
Designs of Minimal-Order State Observer and

Servo Controller for a Robot Arm Using Piecewise

Bilinear Models
Tadanari Taniguchi, Luka Eciolaza, and Michio Sugeno

Abstract—This paper proposes a servo control system based
on a minimal-order state observer for nonlinear systems ap-
proximated by piecewise bilinear (PB) models. The design
method is capable of designing the state observer and the servo
controller of nonlinear systems separately. The approximated
system is found to be fully parametric. The input-output (I/O)
feedback linearization is applied to stabilize PB control systems.
Although the controller is simpler than the conventional I/O
feedback linearization controller, the control performance based
on PB model is the same as the conventional one. The PB models
with feedback linearization are a very powerful tool for the
analysis and synthesis of nonlinear control systems. We apply
the control method to a robot arm model. An example confirms
the feasibility of the our proposals.

Index Terms—nonlinear control, piecewise bilinear model,
input-output linearization, robot arm, minimal-order state ob-
server

I. INTRODUCTION

P IECEWISE linear (PL) systems which are fully para-

metric have been intensively studied in connection with

nonlinear systems [1], [2], [3], [4]. We are interested in

the parametric piecewise approximation of nonlinear control

systems based on the original idea of PL approximation. The

PL approximation has general approximation capability for

nonlinear functions with a given precision.

One of the authors suggested to use the piecewise bilinear

(PB) approximation [5]. PB approximation also has general

approximation capability for nonlinear functions with a given

precision. We note that a bilinear function as a basis of PB

approximation is, as a nonlinear function, the second simplest

one after a linear function. The PB model has the following

features. 1) The PB model is derived from fuzzy if-then

rules with singleton consequents. 2) It is built on piecewise

hyper-cubes partitioned in the state space. 3) It has general

approximation capability for nonlinear systems. 4) It is a

piecewise nonlinear model, the second simplest after a PL

model. 5) It is continuous and fully parametric. So far we

have shown the necessary and sufficient conditions for the

stability of PB systems with respect to Lyapunov functions

in the two dimensional case [6], [7] where membership func-

tions are fully taken into account. We derived the stabilizing
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conditions [8], [9] based on the feedback linearization, where

[8] applies the input-output linearization and [9] applies the

full-state linearization. Although the controllers are simpler

than the conventional I/O feedback linearization controller,

the control performance based on PB model is the same as

the conventional one.

This paper proposes a servo control system based on a

minimal-order state observer of nonlinear control systems

approximated by PB models. The design method is capable

of designing the state observer and the servo controller

of nonlinear systems separately. Although the controller is

simpler than the conventional I/O feedback linearization

controller, the control performance based on PB model is the

same as the conventional one. In addition, the performance

of the observer-based PB controller is equivalent to the PB

controller without the state observer.

This paper is organized as follows. Section II presents

the canonical form of PB models. Section III presents PB

controllers for nonlinear plants with PB modeling and I/O

linearization. Section IV presents a servo control of PB

models. Section V proposes a minimal-order state observer

for PB models. Section VI applies the proposed method to

a robot arm model and shows the feasibility of the proposed

methods. Section VII gives conclusions.

II. CANONICAL FORM OF PIECEWISE BILINEAR MODELS

A. Open-loop systems

In this section, we introduce the PB models suggested in

[5]. We deal with the two dimensional case without loss of

generality. Define a vector d(σ, τ) and a rectangle Rστ in

the two-dimensional space as, respectively,

d(σ, τ) ≡ (d1(σ), d2(τ))
T
,

Rστ ≡ [d1(σ), d1(σ + 1)]× [d2(τ), d2(τ + 1)].

σ and τ are integers: −∞ < σ, τ < ∞ where d1(σ) <
d1(σ+1), d2(τ) < d2(τ +1) and d(0, 0) ≡ (d1(0), d2(0))

T .

The superscript T denotes transpose operation.

For x ∈ Rστ , the PB system is expressed as



























ẋ =
σ+1
∑

i=σ

τ+1
∑

j=τ

ωi
1(x1)ω

j
2(x2)f(i, j),

x =

σ+1
∑

i=σ

τ+1
∑

j=τ

ωi
1(x1)ω

j
2(x2)d(i, j),

(1)
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where


















ωσ
1 (x1) = (d1(σ + 1)− x1)/(d1(σ + 1)− d1(σ)),

ωσ+1
1 (x1) = (x1 − d1(σ))/(d1(σ + 1)− d1(σ)),

ωτ
2 (x2) = (d2(τ + 1)− x2)/(d2(τ + 1)− d2(τ)),

ωτ+1
2 (x2) = (x2 − d2(τ))/(d2(τ + 1)− d2(τ)),

(2)

and ωi
1, ω

j
2 ∈ [0, 1]. In the above, we assume f(0, 0) = 0

and d(0, 0) = 0 to guarantee ẋ = 0 for x = 0.

A key point in the system is that the state variable x is also

expressed by a convex combination of d(i, j) with respect to

ωi
1 and ωj

2 just as in the case of ẋ. As is seen in Eq. (2), x
is located inside Rστ which is a rectangle: a hypercube in

general. That is, the expression of x is polytopic with four

vertices d(i, j). The model of ẋ = f(x) is built on a rectangle

including x in the state space and it is also polytopic with

four vertices f(i, j). We call this form of the canonical model

(1) parametric expression.

Representing ẋ with x in Eqs. (1) and (2), we can obtain

the state space expression of the model which is found to be

bilinear (bi-affine) [5]. Therefore, the derived PB model has

simple nonlinearity. In the case of the PL approximation, a

PL model is built on simplexes partitioned in the state space,

triangles in the two dimensional case. Note that any three

points in the three dimensional space are spanned with an

affine plane: y = a+bx1+cx2. A PL model is continuous. It

is, however, difficult to handle simplexes in the rectangular

coordinate system.

B. Closed-loop systems

We consider a two-dimensional nonlinear control system.
{

ẋ =fo(x) + go(x)u(x),

y =ho(x).
(3)

The PB model (4) can be constructed from the nonlinear

system (3).
{

ẋ =f(x) + g(x)u(x),

y =h(x),
(4)

where










































































f(x) =

σ+1
∑

i=σ

τ+1
∑

j=τ

ωi
1(x1)ω

j
2(x2)f(i, j),

g(x) =

σ+1
∑

i=σ

τ+1
∑

j=τ

ωi
1(x1)ω

j
2(x2)g(i, j),

h(x) =

σ+1
∑

i=σ

τ+1
∑

j=τ

ωi
1(x1)ω

j
2(x2)h(i, j),

x =
σ+1
∑

i=σ

τ+1
∑

j=τ

ωi
1(x1)ω

j
2(x2)d(i, j).

(5)

The modeling procedure in the region Rστ is as follows.

Algorithm 2.1: Piecewise bilinear modeling procedure

1) Assign vertices d(i, j) for x1 = d1(σ),d1(σ+1), x2 =
d2(τ),d2(τ + 1) of the state vector x, then the state

space is partitioned into piecewise regions, see also

Fig. 1.

2) Compute the vertices f(i, j), g(i, j) and h(i, j) in Eqs.

(5), by substituting the values of x1 = d1(σ), d1(σ+1)

d1(σ)

d1(σ + 1)

d2(τ)

d2(τ + 1)

f1(σ + 1, τ)

f1(σ, τ)

f1(σ, τ + 1)

f1(σ + 1, τ + 1)

ωσ+1

1

ωσ

1

ωτ+1

2

ωτ

2

f1(x)

Fig. 1. Piecewise region (f1(x), x ∈ Rστ )

and x2 = d2(τ), d2(τ+1) into original nonlinear func-

tions fo, go and ho in the system (3). Fig. 1 illustrates

the expression of f1(x), where f(x) = (f1(x), f2(x))
T

and x ∈ Rστ .

The overall PB model can be obtained automatically when

all the vertices are assigned. Note that f(x), g(x) and h(x)
in the PB model coincide with those in the original system

at the vertices of all the regions.

III. DESIGN OF PB CONTROLLERS FOR NONLINEAR

SYSTEMS WITH PB MODELING AND I/O LINEARIZATION

This section deals with the I/O linearization of nonlinear

control systems approximated with PB models. We consider,

in particular, nonlinear systems and show their I/O lineariza-

tion based on PB models in detail. First we give a brief

introduction to the I/O linearization of PB models [9], [10].

A. I/O linearization

Consider the PB model (4) in the previous section. The

derivative ẏ is given by

ẏ =
∂h

∂x
(f(x) + g(x)u) = Lfh(x) + Lgh(x)u.

where

Lfh(x) =

σ2+1
∑

i2=σ2

ωi2
2 · · ·

σn+1
∑

in=σn

ωin
n

h(δ1, i2, . . . , in)

d1(δ1)
f1 + · · ·

+

σ1+1
∑

i1=σ1

ωi1
1 · · ·

σn−1+1
∑

in−1=σn−1

ω
in−1

n−1

h(i1, i2, . . . , δn)

dn(δn)
fn,

Lgh(x) =

σ2+1
∑

i2=σ2

ωi2
2 · · ·

σn+1
∑

in=σn

ωin
n

h(δ1, i2, . . . , in)

d1(δ1)
g1 + · · ·

+

σ1+1
∑

i1=σ1

ωi1
1 · · ·

σn−1+1
∑

in−1=σn−1

ω
in−1

n−1

h(i1, i2, . . . , δn)

dn(δn)
gn,

d1(δ1) = d1(σ1 + 1)− d1(σ1),

d2(δ2) = d2(σ2 + 1)− d2(σ2),

dn(δn) = dn(σn + 1)− dn(σn),

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



h(δ1, i2, . . . , in) =h(σ1 + 1, i2, . . . , in)− h(σ1, i2, . . . , in),

h(i1, δ2, . . . , in) =h(i1, σ2 + 1, . . . , in)− h(i1, σ2, . . . , in),

h(i1, i2, . . . , δn) =h(i1, i2, . . . , σn + 1)− h(i1, i2, . . . , σn).

If Lgh(x) = 0, then ẏ = Lfh(x) is independent of u. We

continue to calculate the second derivative of y, denoted by

y(2) and then we obtain

y(2) =
∂Lfh

∂x
(f(x) + g(x)u) = L2

fh(x) + LgLfh(x)u,

where

L2
fh(x) =

∂Lfh

∂x1
f1 + · · ·+

∂Lfh

∂xn

fn,

LgLfh(x) =
∂Lfh

∂x1
g1 + · · ·+

∂Lfh

∂xn

gn,

∂Lfh

∂x1
=

σ3+1
∑

i3=σ3

ωi3
3 · · ·

σn+1
∑

in=σn

ωin
n

h(δ1, δ2, . . . , in)

d1(δ1)d2(δ2)
f2 + · · ·

+

σ2+1
∑

i2=σ2

ωi2
2 · · ·

σn−1+1
∑

in−1=σn−1

ω
in−1

n−1

h(δ1, i2, . . . , δn)

d1(δ1)dn(δn)
fn

+

σ2+1
∑

i2=σ2

ωi2
2 · · ·

σn+1
∑

in=σn

ωin
n

h(δ1, i2, . . . , in)

d1(δ1)

×

σ2+1
∑

i2=σ2

ωi2
2 · · ·

σn+1
∑

in=σn

ωin
n

f1(δ1, i2, . . . , in)

d1(δ1)
+ · · ·

+

σ1+1
∑

i1=σ1

ωi1
1 · · ·

σn−1+1
∑

in−1=σn−1

ω
in−1

n−1

h(i1, i2, . . . , δn)

dn(δn)

×

σ2+1
∑

i2=σ2

ωi2
2 · · ·

σn+1
∑

in=σn

ωin
n

fn(δ1, i2, . . . , in)

d1(δ1)
,

∂Lfh

∂xn

=

σ2+1
∑

i2=σ2

ωi2
2 · · ·

σn−1+1
∑

in=σn−1

ω
in−1

n−1

h(δ1, i2, . . . , δn)

d1(δ1)dn(δn)
f1

+ · · ·+

σ1+1
∑

i1=σ1

ωi1
1 · · ·

σn−2+1
∑

in−2=σn−2

ω
in−2

n−2

×
h(i1, . . . , δn−1, δn)

dn−1(δn−1)dn(δn)
fn−1

+

σ2+1
∑

i2=σ2

ωi2
2 · · ·

σn+1
∑

in=σn

ωin
n

h(δ1, i2, . . . , in)

d1(δ1)

×

σ1+1
∑

i1=σ1

ωi1
1 · · ·

σn−1+1
∑

in−1=σn−1

ω
in−1

n−1

f1(i1, i2, . . . , δn)

dn(δn)
+ · · ·

+

σ1+1
∑

i1=σ1

ωi1
1 · · ·

σn−1+1
∑

in−1=σn−1

ω
in−1

n−1

h(i1, i2, . . . , δn)

dn(δn)

×

σ1+1
∑

i1=σ1

ωi1
1 · · ·

σn−1+1
∑

in−1=σn−1

ω
in−1

n−1

fn(i1, i2, . . . , δn)

dn(δn)

Once again, if LgLfh(x) = 0, then y(2) = L2
fh(x) is

independent of u. Repeating this process, we see that if h(x)
satisfies

LgL
i
fh(x) =0, i = 0, 1, . . . , ρ− 2, LgL

ρ−1
f h(x) 6= 0

then u does not appear in the equations of y, ẏ, . . . ,

y(ρ−1) and appears in the equation of y(ρ) with a nonzero

coefficient:

y(ρ) =Lρ
fh(x) + LgL

ρ−1
f h(x)u.

The foregoing equation shows clearly that the system is

input-output linearizable, since the state feedback control

u =(−Lρ
fh(x) + v)/LgL

ρ−1
f h(x)

reduces the input-output map to y(ρ) = v, which is a chain of

ρ integrators. In this case, the integer ρ is called the relative

degree of the system.

If LgL
ρ−1
f h(xt) = 0, the relative degree cannot be defined

at x = xt. In some cases the relative degree can be defined

at the point because we can adjust a partition of the state

space for PB modeling so that LgL
ρ−1
f h(xt) 6= 0.

Definition 3.1: The nonlinear system is said to have rela-

tive degree ρ, 1 ≤ ρ ≤ n, in a region D0 ⊂ D if

LgL
i
fh(x) = 0, i = 0, 1, · · · , ρ− 2

LgL
ρ−1
f h(x) 6= 0,

for all x ∈ D0.

The input-output linearized system can be formulated as
{

ξ̇ = Aξ +Bv,

y = Cξ,
(6)

where ξ ∈ ℜρ, C =
(

1, 0, · · · , 0, 0
)T

,

A =

















0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
0 0 · · · 0 0

















, B =















0
0
...

0
1















.

Note that all the feedback linearizable PB systems (4) are

transformed into the linear system (6). Therefore it is easy

to design the stabilizing controller and analyze stability of

the PB systems.

According to the relative degree, three cases of linearized

systems (6) must be considered.

• Relative degree: ρ = n
In this case, the state vector of the input-

output linearized system is z = ξ =
(h(x), Lfh(x), · · · , Lρ−1

f h(x))T . The state vector z
is necessary to be a diffeomorphism.

• Relative degree: ρ < n
There is unobservable state (n− ρ dimensions). It is

necessary to consider the zero dynamics of the unob-

servable state µ. The state vector z is necessary to be

a diffeomorphism. z =
(

ξ, µ
)T

, ξ ∈ ℜρ, µ ∈ ℜn−ρ,

µ̇(ξ, µ) = ζ1(ξ, µ) + ζ2(ξ, µ)v. µ̇(0, µ) is characterized

by zero dynamics.

• In the case of LgL
i
fh(x) = 0, ∀i, the proposed approach

cannot be applied.

When the relative degree ρ ≤ n, the input-output linearizing

controller is u = α(x) + β(x)v, where

α(x) =− Lρ
fh(x)/LgL

ρ−1
f h(x), β(x) = 1/LgL

ρ−1
f h(x).

In the following, we assume the relative degree is n (full).

The stabilizing linear controller v = −Fξ of the linearized
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system (6) can be obtained so that the transfer function G =
C(sI −A)−1B is Hurwitz.

The linearizing controller is also characterized as the

LUT (Look-Up-Table) controller, where the LUT-controller

is widely used for industrial applications, in particular, for

vehicle control because of simplicity and also visibility as

a nonlinear controller. In the case of the LUT-controller,

control inputs are calculated by interpolation based on the

table. When bilinear piecewise interpolation is adopted, the

LUT-controller is found to be exactly the PB system.

IV. SERVO CONTROL

We apply a servo control [11] to nonlinear systems with

the PB models based on I/O linearization. This is a two-

degree of freedom servo control to nonlinear systems as

shown in Fig. 2. The controller is designed to deal with

disturbances and robustness. In this figure, T and
∫

show

the coordinate transformation and the integrator. F , K, and

G are the feedback gains. r (ṙ = 0) is the setpoint signal

and dist means a disturbance. Due to lack of space, we only

discuss the nonlinear system with the relative degree ρ = n.

The following approach can be also applied to the nonlinear

systems with ρ < n. We consider the linearized system using

PB models.
{

ż =Az +Bv

y =Cz
(7)

where z ∈ ℜn, A ∈ ℜn×n, B ∈ ℜn×m, v ∈ ℜm, C ∈ ℜl×n

and y ∈ ℜl. The control system is of a following form.

{

ż =Az +Bv,

η̇ =r − y,
(8)

where the controller

v =− Fz +Kη +Gr

is designed to make r − y → 0 as t → ∞. We rewrite the

system equations (8) as

(

ż
η̇

)

=

(

A−BF BK
−C 0

)(

z
η

)

+

(

BG
1

)

r (9)

The gains of F and K are calculated such that the system

(9) is stable. The gain G can be obtained such that ż(∞) =
0 and y(∞) = r. Therefore the gain of G can be chosen

G = −(C(A−BF )−1B)−1. Finally, the two-degree freedom

servo controller is designed as

u =α(x) + β(x)v =
−Lρ

fh(x)− Fz +Kη −Gr

LgL
ρ−1
f h(x)

(10)

V. MINIMAL-ORDER STATE OBSERVER BASED ON PB

MODELS

We proposed a full-order state observer of PB control

system in [12]. In this paper, we propose an observer-based

PB controller to estimate the minimal-order state z ∈ ℜn−l

by using the output y ∈ ℜl. Fig. 3 shows the minimal-order

state observer for PB control system.

T C 

F 

K 

G 

r y 
+ 

+ 

+ + 

- 

+ 

- 

Linearized system based on PB models 

E 

Fig. 2. Two-degree of freedom servo control system

The following system (11) is a minimal-order state ob-

server, known as Gopinath observer [13].
{

ẇ =Âw + B̂v +Hy,

ẑ =Ĉw + D̂y
(11)

where w ∈ ℜn−l, Â ∈ ℜn−l×n−l, B̂ ∈ ℜn−l×m, H ∈
ℜn−l×l, Ĉ ∈ ℜn×n−l, D̂ ∈ ℜn×l and ẑ ∈ ℜn−l.

The observer is designed by using the following steps [13],

1) Set a transformation T1 = [CT MT ]T ∈ ℜn×n

satisfying detT1 6= 0, where M ∈ ℜn−l×n is an

arbitrary matrix.

2) Ā and B̄ are divided as follows.

Ā =T1AT−1
1 =

(

Ā11 Ā12

Ā21 Ā22

)

, B̄ = T1B =

(

B̄1

B̄2

)

where Ā11 ∈ ℜl, Ā12 ∈ ℜn−l×l, Ā22 ∈ ℜn−l×n−l,

B̄1 ∈ ℜl and B̄2 ∈ ℜn−l.

3) Derive L ∈ ℜn−l×l so that Â = Ā22 − LĀ12 is

Hurwitz.

4) Calculate the following parameters by using L.

B̂ =− LB̄1 + B̄2, H = ÂL+ Ā21 − LĀ11,

Ĉ =T−1
1

(

0
In−l

)

, D̂ = T−1
1

(

Il
L

)

.

The estimation ẑ of (11) is substituted into the servo con-

troller (10), then the observer-based PB controller is designed

as

u =
−Lρ

fh(x)− F ẑ +Kη −Gr

LgL
ρ−1
f h(x)

,

ẇ =Âw + B̂v +Hy,

ẑ =Ĉw + D̂y.

Note that we can design the state observer for all the PB

control systems. Since the linearized systems of all the PB

models are the same as the linear system (7) and the system

(7) is observable. In addition, the design method is capable

of designing the state observer and the servo controller of

nonlinear systems separately.

VI. ROBOT ARM MODEL

We consider a simple one-link robot arm [14]. The rotary

motion is controlled by an elastically coupled actuator. The

system is represented as
{

ẋ =fo(x) + go(x)u(x),

y =ho(x)
(12)
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T C 

F 

r 

y 
+ 

+ 
+ 

+ 

- 

+ 
1/S 

H 

+ 

+ 

Linearized system based on PB models 

Minimal-order state observer 

+ 

K 

G 

1/S 
+ + 

- 

y 

Servo controller 

E 

Fig. 3. Minimal-order state observer and servo control systems based on PB models

The vectors x, fo and go are given by x = (x1, x2, x3, x4)
T ,

fo(x) =









x3

x4
−K1

J1N2x1 +
K1

J1N
x2 −

F1

J1

x3
K1

J2N
x1 −

K1

J2

x2 −
mgd
J2

cosx2 −
F2

J2

x4









,

go(x) =
(

0, 0, 1/J1, 0
)T

,

where x1 is the angle of the torsional spring on the gear

box and x2 is the angle of the robot arm. x3 and x4 are

the time derivatives of x1 and x2 respectively. J1 and J2
represent inertia, F1 and F2 are viscous friction constraints,

K1 represents the elastic coupling with the joint and N is the

transmission gear ratio. m is the mass and d is the position

of the center of gravity of the link. g is the acceleration due

to gravity.

We choose the angle of the arm x2 as the output, i.e.,

y =ho(x) = x2.

Now we divide the state-space of the robot arm model (12)

as

x1 ∈{−15, 15, 15}, x2 ∈ {−5, 5, 5}, x4 ∈ {−5, 5, 5},

x3 ∈{−4π,−39π/10,−38π/10, . . . , 4π},

then the PB model is constructed as

ẋ =f(x) + gu, y = h(x) = x2

where

f1 =

σ3+1
∑

i3=σ3

ωi3
3 (x3)f1(·, ·, i3, ·),

f2 =

σ4+1
∑

i4=σ4

ωi4
4 (x4)f2(·, ·, ·, i4),

f3 =

σ1+1
∑

i1=σ1

σ2+1
∑

i2=σ2

σ3+1
∑

i3=σ3

ωi1
1 (x1)ω

i2
2 (x2)ω

i3
3 (x3)f3(i1, i2, i3, ·),

f4 =

σ1+1
∑

i1=σ1

σ2+1
∑

i2=σ2

σ4+1
∑

i4=σ4

ωi1
1 (x1)ω

i2
2 (x2)ω

i4
4 (x4)f4(i1, i2, ·, i4),

g = (0, 0, 0, 1/J1)
T ,

f1(·, ·, i3, ·) = f1(j1, j2, i3, j4),

j1 = σ1, σ1 + 1, j2 = σ2, σ2 + 1, j4 = σ4, σ4 + 1,

f2(·, ·, ·, i4) = f2(j1, j2, j3, i4),

j1 = σ1, σ1 + 1, j2 = σ2, σ2 + 1, j3 = σ3, σ3 + 1,

f3(i1, i2, i3, ·) = f3(i1, i2, i3, j4), j4 = σ4, σ4 + 1,

f4(i1, i2, ·, i4) = f4(i1, i2, j3, i4), j3 = σ3, σ3 + 1.

Here f1(·, ·, i3, ·) is independent of i1, i2 and i4. It is also

the same for f2(·, ·, ·, i3), f3(i1, i2, i3, ·) and f4(i1, i2, ·, i4).
In this case, the system has many local PB models. Note

that the linearized systems of the all PB models are the same

as the linear system (7).

We design the servo controller u

u = −L4
fh/LgL

3
fh+ ν/LgL

3
fh, (13)

where

Lfh =f2(x), L2
fh = f4(x), LgL

3
fh =

K1

J1J2N
,

L3
fh =

K1

J2N
f1(x) +

f2(·, σ2 + 1, ·, ·)− f2(·, σ2, ·, ·)

d2(σ2 + 1)− d2(σ2)
f2(x)

+
−F2

J2
f4(x),

L4
fh =

K1

J2N
f3(x) +

f2(·, σ2 + 1, ·, ·)− f2(·, σ2, ·, ·)

d2(σ2 + 1)− d2(σ2)
f4(x)

+
−F2

J2

(

−K1

J2N
f1(x) +

−F2

J2
f4(x)

+
f2(·, σ2 + 1, ·, ·)− f2(·, σ2, ·, ·)

d2(σ2 + 1)− d2(σ2)
f2(x)

)

,

ν =− Fz +Kη +Gr

=− (5.75, 8.22, 8.57, 2.57)z + 1.62η − 5.75r.

Note that the controller (13) based on PB model is simpler

than the conventional one since the nonlinear terms of

controller (13) are not the original nonlinear terms (e.g.,

sinx2, cosx2) but the PB approximation models.
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The initial condition is x(0) = (0, 0, 0, 0)T and the

setpoint signal is r = π/2. The disturbance signal dist = 0.5
is added to the state x2 after 15 seconds. Fig. 4 shows the

state response of x2 using the PB servo controller with the

disturbance dist.
We construct a minimal-order state observer of this robot

arm model. In this example we set a transformation T1 =
diag(1, 1, 1, 1) and eigenvalues ρ1 = −200, ρ2 = −201,

ρ3 = −202 of Â. The parameters of the observer (11) are

calculated as

L =
(

753, 1.89× 105, 1.58× 107
)T

,

Â =





−753 1 0
−1.89× 105 0 1
−1.58× 107 0 0



 , B̂ =





0
0
1



 ,

Ĉ =









0 0 0
1 0 0
0 1 0
0 0 1









, D̂ =









1
−753

−1.89× 105

−1.58× 107









.

The estimation ẑ of (11) is substituted into the servo con-

troller (10), then the observer-based PB controller is obtain

as

u =
−Lρ

fh

LgL
ρ−1
f h

+
−(5.75, 8.22, 8.57, 2.57)ẑ + 1.62η − 5.75r

LgL
ρ−1
f h

,

ẇ =Âw + B̂v +Hy,

ẑ =Ĉw + D̂y.

In Fig. 5, the upper graph shows the responses of the state

x2(t) without the disturbance and the lower one shows

the response with the disturbance. The results confirm the

feasibility of the servo control and state observer. In addition,

the results show that the controller has disturbance rejection

feature. The performance of the observer-based PB controller

is equivalent to the PB controller without the state observer.

0 5 10 15 20 25 30 35 40
−3

−2

−1

0

1

2

3

x
2

Fig. 4. State response x2 using the PB servo controller with the disturbance

VII. CONCLUSIONS

This paper has proposed a servo control system based

on a minimal-order state observer for nonlinear systems

approximated by piecewise bilinear (PB) models. The design

method is capable of designing the state observer and the

servo controller of nonlinear systems separately. The approx-

imated system is found to be fully parametric. The input-

output (I/O) feedback linearization is applied to stabilize PB

control systems. The PB models with feedback linearization

are a very powerful tool for the analysis and synthesis of
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x
2
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x
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time

Fig. 5. State responses x2 using the observer-based PB servo controller
without/with the disturbance

nonlinear control systems. Although the controller is simpler

than the conventional I/O feedback linearization controller,

the control performance based on PB model is the same as

the conventional one. We have applied the control method to

a robot arm system. An example has confirmed the feasibility

of our proposal.
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