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Abstract—In this paper, we introduced the notion of a gener-
alized multivalued (α,ϕ)-almost contractions and establish the
existence of fixed point theorems for this class of mapping.
The results presented in this paper generalize and extend
some recent results in multivalued almost contraction. Also,
we show its applications in the Ulam-Hyers stability of fixed
point problems for multivalued operators.

Index Terms—Almost contraction, Fixed point theorems,
Generalized multivalued almost contraction, Ulam-Hyers sta-
bility.

I. INTRODUCTION

AStudy of fixed point for a multivalued (set-valued)
mappings was originally initiated by von Neumann [23]

in the study of game theory. The development of geometric
fixed point theory for multivalued mapping was initiated with
the work of Nadler [16] in 1969. He combined the ideas
of multivalued mapping and Lipschitz mapping and used
the concept of Hausdorff metric to establish the multivalued
contraction principle, usually referred as Nadler’s contraction
mapping principle.

Definition 1. [16] Let (X, d) be a complete metric space
and S : X → CB(X) be multivalued mapping such that for
all x, y ∈ X , we have

H(Sx, Sy) ≤ kd(x, y), where k ∈ (0, 1). (1)

Then there exists z ∈ X such that z ∈ Sz.

In 2003, Berinde [3] introduced almost contractions that
satisfy a simple but general contraction condition that in-
cludes most of the conditions in Rhoadesclassification [18].
He obtained a fixed point theorem for such mappings which
generalized the results of Kannan [13]. The weakly contrac-
tive metric-type fixed point result in [4] is almost covered
by the related altering metric one due to Khan et al.[13]. A
number of papers appeared in which fixed points of almost
contractions for single valued mapping have been discussed
(see [1, 4–7, 20] and references therein).

In 2007, M. Berinde and V. Berinde [2] extended almost
contractions of self-mappings to the case of multivalued
almost contractions. Afterward, several researches have ex-
tended and proved the fixed point theorems of multivalued
almost contractions (see [5–7] and references therein).

On the other hand, stability problem of functional analysis
is the another one which play the most important in math-
ematics analysis. It was introduced by Ulam [22], he was
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concern the stability of group homomorphisms. Afterward,
Hyers [12] gave a first affirmative partial answer to the ques-
tion of Ulam for Banach spaces, this type of stability is called
Ulam-Hyers stability. Several authors consider Ulam-Hyers
stability results in fixed point theory and remarkable result
on the stability of certain classes of functional equations
via fixed point approach (see [8–11, 15, 21] and references
therein).

In this work, we give fixed point results for some new class
of multivalued almost contractions. Our results generalize
and extend several multivalued almost contraction results in
the existing literature. Moreover, we show its applications
in the Ulam-Hyers stability of fixed point problems for
multivalued operators.

II. PRELIMINARIES

Throughout this paper, let (X, d) be a metric space and
CB(X) be the family of nonempty closed bounded subsets
of X . For a point x in X and a nonempty subset A of X ,
we define the distance d(x,A) from x to A by

d(x,A) = inf{d(x, a) : a ∈ A},

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

For A,B ∈ CB(X), we define the Hausdroff distance,
between A and B by

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
, (2)

which is symmetric in A and B. It well known that
(CB(X), H) is a complete metric space.

Definition 2. Let S : X → (CB(X)) be a multivalued
mapping. An element x ∈ X is said to be a fixed point
of S if x ∈ Sx.

Lemma 3 ([16]). Let (X, d) be a metric space and A,B ∈
CB(X), then for each a ∈ A,

d(a,B) ≤ H(A,B).

Lemma 4 ([16]). Let (X, d) be a metric space and A,B ∈
CB(X), then for each a ∈ A, ε > 0, there exists an element
b ∈ B such that d(a, b) ≤ H(A,B) + ε.

Lemma 5. Let (X, d) be a metric space. Let A,B ∈ X and
q > 1. Then, for every a ∈ A, there exists b ∈ B such that

d(a, b) ≤ qH(A,B). (3)

Proof. If H(A,B) = 0, then a ∈ B and (3) holds for b = a.
If H(A,B) > 0, then let us denote

ε = (q − 1)H(A,B) > 0. (4)
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Using the definition of d(a,B) and H(A,B), it follows that,
for any ε > 0, there exists b ∈ B such that

d(a, b) ≤ d(a,B) + ε ≤ H(A,B) + ε. (5)

Now, by inserting (4) in (5), we get (3).

III. FIXED POINT THEOREMS

In this section, we introduce and prove the concept of
generalized multivalued (α,ϕ)-almost contraction mappings.

Theorem 6. Let (X, d) be a complete metric space and S :
X → CB(X) be a generalized multivalued (α,ϕ)-almost
contraction, i.e., a mapping satisfying for which there exists a
function α : [0,∞)→ [0, 1) and ϕ : X → [0,∞), satisfying
lim supr→t+ α(r) < 1 for every t ∈ [0,∞), such that

H(Sx, Sy)

≤ α(d(x, y))d(x, y) + ϕ(d(x, y))

min{d(x, Sx), d(y, Sy), d(x, Sy), d(y, Sx)} (6)

for all x, y ∈ X . Then S has a fixed point in X .

Proof. Let q > 1. Let x0 ∈ X and x1 ∈ Sx0. If
H(Sx0, Sx1) = 0 then Sx0 = Sx1, i.e., x1 ∈ Sx1, then
x1 is fixed point of S. Let H(Sx0, Sx1) 6= 0. By Lemma 5,
there exists x2 ∈ Sx1 such that

d(x1, x2) ≤ qH(Sx0, Sx1).

By (6), we obtain

d(x1, x2)

≤ q[α(d(x0, x1))d(x0, x1) + ϕ(d(x0, x1))

min{d(x0, Sx0), d(x1, Sx1), d(x0, Sx1), d(x1, Sx0)}]
≤ q[α(d(x0, x1))d(x0, x1) + ϕ(d(x0, x1))

min{d(x0, x1), d(x1, x2), d(x0, x2), d(x1, x1)}]
≤ q[α(d(x0, x1))d(x0, x1)].

Because

min{d(x0, Sx0), d(x1, Sx1), d(x0, Sx1), d(x1, Sx0)} = 0

and we take θ = qα(d(x0, x1)), hence

d(x1, x2) ≤ θd(x0, x1).

If H(Sx1, Sx2) = 0 then Sx1 = Sx2, i.e., x2 ∈ Sx2, then
x2 is fixed point of S. Let H(Sx1, Sx2) 6= 0. By Lemma 5,
there exists x3 ∈ Sx2 such that

d(x2, x3) ≤ qH(Sx1, Sx2).

Again by (6), we have

d(x2, x3)

≤ q[α(d(x1, x2))d(x1, x2) + ϕ(d(x1, x2))

min{d(x1, Sx1), d(x2, Sx2), d(x1, Sx2), d(x2, Sx1)}]
≤ q[α(d(x1, x2))d(x1, x2) + ϕ(d(x1, x2))

min{d(x1, x2), d(x2, x3), d(x1, x3), d(x2, x2)}]
≤ q[α(d(x1, x2))d(x1, x2)].

Because

min{d(x1, Sx1), d(x2, Sx2), d(x1, Sx2), d(x2, Sx1)} = 0

and θ = qα(d(x1, x2)). So, we have

d(x2, x3) ≤ θd(x1, x2) ≤ θ2d(x0, x1).

By continuing this process, we obtain a sequence {xn} in
X such that xn ∈ Txn−1, xn 6= xn−1 and

d(xn, xn+1) ≤ θd(xn−1, xn)

for all n ∈ N. By inductive, we obtain

d(xn, xn+1) ≤ θnd(x0, x1).

Hence,

d(xn+k, xn+k+1) ≤ θk+1d(xn−1, xn)

for all n, k ∈ N. Now, for positive integers m and n with
m > n, we have

d(xn, xm)

≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xm−1, xm)

≤ θnd(x0, x1) + θn+1d(x0, x1) + . . .+ θm−1d(x0, x1)

≤ (θn + θn+1 + . . .+ θm−1)d(x0, x1)

≤ θn

1− θ
d(x0, x1).

Since, θ < 1, we get d(xn, xm) → 0 as n → ∞.
Therefore, {xn} is a Cauchy sequence in X . Now, from the
completeness of X , there exists x∗ ∈ X such that xn → x∗

as n→∞. Then

d(x∗, Sx∗)

≤ d(x∗, xn+1) + d(xn+1, Sx
∗)

≤ d(x∗, xn+1) +H(Sxn, Sx
∗)

≤ d(x∗, xn+1) + α(d(xn, x
∗))d(xn, x

∗) + ϕ(d(xn, x
∗))

min{d(xn, Sxn), d(x∗, Sx∗), d(xn, Sx∗), d(x∗, Sxn)}
≤ d(x∗, xn+1) + α(d(xn, x

∗))d(xn, x
∗) + ϕ(d(xn, x

∗))

min{d(xn, xn+1), d(x
∗, Sx∗), d(xn, Sx

∗), d(x∗, xn+1)}.

Letting n → ∞ implies that d(x∗, Sx∗) = 0. Since Sx∗ is
closed, this implies x∗ ∈ Sx∗. This completes the proof.

Let δ ∈ (0, 1) and L ≥ 0. If α(r) := δ and ϕ(r) := L
for each r ∈ [0,∞) in Theorem 6 then it reduce to next
Corollary which defined by Berinde and Pacurar.

Corollary 7. [5] Let (X, d) be a complete metric space and
S : X → CB(X) be a generalized multivalued (δ, L)-almost
contraction, i.e., a mapping satisfying for which there exist
a constant δ ∈ (0, 1) and some L ≥ 0, such that

H(Sx, Sy) ≤ δd(x, y) + Lmin{d(x, Sx), d(y, Sy),
d(x, Sy), d(y, Sx)} (7)

for all x, y ∈ X , Then S has a fixed point in X .

Proof. The proof could be easily adapted after that of The-
orem 6 which replace α(d(x, y)) := δ and ϕ(d(x, y)) := L

If min{d(x, Sx, d(y, Sy), d(x, Sy), d(y, Sx)} = d(y, Sx)
in Corollary 7 then it reduce to Corollary 8 which defined
by M. Berinde and V. Berinde [2]

Corollary 8. [2] Let (X, d) be a complete metric space and
S : X → CB(X) be a multivalued almost contraction which
there exist a constant δ ∈ (0, 1) and L ≥ 0 such that

H(Sx, Sy) ≤ δd(x, y) + Ld(y, Sx) (8)
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for all x, y ∈ A, Then S has a fixed point in X .

IV. THE ULAM-HYERS STABILITY

We start this section by presenting the Ulam-Hyers sta-
bility concepts for the fixed point problem associated to a
multivalued operator.

Definition 9. Let (X, d) be complete metric space and S :
X → CB(X) be an operator. By definition, the fixed point
inclusion

x ∈ Sx (9)

for all x ∈ X and for each ε > 0 real number the following
inequality

d(y, Sy) ≤ ε, (10)

is said to be generalized Ulam-Hyers stable if there exists
an increasing operator ψ : [0,∞) → [0,∞), continuous at
0 and ψ(0) = 0 such that for each ε > 0 real number and
each solution y∗ ∈ X an solution of the inequality (10) there
exists a solution x∗ ∈ X of the fixed point inclusion (9) such
that

d(y∗, x∗) ≤ ψ(ε). (11)

If there exists c > 0 such that ψ(t) := ct, for each t ∈
[0,∞), then the fixed point inclusion (9) is said to be Ulam-
Hyers stable.

Now, we prove a generalized Ulam-Hyers stability for
fixed point problems which Theorem 6 hold.

Theorem 10. Let (X, d) be a complete metric space. Sup-
pose that all the hypotheses of Theorem 6 hold and also that
the function ψ : [0,∞)→ [0,∞) defined by ψ(t) := t−tα(t)
is strictly increasing and onto. Then, the fixed point inclusion
(9) is generalized Ulam-Hyers stable.

Proof. By Theorem 6, we have x∗ ∈ Sx∗, that is, x∗ ∈ X
is a solution of the fixed point inclusion (9). Let ε > 0 and
y∗ ∈ Sy∗ is a solution of the inequality (10), that is

d(y∗, Sy∗) ≤ ε.

Now, we obtain

d(x∗, y∗) = d(Sx∗, y∗)

≤ d(Sx∗, Sy∗) + d(Sy∗, y∗)

≤ d(x∗, Sy∗) + d(Sy∗, y∗)

≤ H(Sx∗, Sy∗) + d(Sy∗, y∗)

≤ [α(d(x∗, y∗))d(x∗, y∗) + ϕ(d(x∗, y∗))

min{d(x∗, Sx∗), d(y∗, Sy∗), d(x∗, Sy∗),
d(y∗, Sx∗)}] + ε

≤ α(d(x∗, y∗))d(x∗, y∗) + ε.

It follows that

d(x∗, y∗)− α(d(x∗, y∗))d(x∗, y∗) ≤ ε.

Since ψ(t) := t− tα(t), we have

ψ(d(x∗, y∗)) := (d(x∗, y∗)− α(d(x∗, y∗)))d(x∗, y∗).

It implies that
d(x∗, y∗) ≤ ψ−1(ε).

Notice that ψ−1 : [0,∞) → [0,∞) exists, is increasing,
continuous at 0 and ψ−1(0) = 0. Therefore, the fixed
point inclusion (9) is generalized Ulam-Hyers stable. This
completes the proof.

Corollary 11. Let (X, d) be a complete metric space.
Suppose that all the hypotheses of Corollary 7 hold. Then
the fixed point inclusion (9) is Ulam-Hyers stable.

Proof. By Corollary 7, we have x∗ ∈ Sx∗, that is, x∗ ∈ X
is a solution of the fixed point inclusion (9). Let ε > 0 and
y∗ ∈ Sy∗ is a solution of the inequality (10), that is

d(y∗, Sy∗) ≤ ε.
Now, we obtain

d(x∗, y∗) = d(Sx∗, y∗)

≤ d(Sx∗, Sy∗) + d(Sy∗, y∗)

≤ d(x∗, Sy∗) + d(Sy∗, y∗)

≤ H(Sx∗, Sy∗) + d(Sy∗, y∗)

≤ [δd(x∗, y∗) + Lmin{d(x∗, Sx∗), d(y∗, Sy∗),
d(x∗, Sy∗), d(y∗, Sx∗)}] + ε

≤ δd(x∗, y∗) + ε.

It follows that

d(x∗, y∗)− δd(x∗, y∗) ≤ ε.
Since δ ∈ (0, 1), we have

d(x∗, y∗) ≤ 1

1− δ
ε.

Because 1
1−δ > 0. Therefore, the fixed point inclusion (9) is

generalized Ulam-Hyers stable. This completes the proof.

Remark 12. If suppose that all the hypotheses of Corollary
8 holds. Also, the fixed point inclusion (9) is Ulam-Hyers
stable.

Corollary 13. Let (X, d) be a complete metric space.
Suppose that all the hypotheses of Corollary 8 hold. Then, the
fixed point inclusion (9) is generalized Ulam-Hyers stable.

Proof. By Corollary 8, we have x∗ ∈ Sx∗, that is, x∗ ∈ X
is a solution of the fixed point inclusion (9). Let ε > 0 and
y∗ ∈ Sy∗ is a solution of the inequality (10), that is

d(y∗, Sy∗) ≤ ε.
Now, we obtain

d(x∗, y∗) = d(Sx∗, y∗)

≤ d(Sx∗, Sy∗) + d(Sy∗, y∗)

≤ d(x∗, Sy∗) + d(Sy∗, y∗)

≤ H(Sx∗, Sy∗) + d(Sy∗, y∗)

≤ [δd(x∗, y∗) + Ld(y∗, Sx∗)] + ε

≤ (δ + L)d(x∗, y∗) + ε.

It follows that

d(x∗, y∗)− (δ + L)d(x∗, y∗) ≤ ε.
Since δ ∈ (0, 1) and for some L ≥ 0, we have

d(x∗, y∗) ≤ 1

1− δ − L
ε.

Therefore, the fixed point inclusion (9) is generalized Ulam-
Hyers stable. This completes the proof.
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