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Abstract—This article, from an algorithmic point of view,
studies the satisfiability problem SAT restricted to a CNF
fraction MHF whose members consist of a Horn formula and a
2-CNF part. In general SAT is NP-complete for such formulas.
We consider various structurally defined subclasses of MHF,
for which SAT can be solved in polynomial time. The instances
defined here are required to have a linear, or even exact-linear
Horn part. Moreover, the 2-CNF part is required to be of
specific graph structure, e.g., disjoint edges or disjoint triangles.
Further poly-time classes are presented, for which the Horn
part is not forced to be linear.

Index Terms—propositional satisfiability, Mixed Horn for-
mula, linear formula, polynomial-time algorithm

I. INTRODUCTION

The propositional satisfiability problem (SAT) of con-
junctive normal form (CNF) formulas is an essential com-
binatorial problem, namely one of the first problems that
have been proven to be NP-complete [4]. More precisely,
it is the natural NP-complete problem and thus lies at the
heart of computational complexity theory. Moreover SAT
plays a fundamental role in the theory of designing exact
algorithms, and it has a wide range of applications because
many problems can be encoded as a SAT problem via
reduction [9], [7] due to the rich expressiveness of the
CNF language. The applicational area is pushed by the fact
that meanwhile several powerful solvers for SAT have been
developed (cf. e.g. [11], [19] and references therein). Also
from a theoretical point of view one is interested in classes
for which SAT can be solved in polynomial time. There
are known several subclasses of CNF retricted to which
SAT behaves polynomial-time solvable, so for instance 2-
CNF-SAT, where clauses have length at most two [1], and
Horn-SAT [12], confer also [17]. Furthermore SAT has been
investigated for several variants of Horn formulas [2], [3].
Combining a Horn and a 2-CNF formula yields a mixed
Horn formula (MHF) according to [15]. For the unrestricted
class MHF and also for several of its subclasses SAT is NP-
complete [15], [14], [13]. In this context it turns out that
reducing numerous combinatorial NP-complete problems to
SAT, formulas in MHF are generated quite immediately. This
holds true for many prominent NP-complete problems [5]
like Feedback Vertex Set, Vertex Cover, Dominating Set,
Hitting Set etc. [14], [18], [20]. Therefore it is worthwhile to
design good exact algorithms for solving unrestricted MHF
formulas. On the other hand, one is interested to isolate
subclasses of MHF which are polynomial-time solvable
w.r.t. SAT. In this paper we define several subclasses of
MHF for which SAT is efficiently decidable, or is trivial
in the sense that its members all are either satisfiable or
unsatisfiable. The Horn part is required to consist of negative
clauses only. Furthermore clauses are allowed to overlap
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only sparsely. More precisely, we require linear, exact-linear
or even pairwise disjoint Horn clauses. Also the positive
monotone 2-CNF part of MHF’s is restricted in such a way
that its formula graph consists of disjoint edges, respectively,
disjoint triangles, only. However, in case that there are no
further restrictions on the linear or even exact-linear Horn
part, then SAT remains NP-complete as we shall prove also.
Further poly-time classes are presented, for which the Horn
part is not forced to be linear, but is closely related to the
number of triangles in the 2-CNF part of the instances.

II. NOTATION AND PRELIMINARIES

Let CNF denote the set of formulas (free of duplicate
clauses) in conjunctive normal form over propositional vari-
ables x ∈ {0, 1}. A positive (negative) literal is a (negated)
variable. A clause c is a disjunction of different literals, and
is represented as a set c = {l1, . . . , l|c|}. Each formula C ∈
CNF is considered as a set of its clauses C = {c1, . . . , c|C|}
having in mind that it is a conjunction of these clauses.
The negation (or complement) of a literal l is l. Throughout
we assume that clauses are free of pairs of complemented
literals, like x, x. For formula C, clause c, by V (C), V (c)
we denote the variables contained (neglecting negations),
correspondingly. Given x ∈ V (c), by l(x) we denote the
literal over x that is contained in c. Let ‖C‖ denote the
number of literals in C, i.e., its length, whereas |C| is the
size of formula C. A positive (negative) clause consists of
positive (negative) clauses only. Furthermore, CNF+ denotes
the set of monotone formulas, i.e., every clause is positive.
As usual k-CNF denotes the subclass of CNF, where each
member clause has length at most k, for fixed integer k ≥ 2.
Moreover a formula C is called k-uniform if |c| = k, for
all clauses c ∈ C. A clause of size k is sometimes called a
k-clause.

The satisfiability problem (SAT) asks, whether input C ∈
CNF has a model, which is a truth value assignment t :
V (C) → {0, 1} assigning at least one literal in each clause
of C to 1. Let UNSAT denote the set of all unsatisfiable
members of CNF, and let SAT denote the set of all satisfi-
able members of CNF. By convention, we have ∅ ∈ SAT,
i.e., the empty clause set is satisfiable.

Recall that clauses of a Horn formula are allowed to
contain at most one positive literal. Because all 2-clauses
which are not positive monotone are Horn, every formula
M ∈ MHF has the unique clause-set representation M =
H ∪ P , where P is the collection of all positive monotone
2-clauses in M and H is the remaining Horn subformula.
Throughout the paper, we restrict all Horn parts H of a mixed
Horn formula to contain exclusively negative clauses, unless
stated otherwise. Whenever k-uniformity of the Horn part is
required, we indicate that by adding a (= k)-prefix to the
notation.

A CNF formula C is called linear if for all c1, c2 ∈ C :
c1 6= c2 we have |V (c1) ∩ V (c2)| ≤ 1. C is called exact-
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linear if for all c1, c2 ∈ C : c1 6= c2 we have |V (c1) ∩
V (c2)| = 1. So, linear MHF’s are denoted as LMHF whereas
exact-linear ones are collected in XLMHF, similarly we write
LCNF for the set of unrestricted linear formulas.

For a monotone formula P we can construct its formula
graph GP with vertex set V (P ) in linear time. Two vertices
are joined by an edge iff there is a clause in P containing
the corresponding variables. Recall that a vertex cover U
of a graph is a subset of its vertex set such that each edge
containa at least one vertex of U . As usual, a vertex cover is
called minimal if it contains no proper vertex cover, i.e., if it
is minimal w.r.t. inclusion [6]. We shall use further notation
for restricting the structure of GP , for the component P in
M = H ∪P . If GP consists of disjoint edges only, we shall
add an upper index d to the formula class notation, and an
upper index 4, if GP consists of disjoint triangles only. So
(= k)-LMHFd, for example, denotes the class of all MHF’s
with k-uniform linear Horn part and whose P component
has pairwise disjoint clauses.

III. MIXED HORN FORMULAS WITH LINEAR HORN PART

At first we consider the class (= k)-LMHFd ⊂ MHF
which turns out to be NP-complete for SAT. Here, P ∈
CNF+ also is a specific linear formula in which each variable
occurs exactly once. Recall that P always is 2-uniform by
construction.

Theorem 1: SAT is NP-complete restricted to (= k)-
LMHFd.
PROOF. SAT restricted to the set (= k)-LCNF of k-uniform
linear formulas is NP-complete according to [16]. Providing
a polynomial-time reduction from this class to (= k)-
LMHFd enables us to establish the assertion. Therefore,
let C ∈ (= k)-LCNF be chosen arbitrarily. Every variable
x ∈ V (C) occurring positively in C is replaced by yx where
yx is a new variable. Moreover the clause {x, yx} is added.
Let M = H ∪ P ∈ MHF be the resulting formula, where
H consists of k-uniform, negative monotone, linear clauses
and P consists of pairwise disjoint positive 2-clauses. Now
suppose C is satisfiable with model t. Then t′ defined as
follows is a model for M : t′(x) := t(x), t′(yx) := 1− t(x).
Indeed, P is obviously satisfied because either x or yx is set
to 1 for every clause in P . Moreover, H is satisfied also,
since each of its clauses c′ is obtained from a clause c of
C which is satisfied let say through setting literal l(x) := 1,
x ∈ V (C). If l(x) = x, i.e., t(x) = 0 = t′(x), then c′

is satisfied likewise. Else, c′ contains yx and c′ is satisfied
because t′(yx) = 1− t(x) = 0.

Conversely, assume that M is satisfiable by t′. Then its
restriction t := t′|V (C) to the variables in C is a model for
C. Indeed, let c′ ∈ M be a k-clause with counterpart c ∈ C
then it is either satisfied by an original variable that occurs
negatively in both c, c′. Or c′ is satisfied by a new variable,
i.e., t′(yx) = 0. But then we have t′(x) = 1, for the original
variable x ∈ V (C) because M contains the 2-clause {x, yx}.
Since by construction c contains the literal x it is satisfied
also.2

NP-completeness still holds if GP consists of disjoint
triangles only, as is proven in [18]. Next we require the Horn
part to be exact-linear, but have no restrictions on P yielding
also a fragment of MHF for which SAT is NP-complete. As

we shall see later, allowing only disjoint edges for GP , makes
the class polynomial-time SAT-solvable.

Theorem 2: SAT is NP-complete restricted to XLMHF.
PROOF. Using the preceding theorem enables us to provide

a reduction to the asserted class XLMHF w.r.t. SAT. Let
M = H ∪ P ∈ (= k)-LMHFd be chosen arbitrarily with
variable set V (M) = {x1, . . . , xn}. While there exist two
clauses ci, cj in the Horn part of the current formula that have
empty intersection, create a variable yij not occurring in the
current formula and enlarge both ci and cj by yij . This proce-
dure yields a MHF with exact-linear Horn part H ′. Let V be
the set of all new variables. To guarantee SAT-equivalence we
add to P the 2-clauses: {x1, yij}, {x2, yij}, . . . , {xn, yij},
for every yij ∈ V . Moreover we add a 2-clause for each
pair of new variables. Let M ′ := H ′ ∪ P ′ ∈ XLMHF
be the resulting formula. Assume M is satisfiable. Then
also M ′ is satisfiable by setting all variables in V to 1,
and the remaining variables according to a model of M .
If M ′ ∈ SAT with model t′, then the clauses in H ′ that
are satisfied by an original variable, i.e., t′(xi) = 0 have
satisfied counterparts in H . If there is a clause c for which
all original variables are set to 1, then it contains a new
variable set to 0. By construction of P ′ this means that all
other variables in M ′ are set to 1. A contradiction occurs
because c then is the only clause that can be contained in
H ′ ∈ SAT and therefore in H . But then there would not have
been generated a new variable for it, because H is assumed
to be exact-linear. So, we have only clauses of the first kind
in H ′ and thus H ∈ SAT. 2

Restricting P in the preceding situation such that GP

consists of disjoint edges leads to a tractable class in the
sense that SAT becomes even trivial.

Theorem 3: Formulas of the class XLMHFd are always
satisfiable.
PROOF. Let M = H ∪ P ∈ XLMHFd be arbitrarily chosen.
If for each clause c ∈ H there exists a positive monotone
2-clause p ∈ P such that V (p) ⊂ V (c), then we set all
variables of an arbitrary minimal vertex cover of GP to 1
and all remaining variables to 0 thus obtaining a model for
M in this situation. Indeed, then in each clause p ∈ P exactly
one variable is set to 0 and the other is set to 1 and as each
clause of H contains all variables of at least one clause of
P , both P and H are satisfied. Now suppose H contains a
clause c for which there does not exist a clause of P whose
variables are contained in c, then we set all variables of c
to 0 and the remaining variables of M to 1. As H is exact-
linear and consists of negative clauses only, each remaining
clause of H shares exactly one variable with c and thus is
satisfied also. Moreover P is satisfied because c contains no
two variables of any clause in P . Therefore in every clause
of P at most one variable is now set to 0 and at least one
variable is set to 1. 2

The last result can be transfered to the case where GP

consists of disjoint triangles only as is shown in [18].
Next we consider linear MHF’s M = H ∪P whose Horn

part H even consists of disjoint clauses only and GP consists
of disjoint triangles only. Further we require V (P ) = V (H)
which is no loss of generality, because variables either
occurring only in P or only in H can be set independently
for satisfying the corresponding clauses immediately. For
instructive reasons we provide an argumentation in three
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steps:

(1) Theorem 4: Formulas as above with Horn clauses of
length at least three are always satisfiable.
PROOF. Let M = H ∪ P with the properties as stated
above be chosen arbitrarily, and let IM be the bipartite
incidence graph associated to M as follows: the vertex
set partition V1 ∪ V2 is composed of the clauses of
H yielding V1 and the triangles of GP yielding V2.
A vertex in V1 and a vertex in V2 are joined by an
edge whenever the corresponding clause in H and
the triangle in GP have a variable in common. Let
n be the number of variables in M then |V2| = n/3
and |V1| ≤ n/3. Further, because the clauses of H
are pairwise disjoint we obtain the following: Every i
vertices of V1 have at least i neighbours in V2, for all
i ∈ {1, . . . , n/3}, because every i clauses of H contain
at least 3· i different variables and every i triangles in
P contain exactly 3· i different variables. Now one can
apply the Theorem of König-Hall for bipartite graphs
[8], [10] stating that there exists a matching in IM

covering the component V1 of the vertex set. In terms
of the formula this means that to each clause c of H
can be assigned exactly one triangle which is denoted
as 4c. Setting any of the variables to 0 that have c
and 4c in common, and the remaining two variables
of 4c to 1 provides a model for M . 2

(2) Theorem 5: Formulas as above with Horn clauses of
length at most two are unsatisfiable.
PROOF. Let M = H ∪P be such a formula arbitrarily
chosen, and let r be the number of disjoint triangles in
GP . Let n be the number of variables in M . Then 3r =
n ≤ 2|H| hence r ≤ 2

3 |H|. To satisfy H in each clause
of H set at least one variable to 0, that means one
has to assign 0 to |H| variables. Since there are more
clauses in H than triangles in P , by the pigeonhole
principle it follows that in order to satisfy H one has to
set two variables to 0 in at least one triangle. However,
this violates the satisfiability of subformula P , hence
M is unsatisfiable. 2

(3) Theorem 6: SAT can be solved in polynomial time for
formulas as above if its H component contains at least
one clause of length at most two and at least one clause
of length at least three.
PROOF. The following algorithm provides a proof of
the assertion. Let `(x) denote a function, which assigns
to all three variables of a triangle of GP the same label.
Variables of different triangles get different labels.
INPUT: M as above.
OUTPUT: SATISFIABLE, if M ∈ SAT, else
UNSATISFIABLE.
BEGIN

a) To every variable x ∈ V (M) assign a label `(x),
such that variables of the same triangle get the
same label and variables of different triangles get
different labels.

b) Sort the clauses of H in ascending order with
respect to their sizes and variable-labels: H =
{c1, c2, . . . , c|H|}, where |c1| ≤ . . . ≤ |c|H||, s.t.
clauses of the same size and with the same labels

are neighbours. Let ci = {xi1 , . . . , xik
} and let r

be the number of triangles in GP .
c) Initialize Z := ∅.
d) If r < |H| then output UNSATISFIABLE.
e) For i := 1 to |H| do (*ci = {xi1 , . . . , xik

}*)
i) For j := i1 to ik do Z := Z ∪ {`(xj)};

ii) If |Z| < i then UNSATISFIABLE; else i :=
i + 1;

f) M is SATISFIABLE
END

O(||M ||2) time is consumed to label all variables of
M , and sorting the clauses in H can be performed
in time O(log |H| · |H|). Moreover, the running time
of both for-loops can be upper bounded by O(|H| ·
|cH |), where cH denotes the longest clause of H and
|cH | ≤ |V (M)|. So O(||M ||2) is an upper bound for
the running time of the algorithm above.
To prove the correctness of this algorithm, it is clear by
the pigeonhole principle that, if M has more clauses
in H than triangles in GP , we cannot satisfy M . Next
if the first i clauses, for each i ∈ {1, . . . , |H|}, contain
less than i different labels then we cannot satisfy M ,
because otherwise at least two variables of the same
triangle in GP have to be set to 0. Else we can satisfy
M using the König-Hall Theorem.2

Remark 1: Note that the algorithm also works when GP

consists of disjoint edges only, or if GP is composed of both
disjoint edges and disjoint triangles.
In summary, we have

Corollary 1: SAT can be solved in polynomial time for
the class of MHF’s, whose H component consists of pairwise
disjoint clauses and for whose positive 2-CNF part P it holds
that the corresponding graph GP consists of disjoint triangles
only.

For the next result the usual requirement that the Horn
clauses have to be negative is dropped but still the Horn
clauses are required to be pairwise disjoint.

Theorem 7: SAT can be solved in polynomial time for
LMHF4, where the Horn component consists of pairwise
disjoint clauses.

PROOF. Let M = H ∪ P be an arbitrary formula with
properties as stated above. If H contains negative clauses
only then we can apply to M the algorithm above. Else we
set each variable x occurring positive in H to 1 and evaluate
the formula. So, a formula M ′ = H ′ ∪P ′ is obtained where
H ′ consists of pairwise disjoint negative clauses and GP ′

consists of disjoint triangles and edges. Note that by setting
the variables occurring positive in H to 1 we do not make
any restrictions concerning the satisfiability of M . Then we
apply the algorithm above to M ′ solving SAT in polynomial
time according to Remark 1. 2

Returning to MHF’s with strict negative Horn component,
we consider the subclass of LMHFd such that the Horn
clauses are pairwise disjoint again. Further assume V (P ) =
V (H).

Theorem 8: SAT can be solved in polynomial time for the
formulas as above.
PROOF. Let M = H ∪ P be an arbitrary such formula.
By unit-propagation all 1-clauses can be eliminated either
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yielding (1) a partial model, or (2) a contradiction with
output M ∈ UNSAT. In case (1), the remaining formula M ′

still has the properties as above. Moreover every variable x
occurs exactly once in P and exactly once in H , because
of V (P ) = V (H). Thus, we have that every x ∈ V (M ′)
occurs exactly twice in M ′, and moreover |c| ≥ 2, for all
c ∈ M ′. Due to a result in [21] we can conclude that M ′ is
satisfiable in this situation. 2

IV. FURTHER SUBCLASSES OF MHF

In this section we are able to provide several polynomial-
time subclasses of MHF w.r.t. SAT, for which the negative
Horn part is not required to be linear at all. However, then
we have to relate the number of triangles in GP to the size
of the Horn part, a first result of this kind is:

Theorem 9: Let M = H ∪ P ∈ MHF4 with V (P ) =
V (H) and let r be the number of triangles in GP . If each
clause in H has length exactly k, k ≥ 1, and H contains
more than

(
3r
k

)
−

(
2r
k

)
clauses, then M is unsatisfiable.

PROOF. Let M = H∪P ∈ MHF4, where H is k-uniform
and let r be the number of triangles in GP . Since there are
r triangles in GP , M has 3r variables. The Horn part H has
only clauses of length k, thus H can contain at most

(
3r
k

)
different k-clauses.

In each triangle of GP at most one variable can be set
to 0 and the other (at least two) variables of this triangle
are forced to 1. Further to satisfy M in each clause of H at
least one variable must be set to 0. Setting in each of the r
triangles at most one variable to 0 yields at least 2r variables
which have to be set to 1. Thus for every truth assignment
which sets at most one variable of each triangle to 0 and at
least two variables to 1 at least

(
2r
k

)
unsatisfiable k-clauses

are obtained among all
(
3r
k

)
possible k-clauses. It follows

that every k-uniform formula M = H ∪ P ∈ MHF4 with
|H| ≥

(
3r
k

)
−

(
2r
k

)
is unsatisfiable. 2

Lemma 1: Let M = H ∪ P ∈ MHF4, r the number of
triangles in GP and let |c| ≥ 2r + 1, for all c ∈ H . Then M
is satisfiable.

PROOF. Let M = H ∪ P ∈ MHF4 with |c| ≥ 2r + 1,
for all c ∈ H . Then for each c ∈ H there exists at least one
triangle 4c in GP such that all variables of 4c are contained
in c as can be easily shown. Setting exactly one variable of
each triangle to 0 and the remaining two variables to 1 yields
a model for M . 2

Lemma 2: Let M = H ∪ P ∈ MHF4 and let r be the
number of triangles in GP . Further let |c| = 2r for all c ∈ H .
If |H| < 3r then M is satisfiable.

PROOF. For arbitrary M = H ∪ P ∈ MHF4, let r be
the number of triangles in GP . Since |c| = 2r for every
clause c in H there exists at least one triangle 4c in GP

such that at least two variables of 4c occur in c. W.l.o.g. we
do not consider clauses c for which there exists a triangle
in GP whose variables all occur in c, because these clauses
are always satisfiable as explained in the proof of Lemma
1. Thus we assume that each clause of H has exactly two
variables in common with each triangle of GP . No further
case can occur because of the condition |c| = 2r, for all
c ∈ H . There are exactly 3r different clauses with this
property. Suppose H contains all these 3r clauses, then H is
unsatisfiable. This is due to the fact that then for each truth

assignment which sets in each triangle exactly one variable
to 0 and the remaining two variables to 1 exactly one clause
in H remains unsatisfied, namely that one consisting of all
variables set to 1. So, if |H| < 3r then there exists a model
for H . 2

Theorem 10: Let M = H ∪ P ∈ MHF4 with V (P ) =
V (H) and let r ≥ 3 be the number of triangles in GP .
Further let |c| = 2r − 1 for all clauses c ∈ H . If |H| ≤ 2r
then M is satisfiable.

PROOF. We treat the worst-case |H| = 2r. W.l.o.g. we do
not consider clauses c ∈ H , for which there exists at least
one triangle 4 in GP whose variables all occur in c, because
these clauses are always satisfiable by setting an arbitrary
variable of 4 to 0.

Since |c| = 2r−1 for all c ∈ H it follows that each clause
of H contains at least one variable from every triangle. There
are 3r different variables in M . The 2r clauses of H contain
2r(2r− 1) literals where 2r(2r− 1) ≥ 10r, for r ≥ 3. That
means, that some of the 3r different variables occur more
than once in H . We have

2r(2r − 1)
3r

=
2
3
(2r − 1)

motivating the following case distinction:
• In case 2r ≡ 1 (mod 3) each of the 3r different

variables occurs either exactly 2
3 (2r − 1) times in H

or there is a variable x occurring more than 2
3 (2r − 1)

times in H . It is sufficient to have a variable x occurring
at least 2

3 (2r−1) times in H , because setting x to 0, and
the remaining two variables in the triangle containing
x to 1, satisfies already 2

3 (2r − 1) clauses of H . Thus
2r − 2

3 (2r − 1) = 2
3r + 2

3 clauses remain. We have
( 2
3r + 2

3 ) − (r − 1) = − r
3 + 5

3 , and for r ≥ 5 it holds
that − r

3 + 5
3 ≤ 0 (observe that for r = 3, 4 we have

2r 6≡ 1 (mod 3)) which means that there are less than
r − 1 remaining clauses. Therefore we can satisfy H
using appropriate variables from the remaining r − 1
triangles. That works because each clause of H contains
a variable from every of the r − 1 triangles in GP .
Choosing a unique triangle for every clause and setting
the common variable to 0 and the remaining variables
to 1 satisfies all clauses left.

• In case 2r 6≡ 1 (mod 3) there exists a variable occur-
ring at least d 2

3 (2r − 1)e times in M enabling us to
proceed as argumented above.

2

Finally, we have two assertions stating that SAT resp.
UNSAT are trivial for specific formulas M = H ∪ P where
the length of clauses in H , or the size of H itself is related
to the number of triangles in GP . Both can easily be proven
using the preceding results.

Corollary 2: Let M = H ∪P ∈ MHF4 s.t. GP contains
r ≥ 1 triangles. If |c| ≥ 2r− 1, for all c ∈ H , and |H| ≤ 2r
then M is satisfiable.
PROOF. The assertion follows immediately from Lemma 2
and Theorem 10. 2

Lemma 3: Let M = H ∪ P ∈ MHF4 s.t. GP contains
r ≥ 1 triangles. If |c| = 2 for all c ∈ H , 3r ≡ 0 (mod 2)
and |H| = 3r

2 then M ∈ UNSAT.
PROOF. For 3r ≡ 0 (mod 2) assume that |H| = 3r

2 . In
consequence H consists of disjoint negative 2-clauses and
thus is unsatisfiable according to Theorem 5. 2
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V. CONCLUDING REMARKS

In the present paper we studied various subclasses of
linear mixed Horn formulas with restricted 2-CNF part and
negative Horn part. While for several of them SAT is shown
to be NP-complete, we could detect numerous classes for
which SAT can be decided in polynomial time. Moreover we
provided polynomial-time algorithms for other subclasses of
mixed Horn formulas with a Horn part that is not required
to be linear or exact-linear. For the discussion of further
polynomial-time subclasses of MHF we refer to [18].
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