSSP. It is very important to minimize the 
number of breaks. The fans do not like long periods without 
home games, consecutive home games reduce gate receipts 
and long sequences of home or away games might influence 
the team’s current position in the tournament. It is also very 
important to minimize the travel distances. Some of the 
teams do not return home after each away game but instead 
travel from one away game to the next. There are also 
around a dozen more other criteria that must be optimized. 

Section II presents the format played in the Finnish major 
ice hockey league in the 2013-2014 season. The section also 
introduces the requirements, requests and other constraints 
that the format implies. In Section III we describe the 
PEAST algorithm which has been used since the 2008-2009 
season to schedule the league. Section IV reports some 
statistical findings and our computational results especially 
for the 2013-2014 season. 

We are not aware of any sports scheduling papers dealing 
with such a broad class of constraints that arise in the 
Finnish major ice hockey league. We believe that the model 
and the solution method help sports scheduling researchers 
to evaluate, compare and exchange their equivalent ideas. 

II. THE FINNISH MAJOR ICE HOCKEY LEAGUE FORMAT AND 

THE CONSTRAINT MODEL 

Ice hockey is the biggest sport in Finland, both in terms 
of revenue and the number of spectators. The spectator 
average per game for the current season (2012-2013) is 
about 5200. In the Saturday rounds one percent of the 
Finnish population (age 15-70) attended the games in the ice 
hockey arenas. 

The Finnish major ice hockey league has 14 teams (see 
Table II). Seven of the teams in the league are located in big 
cities (over 100,000 citizens) and the rest in smaller cities. 
One team is quite a long way up north, two are located in 
the east and the rest in the south (see Figure 1). 

TABLE II.  THE FOURTEEN TEAMS IN THE FINNISH MAJOR ICE HOCKEY 
LEAGUE AND THEIR NUMBER OF TITLES 

#1 Jokerit  6 #8 Ilves 16 

#2 HIFK  7 #9 HPK  1 

#3 Blues  0 #10 JYP  2 

#4 TPS 11 #11 Pelicans  0 

#5 Ässät  2 #12 SaiPa  0 

#6 Lukko  1 #13 KalPa  0 

#7 Tappara 15 #14 Kärpät  5 

 

The format played in the league since the 2012-2013 
season is somewhat eccentric. The competition starts with a 
regular season in September and ends with the playoffs 
from mid-March to mid-April. The league fixes the dates on 
which the games can be played. The last team of the regular 
season plays best out of seven elimination games against the 

best team of the Finnish 1st division ice hockey league. The 
six best teams of the regular season proceed directly to 
quarter-finals. Teams placing between 7th and 10th play 
preliminary playoffs best out of three. The two winners take 
the last two quarter-final slots. Teams are paired up for each 
playoff round according to the regular season standings, so 
that the highest-ranking team plays against the lowest-
ranking, and so on. The playoffs are played best out of 
seven. The winner of the playoffs receives the Canada 
Bowl, the championship trophy of the League. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The fourteen teams on the map of Finland 

 
The basis of the regular season is a quadruple round robin 

tournament resulting in 52 games for each team. In addition, 
the teams are divided into two groups of seven teams in 
order to get a few more games to play. The teams in the 
groups are selected based on fairness, i.e. the strengths of 
the teams are most likely to be equal. These teams play a 
single round robin tournament resulting in 6 games. The 
home teams of the games are decided so that in two 
consecutive seasons each team has exactly one home game 
against every other team in the group. 

Finally, the so-called “January leveling” adds two extra 
games for each team. In January, in the middle of the 
season, the last team on the current standings selects an 
opponent against which it plays once at home and once 
away on two consecutive days on Friday and on Saturday. 
The opponent selects the day for its home game. Then, the 
second last team (or the third last if the second last was 
selected by the last team) selects its opponent from the rest 
of teams and so on. The teams can choose to select their 
opponents either by maximizing the winning possibilities or 
by maximizing the ticket sales. 

The quadruple round robin, six group games and two 
extra games per team total to 60 games for each team and 
420 games overall. The format includes several other 
interesting features than those mentioned earlier. First, the 
standard game days are Tuesday, Friday and Saturday. The 
schedule should maximize the number of games on Fridays 
and on Saturdays in order to maximize the revenue. For the 
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same reason consecutive home games are not allowed on 
Fridays and Saturdays. Furthermore, due to the travel 
distances between some venues, certain combinations of a 
Friday home team playing a Saturday away game against 
the given team are not allowed. Table III shows the 
forbidden pairs. The games that cannot be scheduled on 
Fridays due to these restrictions, are played on Thursdays. 

 

TABLE III.  THE FORBIDDEN COMBINATIONS OF A FRIDAY HOME TEAM 
PLAYING A SATURDAY AWAY GAME AGAINST THE GIVEN TEAM 

Ässät KalPa, Kärpät, SaiPa 

Blues KalPa 

HIFK KalPa 

HPK KalPa 

Ilves Kärpät 

Jokerit KalPa 

JYP Kärpät, TPS 

KalPa Ässät Blues HIFK HPK Jokerit Lukko 

Kärpät Ässät Ilves Lukko SaiPa Tappara TPS 

Lukko KalPa Kärpät SaiPa 

Pelicans  

SaiPa Ässät Kärpät Lukko TPS 

Tappara Kärpät 

TPS KalPa Kärpät SaiPa 

 

Second, every team should play in the two rounds before 
and the two rounds after New Year’s Eve and adhere to the 
traveling rules given in the Table III. Third, the schedule 
should include a weekend when seven pairs of teams play 
against each other on consecutive rounds on Friday and on 
Saturday. These match-up games are called “back-to-back 
games”. Fourth, local rivals (see Table IV) should play as 
many games as possible against each other in the first two 
rounds.  

TABLE IV.  THE LOCAL RIVALS 

Jokerit HIFK Blues  

TPS Ässät Lukko  

Tappara Ilves HPK Pelicans 

JYP SaiPa KalPa Kärpät 

 

Fifth, the number of Friday and Saturday games between 
some local rivals (see Table V) should be maximized. Sixth, 
the Ässät, HPK, JYP, KalPa, Kärpät, Lukko, Pelicans, SaiPa 
and TPS teams should play at least one Friday or Saturday 
home game against the Jokerit and HIFK teams. These two 
teams guarantee the best revenue for the home team. 

TABLE V.  THE NUMBER OF GAMES THAT SHOULD BE PLAYED ON 
FRIDAYS AND SATURDAYS 

Jokerit HIFK 4 JYP KalPa 4 

Jokerit Blues 3 Kärpät KalPa 4 

HIFK Blues 4 SaiPa Pelicans 5 

Tappara Ilves 5 HPK Pelicans 4 

Ässät Lukko 5    

 

Seventh, the traveling distances between some of the venues 
require some teams to make away tours. That is, they should 
play away either on Tuesday and on Thursday or on 

Thursday and on Saturday. The teams that make away tours, 
their possible opponents and the minimum number of tours 
required are given in Table VI.  

TABLE VI.  THE TEAMS THAT MAKE AWAY TOURS, THEIR POSSIBLE 
OPPONENTS AND THE MINIMUM NUMBER OF TOURS REQUIRED 

Kärpät 
HPK+Ilves, TPS+Ässät, TPS+Ilves, 
Pelicans+Tappara, SaiPa+HIFK 

6 

KalPa HPK+Blues, Ässät+Lukko, HIFK+Pelicans 4 

SaiPa Ässät+Lukko 2 

Ässät SaiPa+KalPa 2 

Lukko SaiPa+KalPa 2 

 

Eighth, the Tappara and Ilves teams cannot play at home 
on the same day because they share a venue. Also the 
Jokerit and HIFK teams cannot play at home on the same 
day because they share the same (businessmen) spectators. 
Ninth, some of the teams cannot play at home in certain 
days because their venues are in use for some other event. A 
total of 69 home game restrictions existed in the 2012-2013 
season. Finally, in the last two rounds each team should play 
exactly one home game. 

Next, we present the constraint model of the Finnish 
major ice hockey league scheduling problem for the 2013-
2014 season. Nurmi et al. [1] present a collection of typical 
constraints that are representative of many scheduling 
scenarios in sports scheduling. In the following problem 
description, we refer to this constraint classification. The 
detailed problem file will be found on the sports scheduling 
web site [11]. The objective is to find a feasible solution that 
is the most acceptable for the sports league owner. That is, a 
solution that has no hard constraint violations and that 
minimizes the weighted sum of the soft constraint 
violations. 

The hard constraints are the following: 
 
C01. There are at most 90 rounds available for the 

tournament 

C04. Team t cannot play at home in round r (43 cases) 

C07. The Tappara and Ilves teams and the Jokerit and 
HIFK teams cannot play at home in the same round 

C08. A team cannot play at home on two consecutive 
calendar days 

C12. A break cannot occur in the second and last round 

C41. The schedule should include one weekend where 
seven pairs of teams play against each other on 
consecutive rounds on Friday and on Saturday. 

The soft constraints are the following: 
 
C09. Team t wants to play at least m1 away tours (see 

Table VI) 

C13. Teams cannot have more than two consecutive 
home games 

C14. Teams cannot have more than two consecutive 
away games 
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C15. The total number of breaks must not be larger than 
140 

C19. There must be at least five rounds between two 
games with the same opponents 

C22. Two teams cannot play against each other in series 
of HHAA, AAHH, HAAAH or AHHHA 

C23. Team t wishes to play at least m1 and at most m2 
home games on weekday1, m3-m4 on weekday2 and 
so on (see [11]) 

C26. The difference between the number of played home 
and away games for each team must not be larger 
than two in any stage of the tournament 

C27. The difference in the number of played home 
games between the teams must not be larger than 
two in any stage of the tournament 

C37. A team t1 cannot play away against team t2 if it 
played at home against team t2 on the previous 
round, and the two rounds are on consecutive 
calendar days (see Table III). Note that this 
constraint is also used for the two rounds before 
and two rounds after New Year’s Eve. 

C38. Teams in the first two groups should play two 
games against each other and teams in the last two 
groups should play four games against each other 
between rounds one and two (see Table IV). 

C39. At least m games between teams t1 and t2 should be 
played on Fridays and Saturdays (see Table V) 
(10) 

C40. The schedule should include at least 200 games 
played either on Friday or on Saturday (10) 

 
Some of the given soft constraints are actually goals. 

These goals are presented as exact numbers in the constraint 
model: 
 

 minimize the number of breaks (C15) 

 the defined local rivals should play as many games as 
possible in the first two rounds (C38) 

 the number of Friday and Saturday games between 
some local rivals should be maximized (C39) 

 the schedule should maximize the number of games 
on Fridays and on Saturdays (C40). 

III. THE PEAST ALGORITHM 

This section describes the PEAST algorithm which is 
used to schedule the league. The usefulness of an algorithm 
depends on several criteria. The two most important ones 
are the quality of the generated solutions and the algorithmic 
power of the algorithm. Other important criteria include 
flexibility, extensibility and learning capabilities. We can 
steadily note that the PEAST algorithm realizes these 
criteria. It has been used to solve several real-world 
scheduling problems (see eg. [12-15] and it is in industrial 
use. In this section we present the components of the 
algorithm. 

The PEAST algorithm is a population-based local search 
method. The heart of the algorithm is the local search 
operator called GHCM (greedy hill-climbing mutation). The 
GHCM operator is used to explore promising areas in the 
search space to find local optimum solutions. Another 
important feature of the algorithm is the use of shuffling 
operators. They assist in escaping from local optima in a 
systematic way. Furthermore, simulated annealing and tabu 
search are used to avoid staying stuck in promising search 
areas too long. We next discuss these and other important 
characteristics briefly. For the detailed discussion we refer 
to [16]. The pseudo-code of the algorithm is given in Figure 
2. 

 

 

Fig. 2. The pseudo-code of the PEAST algorithm. 

The GHCM operator is based on similar ideas to the Lin-
Kernighan procedures [17] and ejection chains [18]. The 
basic hill-climbing step is extended to generate a sequence 
of moves in one step, leading from one solution candidate to 
another. The GHCM operator moves an object, o1, from its 
old position, p1, to a new position, p2, and then moves 
another object, o2, from position p2 to a new position, p3, 
and so on, ending up with a sequence of moves. 

Picture the positions as cells as shown in Figure 3. The 
initial object is selected by tournament selection with k = 7. 
In the (deterministic) tournament selection we randomly 
pick k objects and then we choose the best one. The cell that 
receives the object is selected by considering all the possible 
cells and selecting the one that causes the least increase in 
the objective function when only considering the relocation 
cost. Then, another object from that cell is selected by 
considering all the objects in that cell and picking the one 
for which the removal causes the biggest decrease in the 
objective function when only considering the removal cost. 
Next, a new cell for that object is selected, and so on. The 
sequence of moves stops if the last move causes an increase 
in the objective function value and if the value is larger than 
that of the previous non-improving move, or if the 
maximum number of moves is reached. Then, a new 
sequence of moves is started. The maximum number of 
moves in the sequence is 10. 

It may sound surprising that the best way to select the 

 
Set the iteration limit t, cloning interval c, shuffling interval s, ADAGEN 
update interval a and the population size n 
Generate a random initial population of schedules Si for 1 <= i <= n 
Set best_sol = null, round = 1 
WHILE round ≤ t 
    index = 1 
    WHILE index++ <= n 
        Apply GHCM to schedule Sindex to get a new schedule 
        IF Cost(Sindex) < Cost(best_sol) THEN Set best_sol = Sindex 
    END REPEAT 
    Update simulated annealing framework 
    IF round ≡ 0 (mod a) THEN Update the ADAGEN framework 
    IF round ≡ 0 (mod s) THEN Apply shuffling operators 
    IF round ≡ 0 (mod c) THEN Replace the worst schedule with the  
                                                   best one 
    Set round = round + 1 
END WHILE 
Output best_sol 
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new cell for the object is to consider all possible cells and 
select the best one. Moreover, the best way to select a new 
object from that cell is again to consider all the objects in 
that period. Very often a not so greedy strategy ends up with 
better results. 

Fig. 3. A sequence of moves in the GHCM heuristic. 

We improve the GHCM operator by introducing a tabu 
list which prevents reverse order moves in the same 
sequence of moves. i.e. if we move an object o from 
position p1 to position p2, we do not allow o to be moved 
back to position p1 before a new sequence of moves begins. 

We use a simulated annealing refinement to decide 
whether or not to commit to a sequence of moves in the 
GHCM operator. This refinement is different from the 
standard simulated annealing. It is used in a three-fold 
manner. Firstly, when choosing an object to be moved from 
a cell, a random object is chosen with probability exp(-1/Tk) 
instead of choosing the least fit object. Secondly, when 
choosing the cell where to move the object, a random cell is 
chosen with probability exp(-1/Tk) instead of choosing the 
fittest cell. Lastly, when the sequence of moves is cut short 
(i.e. a worsening move is made, and it worsens the solution 
more than the previous worsening move did), the whole 
sequence will still be committed with probability exp(-
costDiff/Tk) instead of rolling back to the best position (i.e. 
the position at which the objective function value is the 
lowest) of the sequence. The cooling scheme Tk can be 
found in [16]. 

For most PEAST applications we introduce a number of 
shuffling operators – simple heuristics used to perturb a 
solution into a potentially worse solution in order to escape 
from local optima – that are called upon according to some 
rule. The idea of shuffling is the same as in hyperheuristics 
[19] but the other way around. A hyperheuristic is a 
mechanism that chooses a heuristic from a set of simple 
heuristics, applies it to the current solution to get a better 
solution, then chooses another heuristic and applies it, and 
continues this iterative cycle until the termination criterion 
is satisfied. We introduce a number of simple heuristics that 
are used to worsen the current solution instead of improving 
it. 

In sports league scheduling we use five shuffling 
operations: 
 

1. Select a random game and move it to a random 
round, and do this k1 times. 

2. Swap two random games, and do this k2 times. 

3. Select a random round and move k3 random games 
from that round to random rounds. 

4. Swap all the games in two random rounds. 

5. Select a random game A-B and swap it with the 
game B-A, and do this k4 times. 

The best results have been obtained using the values k1 = 3, 
k2 = 2, k3 = 3 and k4 = 2. 

No crossover operators are applied to the population of 
schedules. Every c iterations the least fit individual is 
replaced with a clone of the fittest individual. This operation 
is completely irrespective of the globally fittest schedule 
(best_sol in Fig. 1) found. The PEAST algorithm uses 
ADAGEN, the adaptive genetic penalty method introduced 
in [20]. A traditional penalty method assigns positive 
weights (penalties) to the soft constraints and sums the 
violation scores to the hard constraint values to get a single 
value to be optimized. The ADAGEN method assigns 
dynamic weights to the hard constraints based on the 
constant weights assigned to the soft constraints. The soft 
constraints are assigned fixed weights according to their 
significance. The hard constraint weights are updated every 
kth generation using the method given in [11]. 

Random initial solutions work best in all the real-world 
cases where we have applied PEAST algorithm (see eg. [12-
15]). We have found no evidence that a sophisticated initial 
solution improves results. On the contrary, random initial 
solutions seem to yield superior or at least as good results. 

IV. COMPUTATIONAL RESULTS 

We believe that scheduling the Finnish major ice hockey 
league is one of the most difficult sports scheduling 
problems because it combines break minimization and 
traveling distance restrictions with dozens of constraints that 
must be satisfied. We have used the PEAST algorithm and 
its predecessors to schedule the league since the 2008-2009 
season. This section reports our computational results for 
the 2013-2014 season. We start with some interesting 
statistical findings from the earlier seasons. 

In addition to scheduling the league we also contribute to 
the process of improving the league format. For example the 
“January leveling” and the “back-to-back games” have been 
introduced to the format based on our ideas. Table VII 
shows the increase in the number of spectators in the last 
four (five) seasons. 

TABLE VII.  THE NUMBER OF SPECTATORS IN THE FINNISH MAJOR ICE 
HOCKEY LEAGUE IN THE LAST SEVEN SEASONS 

2005-2006 1 958 843 

2006-2007 1 943 312 

2007-2008 1 964 626 

2008-2009 1 997 114 

2009-2010 2 015 080 

2010-2011 2 036 915 

2011-2012 2 145 462  (avg 5108) 

2012-2013 2 189 350  (avg 5213) 

 

The standard game days used to be Tuesday, Thursday 
and Saturday. From the 2011-2012 season the league 
decided to change Thursdays to Fridays to get more 
spectators. Friday games have had about 10% more 
spectators. 

However, playing at home both on Fridays and on 
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Saturdays is not allowed. Due to this, the games that cannot 
be scheduled on Fridays are played on Thursdays. This on 
the other hand means that some teams play two consecutive 
games and some teams have a rest day before the Saturday 
game. In the last ten seasons the probability for a home team 
to defeat an away team that has had a rest day is 10% 
smaller. Likewise, the probability for an away team to win a 
home team that has had a rest day is even 85% smaller. 

Minimizing the number of breaks is very important 
because it is likely that having two consecutive home games 
on Thursday and on Saturday decreases the number of 
spectators. In the last ten seasons the number of spectators 
on Thursday has decreased by 3.5% and on Saturday by 
1.9%. 

Some teams desire away tours because of the traveling 
distances between their venue and some of the opponents’ 
venues (see Table VI). For example, the Kärpät team wants 
to make at least six away tours. In the last ten seasons the 
probability for the team to win its second away game is 30% 
smaller than to win any away game. 

The process of scheduling the league takes about two 
months. First, we discuss the possible improvements to the 
format with the league’s competition manager. Then, the 
format is accepted by the team CEOs. Next, all the 
restrictions, requirements and requests by the teams are 
gathered. Finally, the importance (penalty value) of the 
constraints is decided. We ran the algorithm for one week 
and choose the best solution. The algorithm was run on an 
Intel Xeon X5690 3.47GHz with 24GB of RAM running 
Windows 7 Professional.  

TABLE VIII.  THE BEST SOLUTION FOUND (ACCEPTED BY THE LEAGUE) 

C01 Hard 
There are at most 90 rounds available for the 
tournament 

0 

C04 Hard 
A team cannot play at home in the given round 
(43 cases) 

0 

C07 Hard 
Two pairs of teams cannot play at home in the 
same round (2 cases) 

0 

C08 Hard 
A team cannot play at home on two consecutive 
calendar days 

0 

C12 Hard 
A break cannot occur in the second and last 
rounds 

0 

C41 Hard “Back-to-back games” 0 

C09 Soft 10 Number of away tours not scheduled 0 

C13 Soft 10 
One violation for each case when a team has 
more than two consecutive home games 

0 

C14 Soft 3 
One violation for each case when a team has 
more than two consecutive away games 

0 

C15 Soft 5 One violation for each break more than 140 0 

C19 Soft 5 One violation for each round less than five 1 

C22 Soft 1 
One violation for each case when two teams meet 
in series of HHAA, AAHH, HAAAH or AHHHA 

4 

C23 Soft 1 
One violation for each home game less or more 
than the requested number on given weekday 

2 

C26 Soft 1 
One violation for each case when the difference 
is more than two 

1 

C27 Soft 3 
One violation for each case when the difference 
is more than two 

0 

C37 Soft 4 One violation for each forbidden combination 0 

C37 Soft 4 
One violation for each forbidden combination 
(the compact rounds around New Year’s Eve) 

0 

C38 Soft 10 One violation for each game less than 12 0 

C39 Soft 10 
One violation for each game not played on 
Fridays or on Saturdays 

0 

C40 Soft 10 One violation for each game less than 200 0 

 

 

Recall that the objective is to find a feasible solution that 
is the most acceptable for the sports league owner. That is, a 
solution that has no hard constraint violations and that 
minimizes the weighted sum of the soft constraint 
violations. Table VIII shows the constraints used for the 
2013-2014 season, whether they are decided to be hard or 
soft constraints, the importance (penalty value) of the soft 
constraints and how the constraint violations are calculated. 

Table VIII also shows the best solution found. The 
solution has no hard constraint violations and the penalty 
value for the soft constraint violations is 12. The schedule 
has 89 rounds (C01), 139 breaks (C15) and 220 games 
played either on Friday or on Saturday (C40). This was by 
far the most difficult schedule to generate compared to the 
earlier seasons. The league accepted the schedule and it will 
be used in the 2013-2014 season. 

It should be noted that for the 2000-2009 seasons the 
average number of 3-breaks at home (C13) was 14 and the 
average number of cases when there were less than five 
rounds between two games with the same opponents (C19) 
was 10. Furthermore, in these seasons the maximum 
difference between the number of played home and away 
games (C26) was 5 and the difference in the number of 
played home games between the teams was 4. 

V. CONCLUSIONS 

We presented the format played in the Finnish major ice 
hockey league in the 2013-2014 season. The format is very 
complicated requiring computational intelligence to 
generate an acceptable schedule. We presented 
computational results that show that our PEAST algorithm 
generated a good-quality schedule for the 2013-2014 
season. The league owner accepted the schedule. 

We note that during the last five years we have 
experienced and compared the performance of the PEAST 
algorithm to several other algorithms such as tabu search, 
simulated annealing, ant algorithms, genetic algorithms, 
hyper heuristics and variable neighborhood search. In our 
test runs the PEAST algorithm has clearly outperformed the 
other algorithms. Furthermore, it has shown its value in 
business use, especially in sports league scheduling and 
workforce scheduling. We have also compared the 
performance of the PEAST algorithm to CPLEX [21]. The 
instance used represented the first half of the 2011-2012 
season (double round robin). CPLEX was not able to 
produce a feasible solution to the problem even though we 
used a very simplified version of the problem. We strongly 
believe that the PEAST algorithm clearly outperforms MIP 
solvers in solving highly constrained real-world sports 
scheduling problems 
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