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II. DYNAMIC MODELING OF WECS SYSTEM

A. Wind Speed Modeling

The power produced by a wind turbine generator (WTG)
at a particular site is highly dependent on the wind regime
at that location. There is a number of ways that wind
speed can and has been modeled in power system reliability
evaluation. This method uses the ARMA model to predict
wind speeds in the reliability evaluation process and is
designated as the ARMA approach. An ARMA model with p
autoregressive terms and q moving average terms is denoted
as ARMA(p, q). The ARMA model created for the Swift
Current site in Saskatchewan, Canada based on 1996 to 2003
data is shown in the following [15]:

s(t) = 1.1772s(t− 1) + 0.1001s(t− 2)− 0.3572s(t− 3)

+0.0379s(t− 4) + ν(t)− 0.5030ν(t− 1)

−0.2924ν(t− 2) + 0.1317ν(t− 3)

ν(t) ∈ (0, 0524762). (1)

The simulated wind speed at hour t, designated as V (t), can
be calculated as follows:

V (t) = µ(t) + σ(t)s(t). (2)

where µ(t) is the mean observed wind speed at hour and
σ(t) is the standard deviation of the observed wind speed at
hour.

B. Dynamic Modeling of WECS

The power captured by a wind turbine is given by

Pm = 0.5ρπCp(λ, β)R2V 3 (3)

where ρ is the air density (typically 1.25 kg/m3), R is radius
of blades ( in meter), Cp(λ, β) is the wind-turbine power
coefficient, and V is the wind speed (in m/s). The coefficient
Cp(λ, β) depends on the pitch angle of the blades β (in
degrees) and the tip-speed ratio λ, which is defined as the
ratio of the linear velocity of the blade tip (ωtR) to the wind
speed V as follows:

λ =
ωtR

V
(4)

where ωt is the wind turbine shaft speed (in rad/s).
The relation of Cp versus λ of a three-blade horizontal-

axis wind turbine for various blade pitch angles β is illus-
trated in Fig. 1. The curves have been obtained by using the
following equation that is commonly used in wind turbine
simulators [5], [16]:

Cp(λ, β) = 0.5176(
116

λi
− 0.4β − 5)e−21/λi + 0.0068λ

(5)
1

λi
=

1

λ+ 0.008β
− 0.035

β3 + 1
. (6)

WECS can be structured into several interconnected sub-
system models as shown in Fig. 2. This system consists of
wind turbine, a drive train, and a generation unit.

The objective of the proposed control is to maximize the
power that the turbine extracts. This can be achieved if Cp
is maximized. To maximize Cp, λ must be kept constant
at its optimum value , regardless of the wind speed. Fig. 3
illustrates the steady-state power-speed characteristics (solid
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Fig. 1. Power coefficient versus tip-speed ratio, for various blade pitch
angles β.

Fig. 2. Structural diagram of WECS systems.

curves) and the maximum power point curve (dashed curve)
attained at each wind speed, for a blade pitch angle of 0o.
The aerodynamic torque on the wind turbine rotor can be
obtained using the following relationships:

Tm =
Pm

ωt
=

ρπCp(λ, β)R3V 2

2λ
. (7)
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Fig. 3. Power-speed characteristics of wind turbine, for various wind speeds
at pitch angle 0o.

The basic idea of the proposed MPPT technique is to
retrieve the optimal rotor speed ωt (meaning the speed
corresponding to the maximum generable power) for any
instantaneous value of the wind speed. In Fig. 2, the input
signals coming from the turbine control system are the
generator torque set point Tg,ref and the desired pitch angle
βref . The measured outputs are assumed to be the turbine
rotor speed ωt. The wind speed V is the disturbance signal
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affecting the WECS. Its model is given as

θ̇ = ωt − ωg (8)
Jgω̇g(t) = Ksθ +Bsωt −Bsωg + Tg(ωg, Tg,ref )(9)
Jtω̇t(t) = −Ksθ −Bsωt +Bsωg + Tm(β, V ) (10)

The generator torque Tg is a nonlinear function of ωg and
the control variable Tg,ref . The generator usually operates
in the linear region of its torque characteristic which can,
therefore, be approximated by a linear form

Tg = Bgωg − Tg,ref . (11)

The pitch actuator is modelled as a first-order dynamic
system with saturation in the amplitude and derivative of
the pitch angle β as [4], [5].

β̇ =
−1

τ
β +

1

τ
βref . (12)

It can be seen that the overall WECS model described
in (3)-(12) is nonlinear. Fig. 4 shows the block diagram
of a control scheme to track the optimal rotor speed to
maximize the power that the turbine extracts. The control

Fig. 4. Block diagram of nonlinear dynamic of WECS.

system acts on the generator in order to apply the reference
electromagnetic torque Tg,ref and on the pitch actuator in
order to control the pitch angle of the blades β. The system
parameters are given as follows [17]:
Turbine and drive train parameters
R=30.30m,Ks=15.66x105N/m,Bs=30.29x102N.ms/rad,
Jt=83.00x104kg.m2

Generator parameters
Bg=15.99 N.ms/rad, Jg=5.9 kg.m2

Pitch actuator
τ=100 ms.

III. CONTROL STRATEGY

To control a given system, the controller design includes
two steps: the first step for identification and prediction of
WECS by quasi-ARX neural network model; and the second
step for deriving and implementing control law. In Fig. 5, we
shows the adaptive controller scheme based on quasi-ARX
model. To regulate turbine speed at MPPT operating point
is performed by using blade pitch control, with generator
torque assumed to be constant.

Fig. 5. Block diagram of the MPPT controller of WECS.

A. System Identification

Through using Taylor expansion series [8], [10], nonlinear
continuous function can be presented as

y(t) = y0 + ϕT (t)ℵ(ϕ(t)) + e(t) (13)

where
ℵ(ϕ(t)) = [a(1,t) · · · a(ny,t) b(1,t) · · · b(nu,t)]

T and ϕ(t) =
[−y(t − 1) · · · − y(t − ny) u(t − 1) · · ·u(t − nu)]

T are
Taylor coefficients (nonlinear parameter estimation) and the
information or input regression vector, respectively. ϕ(t) ∈
Rn=nu+ny , n is the dimension of information vector, equals
to the sum of nu and ny that represent orders of time delay
in input and output data. ℵ(ϕ(t)) ∈ Rn=nu+ny is a function
called as the core-part sub-model to parameterize the input
regression vector. e(t) and y0 are gaussian white noise added
to the system and initial condition of output, respectively.
Assumption 1. The pairs of the input and output of training
data are bounded.
Assumption 2. The input and output of nonlinear function
ℵ(ϕ(t)) are bounded.

By performing Taylor expansion series, nonlinear system
is decomposed into linear correlation between the informa-
tion vector and its coefficients. It is the same in form like
ARX model with nonlinear coefficients. If the system is
linear, then the coefficients are constant; and if the system is
nonlinear, then the coefficients are not constant or nonlinear.
By putting nonlinear function into its coefficients, quasi-
linear ARX model is defined as follows,

y(t, ϕ(t)) = b(1,t)u(t− 1) + · · ·+ b(nu,t)u(t− nu)

− a(1,t)y(t− 1)− · · · − a(ny,t)y(t− ny). (14)

The system identification are performed by quasi-ARX neu-
ral network model is shown in Fig. 6. The embedded of MLP
network of quasi-ARX model has input dimension of ϕ(t) is
equal to n, the number of hidden layer is m and the number
of output layer is n. The quasi-ARX incorporating neural
network can be expressed as,

y(t, ϕ(t)) = ϕT (t)ℵ(ϕ(t)) (15)
ℵ(ϕ(t)) = W2ΓW1(ϕ(t) +B) + θ. (16)

where Ω = {W1,W2, B, θ},W1 ∈ Rmxn,W2 ∈ Rnxm, B ∈
Rmx1 are the weights matrix the first and the second layer.
θ ∈ Rnx1 is the bias vector of output nodes, and Γ is
the diagonal nonlinear operator with identical sigmoidal
elements on hidden nodes.
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Fig. 6. Quasi-ARX neural network with MLP network as embedded
systems.

If model in (15) satisfies to mapping the input-output of the
system, and Assumption 1. and Assumption 2. are fulfilled,
then we can estimate the output of the system at time (t+d).
The equation (15) is regressed at time (t + d) to calculate
the output at d step ahead prediction, described as,

y(t+ d, ϕ(t+ d)) = b̂(1,t+d)u(t+ d− 1) + · · ·+
b̂(nu,t+d)u(t− nu + d)− â(1,t+d)y(t− 1 + d)

− · · · − â(ny,t+d)y(t− ny + d) (17)

where, ϕ(t + d) = [y(t + d − 1) y(t + d − 2) · · · y(t + d −
ny) u(t+ d− 1) u(t+ d− 2) · · ·u(t+ d− nu)]

T , for online
step ahead prediction d is equal to one.

The learning algorithm for quasi-ARX model is per-
formed by the back propagation error algorithm for em-
bedded MLP network and LSE algorithm for the to
update θ. Let we introduce two sub-models zl(k) =
y(t, ϕ(t))−ϕ(t)[W2(k)ΓW1(k)(ϕ(t)+B(k))]T , and zn(k) =
y(t, ϕ(t)) − ϕ(t)θ(k)T , and k is the learning number. The
step of learning algorithm of quasi-ARX neural network is
described by,

1) set k = 0 for initial conditions, θ(k) = 0; and small
initial values to W1(k), W2(k), and B(k), then set
k = 1, where k is the learning number.

2) calculate zl(k), then estimate θ(k) for by using a least-
squares error algorithm.

3) calculate zn(k), then estimate W1(k), W2(k), and
B(k). It is realized by using the well-known back-
propagation (BP) algorithm.

4) use the (16) to update ℵ(k, ϕ(t))
5) stop if pre-specified conditions are met and update

ℵ(ϕ(t)) by using ℵ(k, ϕ(t)), otherwise go to Step 2,
and repeat the estimation of θ(k), and W1(k), W2(k),
and B(k), set k = k + 1.

B. Controller Design

The quasi-ARX prediction model is improved to guarantee
system stability expressed by

y(t, ϕ(t)) = ϕT (t)ℵ(ϕ(t), χ(t)) (18)
ℵ(ϕ(t), χ(t)) = χ(t)W2ΓW1(ϕ(t) +B) + θ. (19)

where W2ΓW1(ϕ(t) +B) is nonlinear part, θ is linear part.
Obviously, through introducing the switching function χ(t),
the improved quasi-ARX neural network model is different
from the conventional quasi-ARX model. When χ(t) = 1, it is

a nonlinear prediction model which can insure the prediction
accuracy. And when χ(t) = 0, it is a linear prediction model
which can insure the control stability [18].

The linear part error and nonlinear part error, respectively
is defined as follows :

e1(t) = y(t+ d)− ϕ(t+ d)T θ. (20)
e2(t) = y(t+ d)− ϕ(t+ d)ℵ(ϕ(t+ d)). (21)

The switching criterion function are described as follows:

Ji(t) =
t∑

l=k

ai(l)(∥ei(l)∥2 − 4△2)

2(1 + ai(l)ϕ(l − k)Tϕ(l − k)

+ c
t∑

l=t−N+1

(1− ai(l)∥ei(l)∥2), i = 1, 2 (22)

χ(t) =

{
1, if J1(t) > J2(t)
0, otherwise (23)

The value of △ is determined by designer where △ ≤
ϕ(t)ℵ(ϕ(t)). The detail of switching technique and its sta-
bility analysis refer to [18].

A minimum variance controller is used for WECS, define
as follows,

M(t+ 1) =

(
1

2
(y(t+ d)− y∗(t+ d))2 +

λ

2
u(t)2

)
(24)

where λ is a weight of control input, the controller can be
obtained by solving,

∂M(t+ 1)

∂u
= 0 (25)

In the case where a conventional neural network is used as
a prediction model, a controller can not be derived directly
from an identified model because of the nonlinearities. How-
ever, the quasi-ARX neural network model is linear in the
input variable u(t). Therefore, a controller is derived from
the proposed model [8], [18]:

u(t) =
b̂1(t)

b̂21(t) + λ
((b̂1(t)− b̂(q−1, ϕ(t))q)u(t− 1)

+ y∗(t+ 1)− â(q−1, ϕ(t))y(t)) (26)

IV. SIMULATION AND RESULTS

To further demonstrate the effectiveness of the proposed
MPPT control strategy, the control action is to arrange blade
pitch ratio β to track angular velocities of turbine operating in
MPPT point. The pitch angle command signal is determined
by the wind speed and pitch angle. Wind speed is generated
by ARMA model with the mean observed wind speed of
µ(t) = 12 m/s and the standard deviation of the observed
wind speed of σ(t) = 1.5. The results of simulation in detail
are shown in Fig. 7 - Fig. 13. In order to obtain maximum
output power from a wind turbine generator system, it is
necessary to drive the wind turbine at an optimal rotor speed
for a particular wind speed.

The kernel of MIMO multi layer parceptron neural net-
works has one hidden layer, nu=3, ny=4, and m=nu+ny=7.
The parameter of switching criterion c=1.2 and N=3. Fig. 7
and Fig. 8 illustrate the WECS response in the MPPT
operating point. Before t = 0s,V = 12.48m/s, MPPT
power tracking 1.45MW , β = 0deg, angular velocity
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Fig. 7. Wind speed.
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Fig. 8. MPPT aerodynamic power.
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Fig. 9. Control signal.
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Fig. 10. Trajectory of ωt of minimum variance controller with switching
based quasi-ARX model.
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Fig. 11. Tracking error of turbine angular velocity.

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

S
w

itc
h

in
g

Time (sec)

Fig. 12. Switching sequance.
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Fig. 13. RMS error versus time.

ωt = 4.12rad/s. When the wind speed change to decrease
or increase the MPPT power also should be change in order
to keep maximum operating point of WECS with arrange
turbine rotor speed ωt by controlling blade pitch ratio β.
Fig. 9 and Fig. 10 shows the control signal and wind turbine
rotor speed tracking. The dot dash line denotes the output of
system using proposed method and solid line denotes rotor
speed reference ωt in MPPT operating point, respectively.

The tracking error of turbine rotor speed is shown in
Fig. 11. Switching function between nonlinear and linear part
to keep system stability and control accuracy is shown in
Fig. 12. The performance of the proposed controller is also
measured by the rooted mean squared (RMS) error index
versus time shown in Fig. 13 defined as,

RMS =

√∑N
t=1(y

∗(t)− y(t))2

t
(27)

where y∗(t) is the reference signal and y(t) is the controlled
system output.

V. CONCLUSION

In this paper, quasi-ARX neural network model is used to
identification and prediction nonlinear system. The controller
design is derived from the proposed model with switching
function to keep system stability. Switching law a made by
logical signal 0 for linear part and 1 for nonlinear part,
as we know quasi-ARX neural network model is divided
into two part; nonlinear and linear. The quasi-ARX model
also has good properties, it is used to modeling a system
into linear correlation between regression vector and its
coefficients, so it is easy to derive the controller law by using
local linear properties in nonlinear system such as minimum
variance controller. By using minimum variance controller
with switching law, the proposed model successfully is used
to track maximum power point tracking (MPPT) of WECS.
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