
Using Software-Defined Networking
for Real-Time Internet Applications

Tim Humernbrum, Frank Glinka, Sergei Gorlatch

Abstract—We consider an emerging class of challenging In-
ternet applications called Real-Time Online Interactive Applica-
tions (ROIA). Examples of ROIA are multiplayer online games,
computation- and interaction-intensive training, simulation-
based e-learning, etc. These applications make high QoS de-
mands on the underlying network which involve the number
of users and the actual application state and, therefore, vary
at runtime. In traditional networks, the reconfiguration possi-
bilities of the network to meet the dynamic QoS demands of
ROIA are limited due to the lack of control of the network. The
emerging architecture of Software-Defined Networking (SDN)
decouples the control and forwarding logic from the network
infrastructure, making it programmable for applications. This
paper describes the specification, design and implementation of
a novel Northbound API for developing ROIA that can use the
advantages of SDN. We describe the basic architectural design
of the SDN Module which implements the API functionality
required by ROIA, and we report experimental testing and
evaluation results for its prototype implementation.

I. INTRODUCTION: ROIA AND SDN

WE consider an emerging class of challenging Inter-
net applications called Real-Time Online Interactive

Applications (ROIA). These are networked applications con-
necting a potentially very high number of users who interact
with the application and with each other in real time, i.e., a
response to a user’s action happens virtually immediately.

Typical representatives of ROIA are multiplayer online
computer games, advanced simulation-based e-learning, and
serious gaming. Due to a large, variable number of users
at runtime, with intensive and dynamic interactions, ROIA
make high QoS demands on the underlying network. Further-
more, these demands may change depending on the number
of users and the actual application state: e.g., in a shooter
game, a high packet loss in a combat state may have fatal
consequences on the quality of the game, whereas it is less
relevant when exploring the terrain.

Practically all state-of-the-art ROIA use the network on a
best-effort basis, because of the lack of control over QoS
in traditional networks. This leads to a suboptimal QoS
perceived by the end-user, also known as Quality of Experi-
ence (QoE). The existing best-effort techniques of controlling
the QoS like the reservation of network bandwidth with
the Resource Reservation Protocol (RSVP) or DiffServ [1]
are mainly static or need to be configured by the network
administrator and thus do not fit the dynamically changing
demands of ROIA.

This paper addresses the dynamic network demand of
ROIA by using the Software-Defined Networking (SDN)

Manuscript received December 14, 2013; revised January 13, 2014. The
authors are with the Institute of Computer Science, University of Münster,
48149 Münster, Germany.
Email: humernbrum@wwu.de, glinkaf@wwu.de, gorlatch@wwu.de

technology. We aim at enabling ROIA to manage the SDN in-
frastructure at runtime according to application requirements,
thus leading to a higher and more predictable QoE for the
end-user.

Figure 1 shows a schematic representation of the general
SDN architecture and its interfaces. The control layer and
its controller separate the application from the network layer.
Instead of the complex configuration done by the adminis-
trator in traditional networks, in the SDN architecture, an
application can perform changes in the network in real time,
which should be especially advantageous for ROIA. For
this purpose, applications communicate with the SDN Con-
troller by means of a so-called Northbound API, whereas
a Southbound API is used for communication between the
SDN Controller and the network switches. While OpenFlow
is a de-facto standard for the Southbound API, there is no
standard Northbound API between the control layer and the
application layer.

Application
Layer

Applications

Control
Layer

Network
Layer

SDN
Controller Network Services

Southbound API, e.g.,

Northbound API

Switches

Fig. 1. General schema of SDN, adapted from [2].

The rest of this paper is organized as follows. In Sec-
tion II, we describe ROIA properties and use them to specify
the desired Northbound API functionality. Based on this
API specification, the initial design and implementation of
the SDN Module implementing the API functionality is
presented in Section III. In Section IV, we demonstrate
how the SDN Module is used by the ROIA developer.
Finally, Section V concludes the paper with an experimental
evaluation of the SDN Module.

II. SPECIFICATION OF NORTHBOUND API FOR ROIA

Typically, a ROIA simulates a virtual environment which
is conceptually separated into a static and dynamic part.
The static part covers, e.g., landscape, buildings and other
non-changeable objects. The dynamic part covers entities
like avatars, non-playing characters (NPC) controlled by the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

computer, items that can be collected by clients, sideboard
entries or, generally, objects that can change their state.
Therefore, a continuous information exchange about the state
of these objects is required between servers and clients.

Actions

Network
Layer

Switches

Application
Layer ROIA

Process

Receive user
actions1

Compute new
application state2

Dynamic game state
represented by entities

State
updates

Send state
updates3

ROIA
ClientROIA

Client
ROIA
Client ...

User

Fig. 2. One iteration of the ROIA real-time loop.

Figure 2 shows the structure of a ROIA based on
the client-server architecture. The figure depicts only one
ROIA Process which serves the connected ROIA Clients, but
the typical scenario includes a group of ROIA Processes that
are distributed among several server machines. In a contin-
uously progressing ROIA, the application state is repeatedly
updated in real time in an endless loop, called real-time loop
[3], [4]. A loop iteration consists of three major steps. At first,
the clients process the users’ inputs; they are then transmitted
in form of actions via the network and are received by the
ROIA Process (step À in Figure 2). The process then calcu-
lates a new application state by applying the received user
actions and the application logic to the current application
state (step Á). As the result of this calculation, the states
of several dynamic entities may change. The final step Â
transfers the new, updated application state to the clients.

When designing the real-time loop for a particular ROIA,
the application developer deals with several tasks regarding
the network [5]. In steps À and Â, the developer has to
organize the network transfer of the data structures that
realize user actions and entities. If the application is dis-
tributed among multiple machines, then step Á also requires
the developer to organize the distributed computation of the
application state and necessary communications for updating
the state across different processes. Hence, the communi-
cation between a ROIA Process and the ROIA Clients or
other processes comprises several data flows with different
demands on network QoS. Different data flows could inter-
fere with each other and, therefore, have to be distinguished
in order to assign them different levels of QoS.

Implementing the network communication in a ROIA
which makes particular QoS requirements is a challenging
task because: a) the developer often has no detailed technical
knowledge of networking and the involved protocols, b) the
possibilities for specifying QoS requirements in traditional
networks are limited, and c) the runtime controlling of the
network layer is complex and often requires the intervention
of the network administrator. These limitations stand in
contrast to the dynamic QoS demands of ROIA. As a result,
most ROIA use the network on a best-effort basis and rely
on the over-provisioning of the network, which is not cost-

efficient since the capacity reserved for peaks in network
utilization remains unused most of the time. The use of SDN
for ROIA should allow for an effective utilisation of network
capacity and, at the same time, simplify the specification of
network requirements respecting the dynamic QoS demands
of ROIA.

To specify an SDN Northbound API for ROIA, we have
extensively analysed ROIA network requirements and how
they can be expressed in an API using various metrics, e.g.,
latency, packet loss, bandwidth, and jitter. Furthermore, tech-
nical constraints and expectations from the ROIA developer
perspective have been taken into account.

The result of our analysis is a list of desirable features
which should be covered by the envisaged API:

1. Since application requirements on network QoS are
very dynamic, the API can either update them frequently
or specify them in a flexible way.

2. The API allows for specifying network requirements
during runtime ahead of time, if the application can anticipate
such information in advance.

3. The API can specify different network requirements for
different data flow types (e.g., frequent but small packets vs.
infrequent but large amount of data, dynamic vs. static data).

4. The data flow types are specified using the API at
development time, while the network requirements for a
particular data flow type are specified at runtime.

5. The API enables the developer to specify network QoS
requirements depending on the direction of data flows.

6. Besides low-level network metrics, the API accepts
application-level metrics, e.g., response time, event count and
number of synchronized entities, and transparently translates
them into metrics understood by the SDN Controller.

7. The API supports multiple data flows types per ROIA
and provides an aggregation mechanism for data flows with
common requirements.

8. The API can handle the QoS of different data flow types
individually.

9. The API allows bandwidth reservations to schedule
state migrations and to support short-lived requests/releases
of additional bandwidth for particular migrations.

10. The API allows for prioritizing data flows, in particular
state synchronization over state migration.

11. The API can specify timing-based requirements on the
network, e.g., a certain time frame for transferring data.

III. THE API INITIAL DESIGN

In order to meet the network requirements specified by
the ROIA developer, the API implementation attempts to
adapt the actual network utilisation of the application, e.g.,
by prioritizing packets of a particular data flow or by
state migration which involves switching client connections
between servers.

Figure 3 shows the basic architecture design of our North-
bound API which includes the following 8 main components:

ROIA Process: the application process which provides
(parts of) a ROIA to the connected users. A ROIA process
implements the application logic, manages application data
and sends application state updates to the connected clients.

Server: a hardware server or virtual machine (VM), able
to run a ROIA process. As a ROIA may be distributed across
multiple servers for scalability reasons, there are usually

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

multiple ROIA processes for a single instance of a ROIA
(for simplicity, only one is shown in Figure 3).

ROIA Client(s): a client connected to one of the ROIA
processes. This connection may switch to another process
if, e.g., the client accesses entities processed by the other
process, causing a state migration of the client’s entities.

Network: comprises SDN-enabled switches that are con-
figured by the SDN Controller.

SDN Controller: receives network QoS requests in form
of QoS policies from the application via the API and attempts
to configure the network resources accordingly.

Real-Time Framework (RTF): is a C++ library which
provides programming abstractions and runtime support
for ROIA. RTF [6] has been developed at the Univer-
sity of Münster, starting with the European edutain@grid
project [7]. While ROIA development is significantly simpli-
fied by RTF, network aspects were still managed on a best-
effort basis in RTF, which we now improve by employing
SDN.

SDN Module: implements the Northbound API; it comes
in form of a library which is linked into the ROIA and is in-
tegrated with RTF which allows it to manage RTF’s network
connections in order to meet the requested network QoS.
The SDN Module also translates application-level metrics
into metrics understood by the SDN Controller.

SLA Manager: implements business models and commit-
ments between ROIA users, providers, and network operators
(not shown in the figure). It has an impact on the control
decisions of the SDN Controller and monitors achieved QoS
in order to trigger business-level actions if necessary. In
this paper, we rather focus on the technical aspects of QoS
handling and network control between the SDN Controller
and the ROIA.

The Northbound API mediates within the generic SDN
architecture between the application and the SDN Controller.
As stated in API feature 6, the SDN Module translates
high-level, application-level metrics into low-level network
metrics understood by the SDN Controller. This difference
of perspectives is sometimes called the application-network
divide.

In order to reflect the two different perspectives on the
Northbound API – developer vs. controller – our North-
bound API is designed as consisting of two parts:

• The application-level API (À in Figure 3) between the
application code and the SDN Module. It enables the
developer to specify how ROIA reports to the SDN Con-
troller about network requirements and achieved QoS.
This API takes into account that the communication
links are dynamic at runtime, e.g., they can migrate
between servers, and it allows for aggregating com-
munication links. The ROIA developer uses this API
to formulate his network-related requirements to the
SDN Controller.

• The network-level API (Á in Figure 3) between the
SDN Controller and the SDN Module is used by the
controller for receiving network requirements from the
application and for application management, e.g., reject-
ing requirements which cannot be accommodated. It is
also used to monitor QoS parameters at runtime.

Both APIs provide together a set of metrics to the ROIA
developer and SDN Controller which are the basis for

Network

Manage Network
Configuration

ROIA
ClientROIA

Client
ROIA
Client ...

SDN Controller

Server

ROIA Process

SDN
Module

RTF

1

Application
Code

SLA Manager

2

Service
Level

Agreement

Fig. 3. Basic Architecture: a ROIA process serves connected clients, re-
quests network QoS from the SDN Controller, and reports QoS information
to the SDN Controller.

managing network resources in ROIA. In this paper, the two
APIs are considered together as one Northbound API as long
as the distinction between them is not relevant.

IV. USING NORTHBOUND SDN API FOR ROIA

In our API, a QoS requirement is expressed as a so-
called QoS policy which is composed of one or several
QoS parameters. A QoS parameter associates a network
metric with a value to be complied with. In Figure 4, the
example QoS policy prescribes that not more than 5 % of
the data packets sent from a ROIA process to a ROIA
client are lost and that a minimum throughput of 2 Mbit/s is
achieved. The metrics in a QoS policy must be measurable
and influenceable by the SDN Controller. The SDN Module
currently provides the following network metrics that meet
these requirements: latency in milliseconds (ms), throughput
in Bit per second (Bit/s), packet loss in %, and jitter (variance
of the transfer time) in ms.

All QoS parameters of a QoS policy apply to one or several
flows. A flow consists of all data packets from a sender to
the same receiver that are allocated to the same logical data
flow. This allocation is defined by the application using flow
labels. For example, real-time data can be identified with the
flow label ”1”, assets with the label ”2”, etc. Thus, several
data flows can be transmitted via the same communication
channel and still be treated as different flows by the network.

Figure 4 shows a practical use case of how the speci-
fication of network requirements and their accommodation
proceeds. In order to accommodate a QoS policy, the ROIA
process sends it to the SDN Controller using methods
provided by the SDN Module (step À in Figure 4). The
SDN Controller tries to fulfill the requirements of the QoS
policy by adapting the network (step Á), e.g., the controller
decides to transmit the data flow between the process and the
client through another, faster connection. If the controller is
unable to accommodate the desired requirements, it sends
a reject message back to the ROIA process (step Â), with
those parameters of the QoS policy that could not be fulfilled.
Thus, the controller does not have to comply with the
complete QoS policy, but may reject some of the QoS
parameters, provided that it informs the process about it.
This either happens as a direct reaction when receiving a QoS

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

3

2

ROIA
Process

SDN
Module RTF

Network

SDN Controller

ROIA
Client

RTF

QoS policy
QoS parameter:

Flows:
ROIA Process ROIA Client

Maximum packet loss = 5 %

Minimum throughput = 2 MBit/s
requirement

applies to
1

Flow Label

QoS

1

Fig. 4. Specification of network requirements for the communication
between a ROIA Process and a ROIA Client.

policy, or at a later moment if the requirements were fulfilled
at the beginning and then cannot be fulfilled anymore.

We design the structure of the SDN Module as comprising
three components which are used for specification, adminis-
tration, and communication, correspondingly. Figure 5 illus-
trates a typical workflow involving these components. For
illustration purposes, we consider the previously described
scenario of requesting QoS parameters for a particular flow.
The ROIA developer uses the data structures of the specifica-
tion component to define a QoS policy which is passed to the
administration component. The administration component
packs the QoS policy into a suitable message which is passed
to the communication component that serializes the message
and transmits it to the SDN Controller.

In the following, we explain the work of the three com-
ponents of the SDN Module in more detail:

1. The specification component offers data structures and
functions which are used by the ROIA developer to formulate
network requirements. A QoS policy comprises several QoS
parameters which apply to specified flows. QoS parameters
may have a timeout, after which the SDN Controller does
not have to monitor and accommodate the corresponding
requirements any more. A QoS policy may contain each
parameter type only once. All QoS parameters of a policy are
applied to every flow specified in the QoS policy. Therefore,
if different requirements have to be met for various flows,
this has to be expressed by several QoS policies. In the
SDN Module, a flow is uniquely defined by the sender’s and

2QoS

QoS
request
creation

Specification
Component

Administration
Component

Communication
Component

1QoS

QoS
network

requirement 3
110010
101010
010101

REST-based
transfer to

SDN ControllerQoS

Fig. 5. A typical workflow between the components of the SDN Module.

receiver’s IP address and port, as well as an optional flow
label.

2. The administration component contains the key func-
tions of the SDN Module. Using these functions, the ROIA
developer can transmit QoS policies to the SDN Controller
or cancel requirements of QoS policies that have already
been transmitted to the controller. The administration com-
ponent, transparently for the user, packs the QoS policies into
messages and passes them to the communication component,
while bookkeeping is made for requested, rejected, granted
and active QoS policies. This way, the ROIA developer
can inquire the SDN Module for the current status of
QoS policies without having to contact the SDN Controller
(which would take a comparatively long time). Also, the
administration component is connected to RTF that provides
the ROIA monitoring statistics on the number of events,
clients, state synchronizations, etc. By using these statistics,
the administration component can translate application-level
metrics into network-level metrics before passing QoS poli-
cies to the communication component.

3. The communication component coordinates the connec-
tion and communication between the application and the
SDN Controller. The ROIA developer never works with
this component; it performs its tasks in the background,
transparently for the user. One of these tasks consists in
serializing and sending messages to the SDN Controller,
without blocking the SDN Module. We use a REST-based
API implementation [8] to separate the communication from
the specific implementation language of the ROIA API and
the controller side (e.g., C++ or Java). The fact that REST can
use HTTP as transport protocol makes it easy to implement
and adapt if some changes in the specification of the API
are needed.

V. TESTS AND EVALUATION

In order to evaluate our implementation of the Northbound
API by the SDN Module, we conduct several tests which
show how the network requirements specified by the ROIA
developer using the SDN module are monitored and accom-
modated by the SDN Controller.

Figure 6 shows our test network topology built using the
Mininet simulation system [9]. With Mininet, even complex
networks with thousands of hosts and switches can be tested
without having to assemble a physical network. Our virtual
topology consists of six hosts named h1 to h6 and three
software switches on the basis of Open vSwitch: s1, s2
and s3. The hosts h1 to h5 are connected to switch s1,
whereas h6 is connected to s2. The throughput of the
connection between s1 and s2 is set to be limited to 10
Mbit/s, while the throughput of the connections between s1
and s3, as well as between s2 and s3, amounts to maximum
20 Mbit/s.

The virtual network is controlled by our prototype imple-
mentation of the SDN Controller which monitors the network
utilization and attempts to adapt the network in order to
accommodate specified QoS requirements. The controller ini-
tially configures the network, such that the switches forward
data packets on the shortest path to destination, i.e., packets
sent from hosts h1 ... h5 to h6 are forwarded via the direct
connection between s1 and s2, which is shown in Figure 6.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

h6

SDN Controller

Network

20 Mbit/s
10 Mbit/s

20 Mbit/s

s1 s2

s3

h1

h5

...

QoS
QoS

QoS_Policy_
1 & 2

Fig. 6. Test network topology for the evaluation of the SDN Module.

Our test scenario refers to the use case shown in Figure 4.
The host h6 can be considered as a virtual machine running
a ROIA process which is accessed by ROIA clients running
on h1 to h5. During the test, h6 issues two QoS policies for
its communication with h1 and h2, named QoS Policy 1
and QoS Policy 2, respectively. Both policies specify a
minimum throughput of 5 Mbit/s for all data sent to h6
by the corresponding host. In order to send the data and
measure the actual throughput, we use the Iperf tool [10]
which continuously sends randomly created data to a given
receiver and calculates the achieved throughput. Our test is
divided into eight measurement intervals, each of 50 seconds,
where the actual throughput is recorded five times every ten
seconds.

At the beginning of interval 1, the QoS Policy 1 is issued,
and h1 starts sending data to h6. At the beginning of each
next interval, the hosts h2 to h5, in turn, also start sending
data to h6, such that, from interval 5 on, all five host
are sending data to h6 simultaneously. This increasing load
is expected to reduce the maximum throughput available
to each host. The goal of this test is to show that the
controller reacts to this situation and attempts to fulfill the
requirements of QoS Policy 1, e.g., by redirecting packets
from h1 to h6 via s3. We also test what happens if the
controller cannot fulfill the specified requirements. For this
purpose, after the 5th interval, additional QoS Policy 2 is
issued to the controller. At the beginning of interval 8, the
connection between switches s1 and s3 is externally limited
to 10 Mbit/s to simulate a higher utilization of this route,
which is expected to lead to the rejection of QoS Policy 2
by the controller.

Figure 7 depicts the measurement results for the described
test scenario. The bars represent the average throughput per
host in a measurement interval of 50 sec. In addition to the
bars for the average values, the curve in Figure 7 illustrates
the single measured values for the throughput of h1.

The results of intervals 1 to 5 show that the throughput
between h1 and h6 gradually decreases as expected when
the number of senders increases, because the connection
between s1 and s2 is limited to 10 Mbit/s. All hosts share this
available throughput, such that when h4 starts sending data
to h6 in interval 4, the throughput of h1 falls below 5 Mbit/s,
which is a violation of QoS Policy 1. After monitoring this,
the controller changes the route of the packets which are
sent from h1 to h6: it adds new rules to the flow tables of
the switches s1, s2 and s3 to redirect the packets via s3.
Subsequently, the measured values show an abrupt increase
of the throughput of h1 to over 19 Mbit/s. The remaining
hosts continue to share the available throughput of the
connection between s1 and s2. Due to this adaptation of the
network through the controller, the cumulative throughput
increases to almost 30 Mbit/s starting from interval 4.

In interval 5, we observe that the measured average
throughput between h2 and h6 is 2,15 Mbit/s, i.e., below
the specified minimum requirement of QoS Policy 2 is-
sued at interval 6. In order to fulfill the requirement of
QoS Policy 2, the controller redirects all packets sent by h2
to h6 via switch s3. Therefore, starting from interval 6,
both h1 and h2 send data to h6 via s3, i.e., they share
the available throughput of this route which is limited
to 20 Mbit/s. We observe that the measured throughput
between h2 and h6 increases to 6,67 Mbit/s, i.e., the re-
quirements of both QoS policies become fulfilled. At the
beginning of interval 8, the results show that the throughput
of h1 falls to 4,51 Mbit/s which is caused by the exter-
nal limitation of the connection between s1 and s3. The
controller cannot fulfill both QoS policies simultaneously
anymore. Therefore, the controller rejects QoS Policy 2 and
takes back the adaptation made earlier on the network.
Thus, packets from h2 to h6 are sent again via the original
connection between switches s1 and s2, and QoS Policy 1
is again fulfilled.

1 2 3 4 5

Measurement interval

9,83

6,42

5,57

15,4

18,9

3,31

2,52

3,44

2,15
1,68 1,85

2,44

3,56

2,18

2,86

0

2

4

6

8

10

12

14

16

18

20

h3

h2 h5

h4h1

A
ch

ie
ve

d
th

ro
ug

hp
ut

 (M
bi

t/
s)

QoS_Policy_1
violation:

4,97 Mbit/s

12,7

9,82

8,08

6,67

9,11

2,70

4,41

3,52

2,192,33
2,98

2,53
3,01 3,18

2,20

6 7 8

QoS_Policy_1
violation:

4,51 Mbit/s

QoS_Policy_1
issued

QoS_Policy_2
issued

Throughput between
s1 and s3 limited

Fig. 7. Results of the functional test of the SDN Module.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

VI. CONCLUSION AND RELATED WORK

This work is motivated by challenging ROIA applications
which make dynamic demands on the network, while the
state-of-the-art possibilities of influencing the network QoS
are mostly static.

Our contribution is a Northbound API for SDN net-
works which allows the ROIA developers to specify their
requirements on the network and communicates correspond-
ing requests to the network controller. This offers a new
approach for addressing the dynamic QoS demands of ROIA.
We designed and implemented the SDN Controller and the
SDN Module that cooperate on monitoring and accommo-
dating QoS by adapting an OpenFlow-enabled network.

Within the SDN community, there have been recent ac-
tivities towards creating and standardizing a Northbound
API. Early implementations like Floodlight’s REST-based
Northbound API [11] and the Nicira Network Virtualiza-
tion (NVP) Platform API [12] handle basic functionalities,
such as discovering the network topology, static rule pro-
gramming, and running virtual networks on top of a network
infrastructure. Most of these approaches are relatively new
and yet few applications use them. Moreover, they still
require a detailed knowledge of networking details from the
application developer and provide no means for specifying
QoS requirements beyond traditional, static techniques like
resource reservation with RSVP. Our focus in this paper is
on designing an SDN Northbound API for controlling QoS
in ROIA with respect to their dynamic network demands.
Additionally, the envisaged API provides a higher abstraction
of QoS by taking ROIA-specific metrics into account and,
therefore, liberates the application developer from specifying
low-level network metrics.

By using the SDN Module, the application developer
can exploit the advantages of SDN without having detailed
knowledge of network infrastructure and protocols and,
therefore, can focus on the application design. The trans-
parent translation of application-level metrics into network
metrics by the SDN Module provides a more convenient
QoS mechanism for the developer than the current SDN
approaches. For instance, SDN controllers like Floodlight or
NOX [13] provide a Northbound API for manipulating the
forwarding behaviour of the network, but addressing dynamic
or reactive QoS demands requires direct programming of the
corresponding controller. Other approaches like the Nicira
NVP API focus on the virtualization or slicing of networks.
From the perspective of ROIA, these virtualized networks
behave like traditional networks which provide only static
techniques for QoS or cause a significant administrative
overhead.

The first evaluation of our Northbound API shows that the
requirements on the network specified using the SDN Mod-
ule can be monitored and accommodated by the SDN Con-
troller, leading to a higher and more predictable QoS for
ROIA.

ACKNOWLEDGEMENTS

The authors would like to thank Folker Schamel and
Michael Franke from Spinor and Eduard Escalona and Iris
Bueno from i2Cat for valuable discussions and sharing
their expertise on the design of ROIA and networks. Our

research has received funding from the ECs 7th Framework
Programme under grant agreements 318665 (OFERTIE) and
295222 (MONICA).

REFERENCES

[1] S. Vegesna, IP Quality of Service. Cisco Press, 2001.
[2] O. N. Foundation, “Software-Defined Networking: The New Norm for

Networks,” 2012.
[3] M. Joselli, M. Zamith, E. Clua, R. Leal-Toledo, A. Montenegro,

L. Valente, B. Feijo, and P. Pagliosa, “An Architeture with Automatic
Load Balancing for Real-Time Simulation and Visualization Systems,”
Journal of Computational Interdisciplinary Sciences, vol. 1, no. 3, pp.
207–224, 2010.

[4] L. Valente, A. Conci, and B. Feijó, “Real Time Game Loop Models
for Single-Player Computer Games,” Proc. IV Brazilian Symp. on
Computer Games and Digital Entertainment, 2005.

[5] F. Glinka, A. Ploss, S. Gorlatch, and J. Mller-Iden, “High-Level
Development of Multiserver Online Games,” International Journal of
Computer Games Technology, 2008.

[6] A. Kumar, J. Etheredge, and A. Boudreaux, Algorithmic and Architec-
tural Gaming Design: Implementation and Development. IGI Global,
2012.

[7] J. Ferris, M. Surridge, E. Watkins, T. Fahringer, R. Prodan, F. Glinka,
S. Gorlatch, C. Anthes, A. Arragon, C. Rawlings, and A. Lipaj,
“Edutain@grid: A business grid infrastructure for real-time on-line
interactive applications,” in Grid Economics and Business Models,
ser. Lecture Notes in Computer Science, J. Altmann, D. Neumann,
and T. Fahringer, Eds. Springer Berlin Heidelberg, 2008, vol. 5206,
pp. 152–162.

[8] R. T. Fielding and R. N. Taylor, “Principled design of the modern
web architecture,” ACM Trans. Internet Technol., vol. 2, no. 2, pp.
115–150, May 2002.

[9] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-
IX. New York, NY, USA: ACM, 2010, pp. 19:1–19:6.

[10] “Iperf. http://iperf.sourceforge.net,” 2013.
[11] “Floodlight OpenFlow Controller.

http://www.projectfloodlight.org/floodlight,”
2013.

[12] Nicira, “Network Virtualization Platform (NVP) White Paper,” 2013.
[13] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “NOX: Towards an Operating System for Networks,” ACM
SIGCOMM Computer Communication Review, pp. 105–110, 2008.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

