
An Algorithm for Enumerating All Maximal Tree
Patterns Without Duplication Using Succinct Data

Structure
Yuko ITOKAWA, Tomoyuki UCHIDA and Motoki SANO

Abstract—In order to extract structured features from big
tree-structured data, a fast and memory-efficient tree mining
algorithm is needed. In this paper, we propose an efficient
algorithm, given a set S of ordered trees as input, to enumerate
all maximal ordered tree patterns explaining all ordered trees
in S without duplication. The enumeration algorithm uses a
depth-first unary degree sequence (DFUDS), which is a succinct
data structure for an ordered tree, as a succinct data structure
for ordered tree patterns that express structured features of a
tree structure. We also implement the proposed algorithm on
a computer and evaluate the algorithm by experiments. The
results are reported and discussed.

Index Terms—tree-mining algorithm, enumeration of tree
patterns, succinct data structure, tree-structured data

I. INTRODUCTION

Web documents consist of HTML/XML data and other
tree-structured data, such as TEX sources, natural languages
and so on, whose structure is not entirely clear is referred
to as tree-structured data. Tree-structured data can be repre-
sented by an ordered tree. To extract useful information from
tree-structured data, it is necessary to extract tree patterns
that are common to tree-structured data. To design efficient
tree mining tools for big tree-structured data, the following
fast and memory-efficient algorithms are necessary to be
efficient. One is a pattern matching algorithm for determining
whether or not given tree-structured data has structured
features represented by a given tree pattern. Another is an
algorithm for extracting common structured features to given
tree structured data. To reduce the memory required to store
an ordered tree, succinct data structures for ordered trees
have been proposed [1], [2], [3], [5], [7], [8], [10]. D. Benoit
et al. proposed a depth-first unary degree sequence (DFUDS)
representation [1] as a succinct data structure for an ordered
tree. The DFUDS representation uses a string of parentheses
constructed by a depth-first traversal of all nodes in which, if
the index of a node is k, the k-th (and its subsequent) are

output. By taking (to be ‘0’ and) to be ‘1’, the ordered
tree representation can be handled as a bit string. As previous
work [6], we proposed a term tree pattern as a tree pattern
which can represent structured features common to tree-
structured data. We also defined a DFUDS representation for
a term tree pattern based on a DFUDS representation of an
ordered tree [6]. In Fig. 1, we give term tree pattern t and

Y. Itokawa is with Faculty of Psychological Science, Hiroshima Interna-
tional University. 555-36 Kurose-Gakuendai, Higashi-Hiroshima, Hiroshima
Japan e-mail: y-itoka@he.hirokoku-u.ac.jp

T. Uchida and M. Sano are with Department of Intelligent Systems,
Hiroshima City University. Hiroshima, Japan, email: uchida@hiroshima-
cu.ac.jp

x

ya

b

0

1 4

2 3

v

v

b

u

u

u

b

a

G1 G2

z

y

x

a

t s

a

bb

b

a

a

a

a

b b a

a

b

b

a

a

T1 T2 T3

Fig. 1. Term tree patterns t, s, ordered trees G1, G2, T1, T2, T3

(((# ((a x b y

10 2 3 4

Fig. 2. DFUDS representation of the term tree pattern t given in Fig. 1.
The indexes under DFUDS representation show node IDs.

s as examples. Moreover, in Fig. 2, we show the DFUDS
representation of the term tree pattern t as an example.

If an ordered tree T is obtained from a term tree pattern
t by substituting all structured variables in a given term tree
pattern with arbitrary ordered trees, t is said to match with
T . In [6], we proposed a fast pattern matching algorithm for
determining whether or not a given ordered tree matches with
a given term tree pattern, using DFUDS as a data structure.
For example, in Fig. 1, we can see that the ordered tree T1

matches the term tree pattern t, since T1 can be obtained
from t by substituting variables x and y with ordered trees
G1 and G2, respectively. For a term tree pattern t, the set
of all ordered trees which match with t is denoted by L(t).
When a set S of term tree patterns is given, if there exists
no term tree pattern s such that S ⊆ L(s) ⊆ L(t) holds,
t is said to be maximal with respect to S. For example, in
Fig. 1, the term tree pattern s isn’t maximal with respect
to the set S = {T1, T2, T3} of ordered trees T1, T2, T3.
On the other hand, the term tree pattern t is maximal with
respect to S. The aim of this paper is to present fast and
memory-efficient algorithms for enumerating all maximal
term tree patterns which can represent all ordered trees in a
given set of ordered trees. As related works, Miyahara et al.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

[9] presented the algorithm GEN-MFOTTP for generating
all maximal ordered tag tree patterns that can represent
structured features common to a given set of ordered trees.
A tag tree pattern is a variant of a term tree pattern treated
in this paper. GEN-MFOTTP employs the pattern matching
algorithm for tag tree patterns presented by Suzuki et al. [12].
We already showed in [6] that Itokawa’s pattern matching
algorithm is faster than Suzuki’s algorithm. In this paper, we
show that a proposed algorithm in this paper is faster than
GEN-MFOTTP.

This paper is organized as follows. In section II-A, we
introduce a term tree pattern which represents the structured
features of ordered trees. In section II-B, we describe the
DFUDS representation for ordered term tree patterns pro-
posed by Itokawa et al. [6]. In section III, we formulate
a problem for enumerating all maximal term tree patterns
whose languages contain a given set of edge-labeled trees as
a subset and propose an enumeration algorithm for solving
it. In section IV, the proposed enumeration algorithm is
implemented on a computer. The test results for the imple-
mentation are reported and discussed. Section V concludes
the paper.

II. PRELIMINARIES

A. Term Tree Patterns

Let Σ and χ denote finite alphabets with Σ ∩ χ = ∅.
Elements of Σ and χ are called a edge label and a variable
label, respectively. Let Vt be a set of nodes and Et ⊆ Vt ×
(Σ∪χ)×Vt a set of edges. An edge labeled with a variable
label is particularly called a variable. For an variable e =
(u, x, v), u and v are called a parent port and a child port
of e, respectively. t = (Vt, Et) is called an edge-labeled
ordered term tree pattern or simply term tree pattern if t
has only one node u whose coming degree is 0, (Vt, {{u, v} |
(u, a, v) ∈ Et} is a rooted tree having u as its root and any
its internal nodes have ordered children. In this paper, we
deal with term tree patterns having all mutually different
variables. OTTP denotes the set of all term tree patterns
having all mutually different variables. A term tree pattern
having no variables is simply a tree. The set of all trees
is denoted by OT . The last leaf of a term tree pattern t in
preorder is called a rightmost leaf of t. Moreover, the path
from the rightmost leaf to the root is called a rightmost path
of t.

For two children u′ and u′′ of a node u of a term tree
pattern h, u′ <h

u u′′ denotes that in the ordering of the
children of u, u′ is lower than u′′. For term tree patterns
t = (Vt, Et) and f = (Vf , Ef), if a bijection π : Vt → Vf

that satisfies the following conditions (1)-(3) exists, then t
and f are isomorphic, denoted by t ∼= f .
(1) For any a ∈ Σ, (u, a, v) ∈ Et if and only if

(π(u), a, π(v)) ∈ Ef .
(2) There is x ∈ χ so that (u, x, v) ∈ Et, if and only if

there is y ∈ χ so that (π(u), y, π(v)) ∈ Ef .
(3) For a node u of t and two children u′ and u′′ of u,

u′ <t
u u′′ if and only if π(u′) <f

π(u) π(u
′′).

For a variable label x ∈ χ and a tree g having r as its root
and ℓ as its leaf, the form x := [g, (r, l)] is called a binding
of x and a finite set of bindings is called a substitution. Let
g = (Vg, Eg) be a term tree pattern having variables labeled

with x0, x1, . . . , xn and θ = {x0 := [g0, (r0, ℓ0)], . . . , xn :=
[gn, (rn, ℓn)]} a substitution. A new term tree pattern f can
be obtained from g and θ by applying θ to g in the following
way. f is obtained by, for each 0 ≤ i ≤ n, identifying the
parent port of the variable having the variable label xi with
ri and identifying the child port with ℓi, and by removing
the variable labeled with xi. The resultant term tree pattern
f is denoted by gθ. For example, in Fig. 1, we can see that
the tree T1 is obtained the term tree pattern t by applying the
substitution θ = {x := [G1, (v1, v2)], y := [G2, (u1, u3)]} to
t, that is, T1

∼= tθ.
We have the following lemma.

LEMMA 1: Let t and s be term tree patterns such that
t ̸∼= s holds. Then, L(t) ⊂ L(s) if and only if there exists a
substitution θ such that t ∼= sθ holds.

For a term tree pattern t, the set, denoted by L(t), of trees
obtained from t by substituting all of variables in t with
appropriate trees, that is, L(t) = {T ∈ OT | ∃θ s.t. T ∼=
tθ}. For a set of trees S and a term tree pattern t in OTTP ,
the language L(t) of t is said to be minimal with respect to
S if there exists no term tree pattern s in OTTP such that
S ⊆ L(s) ⊆ L(t) holds. Such a term tree pattern t is said
to be maximal with respect to S. For example, in Fig. 1,
the term tree pattern s isn’t maximal with respect to the set
S = {T1, T2, T3} because of S ⊂ L(t) ⊂ L(s). On the
other hand, we can see that t is maximal with respect to S,
that is, L(t) is minimal with respect to S.

B. Succinct Data Structures for Term Tree Patterns

We explain the basic data structure for dealing with a
term tree pattern. In this paper, a word RAM with a word
length of Θ(log n) bits is used as the computation model.
[1] proposed the depth-first unary degree sequence (DFUDS)
representation, which is a succinct data structure for ordered
trees. The DFUDS representation for an ordered tree t of m
edges is defined inductively as follows. The DFUDS repre-
sentation of the tree consisting only one node is () . The
DFUDS representation of a t that has k subtrees t1, . . . , tk is
a sequence of parentheses constructed by concatenating k+1
(, one) , k DFUDS representations of t1, . . . , and tk in

this order (here, the initial (of the DFUDS representation of
each subtree has been removed). The DFUDS representation
is a sequence of balanced parentheses of length 2m.

The DFUDS representation proposed by [1] is a data
structure for an ordered tree with no edge labels. In the
DFUDS representation of [1],) must occupy the rightmost
position for each node. Therefore, a hash function that returns
the edge label that corresponds to that node for each)
makes a DFUDS representation of a tree possible. DFUDS
representation for the term tree pattern t is shown in Fig. 2.
For convenience in this example, a hash function that returns
the edge labels that correspond to all of the) has been
executed. For a term tree pattern t, the length of DFUDS
representation of t is denoted by ∥t∥.

The sequence of parentheses that is a DFUDS representa-
tion can be interpreted as the result of visiting all nodes in
preorder and outputting k (for each node whose index is k

the following one) . Hence, the following lemma obviously
holds.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

LEMMA 2: ([6]) Given a term tree pattern t of m edges,
the edge-labeled DFUDS representation for t can be com-
puted in O(m) time.

In [6], we presented an efficient algorithm for determining
whether or not, for a given term tree pattern t ∈ OTTP , the
language L(t) of t contains a given tree T ∈ OT . We showed
the following lemma.

LEMMA 3: ([6]) When an ordered tree T and a term tree
pattern t are given, we can determine whether or not T match
with t in O(∥T∥ × ∥t∥) time.

III. ENUMERATION ALGORITHM FOR TERM TREE
PATTERNS

In this section, we present an efficient algorithm for
enumerating all of term tree patterns whose languages are
minimal among term tree languages including a given set
of ordered trees. We consider the following Enumerating
Maximal TTPs Problem in this paper.

Enumerating Maximal TTPs Problem
Instance: Set of trees S
Question: Enumerate all term tree patterns whose

languages include S.

In Algorithm 1, we give an efficient algorithm ENUMER-
ATIONMAXIMALTTPS for solving Enumerating Maximal
TTPs problem for a given set of trees. ENUMERATIONMAX-
IMALTTPS consists of three procedures, ENUMTREEPAT-
TERNS, EDGESUBSTS and MAXCHECKS . Given a set of
trees S, the first procedure ENUMTREEPATTERNS, presented
in Procedure 2, enumerates all term tree patterns having
no edges each of whose language contains S as a subset.
ENUMTREEPATTERNS is an enumeration algorithm based
on level-wise strategy in a similar way to the algorithm for
enumerating ordered trees without duplication presented by
Nakano [11]. ENUMTREEPATTERNSemploys a procedure,
denoted by RightmostExpansion, which creates new term
tree patterns obtained from a given term tree pattern t by
attaching new one variable to each node in the rightmost path
of t. Fig.3 explains about a detail of RightmostExpansion.
For each variable (v2, x, v1) in the rightmost path of a term
tree pattern g with k nodes, we add a node up such that
v1 <g

v2
up to g by connecting a variable (v2, x, up). Then

we can obtain a new term tree pattern g1 with k + 1 nodes.
For the rightmost leaf vl of g, we add a node us to g by
attaching a variable (vl, x, us), and we can obtain a new
term tree pattern g2 with k+1 nodes. Given a set E of term
tree patterns created by ENUMTREEPATTERNS, the second
procedure EDGESUBSTS , presented in Procedure 3, creates
new term tree patterns obtained from term tree patterns in E
by replacing variables with edges labeled with elements in Σ.
Given a set D of term tree patterns created by EDGESUBSTS ,
MAXCHECKS presented in Procedure 4, select all maximal
term tree patterns with respect to S in D by checking for
each term tree pattern t ∈ D whether or not there exists a
term tree pattern s in D such that L(s) ⊆ L(t) holds. For
a term tree pattern s ∈ D, let s∗ be a tree which is created
from s by replacing all variables in s with an edge label
e /∈ Λ. For a term tree pattern t ∈ D, if s∗ matches to t,
then L(s) ⊆ L(t), that is, we can determine that t is not a
maximal term tree pattern.

g g1 g2

Fig. 3. Rightmost Expansion from g to g1 and g2

Algorithm 1 ENUMERATIONMAXIMALTTPS

Require: set of trees S
Ensure: set of maximal term tree patterns R whose lan-

guages contain S as a subset.
1: E ← ENUMTREEPATTERNS(S)
2: D ← EDGESUBSTS(E)
3: R←MAXCHECKS(D)
4: return R

In ENUMERATIONMAXIMALTTPS, we use a tree struc-
ture, called an enumeration tree, to manage enumerated
term tree patterns. The initial term tree pattern created in
line 1 of ENUMTREEPATTERNS is stored in the root of the
enumeration tree. Let p be a term tree pattern created from
a term tree pattern t in the procedure RightmostExpansion
of line 6 in ENUMTREEPATTERNS or in EDGESUBSTS .
Then, in the constructed enumeration tree in ENUMERA-
TIONMAXIMALTTPS, p is stored in a child of the node
storing t if L(t) ⊇ S holds. Using this data structure, we can
restrict an input set of term tree patterns of MAXCHECKS to
the set of all leaves of the enumeration tree constructed
at the end of ENUMTREEPATTERNS. For example, given
the set S = {T1, T2, T3} of ordered trees T1, T2, T3

in Fig. 1, ENUMERATIONMAXIMALTTPS constructs the
enumeration tree in Fig. 4 at the end of ENUMTREEPAT-
TERNS . Moreover, in Fig. 5, we show the descendant of
the node storing the term tree pattern g5 in the constructed
enumeration tree at the end of EDGESUBSTS . In Figs 4 and
5, the × mark (cross) on a term tree pattern shows that its
language doesn’t contain the set S as a subset. In Fig. 6, we
show the enumeration tree each of whose nodes has DFUDS
representation of the assigned term tree pattern. When a
term tree pattern t is generated from a term tree pattern s
by the procedure RightmostExpansion, we can see that the
DFUDS representation of t can be made by inserting (at
appropriate index and appending the variable label at the end
of the DFUDS representation of s. For example, in Fig. 6,
we can see that the DFUDS representation ’(((#((xxxx’ of
the term tree pattern g10 can be obtained from the DFUDS
representation ’((#((xxx’ of the term tree pattern g4 by
inserting (at the index 2 and appending ’x’ at the end of
’((#((xxx’. Moreover, when a term tree pattern t is generated
from a term tree pattern s by the procedure EDGESUBSTS ,
we can see that the DFUDS representation of t can be
made by replacing the variable label at appropriate index
of the DFUDS representation of s with an edge label. For
example, in Fig. 6, we can see that the DFUDS representation
’(((#(axx’ of the term tree pattern g5,0 can be obtained from

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Procedure 2 ENUMTREEPATTERNS
Require: set of trees S
Ensure: set E of all term tree patterns whose languages

contain S as a subset
1: Let p be the term tree pattern consisting of only one

variable
2: F ← {p}, E ← ∅
3: while F is not empty do
4: C ← ∅, D ← ∅
5: for all t ∈ F do
6: C ← RightmostExpansion(t)
7: for all f ∈ C do
8: if L(f) ⊇ S then
9: E ← E ∪ {f}, D ← D ∪ {f}

10: end if
11: end for
12: end for
13: F ← D
14: end while
15: return E

Procedure 3 EDGESUBSTS

Require: set of term tree patterns E created in
ENUMTREEPATTERNS

Ensure: set D of all term tree patterns whose languages
contain S as a subset

1: D ← E
2: for all t ∈ E do
3: U ← {(t, 0)}
4: while U ̸= ∅ do
5: for all (s, pos) ∈ U do
6: U ← U − {(s, pos)}
7: for all variable e in s appeared after index pos

do
8: for all edge label a ∈ Σ do
9: create a new term tree pattern p by replacing

e with the edge labeled with a
10: if L(p) ⊇ S then
11: D ← D ∪ {p}
12: end if
13: let pose be the appeared index of e in

DFUDS representation of s
14: if there are variables in e appeared after

pose + 1 then
15: U ← U ∪ {(p, pose + 1)}
16: end if
17: end for
18: end for
19: end for
20: end while
21: end for
22: return D

the DFUDS representation ’(((#(xxx’ of the term tree pattern
g5 by replacing the variable at the index 5 of the DFUDS
representation ’(((#((xxx’ of the term tree pattern g5 with
the edge label ’a’. Therefore, by assigning an integer i or
an pair (j, a), instead of a term tree pattern, to a node of
the constructed enumeration tree, where i indicates the index

Procedure 4 MAXCHECKS

Require: set of term tree patterns D created in
EDGESUBSTS

Ensure: set R of all maximal term tree patterns whose
languages contain S as a subset

1: R← ∅
2: for all t ∈ D do
3: create the new term tree pattern p by replacing all

variables in t with edges labeled with c ̸∈ Σ ∪ χ
4: check ← false
5: for all s ∈ D (t ̸= s) do
6: if p ∈ L(s) then
7: check ← true
8: end if
9: end for

10: if check=false then
11: R← R ∪ {t}
12: end if
13: end for
14: return R

inserting (and j indicates the index replacing variable label
with the edge label a. For example, in Fig. 7, we show the
compact expression corresponding to the enumeration tree
grown by ENUMERATIONMAXIMALTTPS.

From lemmas 1, 2, 3 and the proposed algorithm ENU-
MERATIONMAXIMALTTPS, we have the following theorem.

THEOREM 1: We can enumerate all maximal term tree
patterns with respect to a given set of ordered trees without
duplication in incremental polynomial time.

IV. EXPERIMENT AND DISCUSSION

We report results of evaluate experiments of an algorithm
for generating the enumeration tree. We implemented the
algorithm described in section III on a computer. In this
section, we describe the experimental setup, present the
results.

The algorithm ENUMERATIONMAXIMALTTPS for enu-
merating all maximal term tree patterns of an ordered tree
set S was implemented in C++ on a computer equipped with
a 2.8 GHz Intel Core i7 processor, main memory of 16.00
GB and running the apple OSX 10.8.5 operating system.

Let a, b be an edge label in Σ. We have artificially created
data collections D(n) of one hundred each of edge-labeled
trees in OT Σ that has the edge label a, b, n edges and
maximum degree 5.

For each n ∈ {100, 200, 300, 400, 500, 600, 700, 800}, we
have generated maximal term tree patterns by ENUMERA-
TIONMAXIMALTTPS using data collections D(n) as inputs.
Fig.8 shows the results of numbers of generated all term tree
patterns, numbers of element of generated enumeration tree,
numbers of leaves of generated enumeration tree, and num-
bers of enumerated maximal term tree patterns, respectively.

We compared ENUMERATIONMAXIMALTTPS with
the algorithm GEN-MFOTTP[9]. The algorithm GEN-
MFOTTP is as follows.

1) Generate a set of term tree patterns E by using
ENUMTREEPATTERNS .

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Fig. 4. Enumeration tree at the end of the Procedure ENUMTREEPAT-
TERNS when S in Fig. 1 is given

2) For each variables x in t ∈ E, we execute following
operations:

• Generate a term tree pattern tp by replacing x to
gp of Fig.9. If L(tp) ⊇ S, t is not a maximal term
tree patterns.

• Generate a term tree pattern ts by replacing x to
gs of Fig.9. If L(ts) ⊇ S then t is not a maximal
term tree patterns.

• For l ∈ Λ, let gl be a tree having only one edge
labeled with l (Fig.9). Generate a term tree pattern
tl by replacing x to gl. If L(tl) ⊇ S then t is not
a maximal term tree pattern.

3) t is a maximal term tree patterns.

In this experiment, we have used a DFUDS as data structure
and a matching algorithm proposed by [6] for matching
term tree patterns to trees in GEN-MFOTTP. We have
obtained running times of enumerating all maximal term
tree patterns by ENUMERATIONMAXIMALTTPS and by
GEN-MFOTTP. Those results are shown in Fig.10. An
approximation for ENUMERATIONMAXIMALTTPS is y =
0.36 exp(1.23n), and an approximation for GEN-MFOTTP
is y = 0.58 exp(1.48n).

Notice that the difference between running times of
ENUMERATIONMAXIMALTTPS and GEN-MFOTTP is

g
5

g
5,0

Fig. 5. Descendants of the term tree pattern g5 in constructed enumeration
tree at the end of the procedure EDGESUBSTS when S in Fig. 1 is given

a cost of MAXCHECKS because for ENUMERATION-
MAXIMALTTPS and GEN-MFOTTP, we adopted the
same data structure and matching algorithm. In Fig.10,
by comparing ENUMERATIONMAXIMALTTPSand GEN-
MFOTTP, we can see that the running time is improved.

V. CONCLUSION

We have proposed an effective algorithm enumerating
all maximal term tree patterns whose languages include a
given tree set by employing the efficient matching algorithm
presented in [6] using a succinct data structure, called
DFUDS. Evaluation experiments performed with computer
implementation of the algorithm demonstrated its efficiency.

As applications of this research, we are considering adap-
tation of the DFUDS representation proposed here to succinct
data structures of TTSP graphs based on forest representation
proposed by Miyoshi et al. [5] and the compressed tree
proposed by Kato et al. [4]. Moreover, we are considering
graph mining algorithms for semi-structured data using a
succinct data structure.

REFERENCES

[1] D. Benoit, E. D. Demaine, J. I. Munro, and R. Raman. Representing
trees of higher degree. Algorithmica, 43(4):275–292, 2005.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

Fig. 6. Enumeration tree having DFUDS representations of enumerated
term tree patterns

Fig. 7. Compact expression of constructed enumeration tree

Fig. 8. The results of Numbers of generated all term trees, elements
of generated enumeration tree, leaves of generated enumeration tree and
generated maximal term tree patterns.

[2] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with
applications. SIAM Journal on Computing, 34(4):924–945, 2005.

[3] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal
representation for balanced parentheses. In CPM, pages 159–172,
2004.

[4] Y. Itokawa, K. Katoh, T. Uchida, and T. Shoudai. Algorithm using
Expanded LZ Compression Scheme for Compressing Tree Structured
Data, pages 333–346. Lecture Notes in Electrical Engineering.
Springer, 2010.

[5] Y. Itokawa, J. Miyoshi, M. Wada, and T. Uchida. Succinct represen-
tation of ttsp graphs and its application to the path search problem.
In Sixth IASTED International Conference on Advances in Computer

gs gp gl

Fig. 9. Term trees using for the algorithm GEN-MFOTTP

Fig. 10. Running times of enumeration of maximal term tree patterns by
ENUMERATIONMAXIMALTTPS and GEN-MFOTTP

Science and Engineering, pages 33–40, 2010.
[6] Y. Itokawa, M. Wada, T. Ishii, and T. Uchida. Pattern Matching Al-

gorithm Using a Succinct Data Structure for Tree-Structured Patterns,
pages 349–361. Lecture Notes in Electrical Engineering 110. Springer,
2012.

[7] G. Jacobson. Space-efficient static trees and graphs. In IEEE FOCS,
pages 549–554, 1989.

[8] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation
of ordered trees. In ACM-SIAM SODA 2007, pages 575–584, 2007.

[9] T. Miyahara, Y. Suzuki, T. Shoudai, T. Uchida, K. Takahashi, and
H. Ueda. Discovery of maximally frequent tag tree patterns with
contractible variables from semistructured documents. In PAKDD-
2004, LNAI 3056, pages 133–144. Springer, 2004.

[10] J. I. Munro and V. Raman. Succinct representation of balanced
parentheses and static trees. SIAM Journal on Computing, 31(3):762–
776, 2001.

[11] S. Nakano. Efficient generation of plane trees. Inf. Process. Lett.,
84(3):167–172, 2002.

[12] Y. Suzuki, K. Inomae, T. Shoudai, T. Miyahara, and T. Uchida. A
polynomial time matching algorithm of structured ordered tree patterns
for data mining from semistructured data. In ILP-2002, LNAI 2583,
pages 270–284. Springer, 2003.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

