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Abstract—This paper compares the minimization of error in 

training of prediction models for life insurance, created with 

multilayer neural networks, using gradient descent and scaled 

conjugate gradient methods. This involves searching for the 

minimum of the error energy function, by providing a 

corrective adjustment of the synaptic weights for the neurons of 

the hidden layers. Convergence for gradient descent method of 

training the network is tested and compared with the 

convergence of scaled conjugate gradient method. Experiments 

are performed for developing the prediction models in 

MATLAB and SPSS packages, with data sets taken from the 

life insurance sector. 

 
Index Terms—Gradient descent, learning algorithms, neural 

networks, scaled conjugate gradient, supervised learning 

 

I. INTRODUCTION 

RTIFICIAL neural networks are employed to solve 

challenging and abstruse problems, which can’t be 

solved with traditional statistical techniques, because the 

earlier techniques require a lot of initial hypothesis and 

assumptions and fail to approximate nonlinear, stochastic 

and multidimensional functions. Neural networks can be 

utilized to find an approximation in the desired limits of 

accuracy, for nonlinear and complicated functions, which are 

prevalent in the real world problems and situations. Training 

a prediction model based on neural network is fundamentally 

an optimization problem and is to optimize the neural 

network parameters to reach a state of minimum error of 

prediction. The training algorithms for neural networks 

involve iteratively adjusting the synaptic weights between 

the layers of the network till a desired relationship between 

input and output functions is achieved, by searching for the 

point of minimum of error energy function. 

The network is trained in a supervised manner to 

minimize the error energy within the desired limits. We 

proceed in a direction towards the minima of 

multidimensional error surface in small steps until we reach 
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and optimize for the point of minimum of the error function. 

A variety of training algorithms have been developed to 

search for the point of minimum error with their own plus 

and minus and here we compare the performance of gradient 

descent algorithm with scaled conjugate gradient algorithm 

based on supervised learning, by creating and experimenting 

with the prediction models employing data sets from life 

insurance sector. 

 

 
Fig. 1. Prediction modeling based on artificial neural network. 

 

II. REVIEW OF LITERATURE AND BACKGROUND MOTIVATION 

Gradient descent is a first order error optimization method 

for training of neural networks based prediction models and 

several attempts have been proposed to improve the 

efficiency of the method. Unfortunately, even for mildly 

nonlinear problems, this method shows a poor convergence 

and is not useful for such kind of practical applications [1]. 

Instead, more powerful methods such as Quasi–Newton [2]–

[4] and conjugate gradient techniques are frequently 

preferred for training of the network in nonlinear cases. Use 

of second order derivative methods to improve the 

convergence speed is done because these methods show 

faster learning speeds in comparison to the methods, which 

only use first order gradient descent technique [5]. 

On the other hand, Newton's method converges much 

faster towards a local maximum or minimum than gradient 

descent, because it is second order optimization method [6] 

and approximates the second order terms of Taylor’s 

expansion as hessian matrix [7]. Newton's method uses 

curvature information to take a more direct route toward 

minimum. But computation of hessian is a big problem in 

these methods [8], [9], when there are more predictor 

variables and network is large in size or large weight vector. 

A modification over Newton's method, Gauss–Newton 

method is to minimize a sum of squared function values and 

has the advantage that challenging computation of second 

order derivatives is not required. But, the main shortcoming 
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of Gauss–Newton based deterministic method is that the 

convergence to the global minima is not assured and also the 

estimation results strongly depend upon the initial choice of 

the input variables. 

Levenberg Marquardt Algorithm (LMA) provides a 

numerical solution to the problem of minimizing the error 

function, which is generally nonlinear in nature. LMA 

actually interpolates [10] between Gauss–Newton Algorithm 

(GNA) and the method of gradient descent and is considered 

a trust region modification to Gauss–Newton Algorithm 

[11]. LMA is more robust than the GNA, because in many 

cases, it finds a solution even if its starting point is very far 

off the final minimum. 

The chief advantage of Quasi–Newton methods is that the 

hessian matrix of second derivatives need not be evaluated 

directly but an approximation for the hessian is computed 

[12], [13], which is specified by approximate error energy 

gradient evaluation. But, on the negative side, Quasi–

Newton algorithm requires more computation per iteration 

and more storage than the conjugate gradient methods, 

although it generally converges in less number of iterations. 

When weight dimension is large then conjugate gradient 

algorithm (CGM) is preferable to Quasi–Newton methods in 

computational terms [14]. 

The conjugate gradient algorithm [15] moves toward the 

point of minima using the error gradient and moving along 

successive noninterfering directions. It makes use of a line 

search method to compute the optimal step size along a line 

in the search direction to jump accurately inside valley of 

error surface. The line search bypasses the need to calculate 

the hessian matrix of second derivatives, but it requires 

computing the error at a number of points along the line. 

Computation of scalar β, which defines the relationship 

between noninterfering directions and selects the next search 

direction, is possible in several ways like Hestenes and 

Stiefel variation [16], Fletcher and Reeves variation [17], 

Daniel variation [18], Polak and Ribiere variation [19], [20] 

and some new variations like Dai and Yuan variation [21] 

and Hager and Zhang variation [22]. The direction of error 

minimization is always chosen such that the minimization 

steps in all previous directions are not spoiled [23]. The 

conjugate gradient methods consume comparatively less 

memory for large data size problems but they usually 

converge much more slowly than Newton or Quasi–Newton 

methods and require more number of iterations each time to 

find the next acceptable step. The method of conjugate 

gradients provides an effective way to optimize large, 

deterministic systems; however, it is not amenable to 

stochastic settings and tends to diverge. 

The scaled conjugate gradient method bypasses the time 

consuming line search along conjugate directions [24], [25] 

and is considered to be the fastest one among the well 

known algorithms and in comparison to gradient decent 

algorithm for larger networks. When viewed as LMA, this 

method controls the indefiniteness in computation of second 

order hessian with help of a scalar parameter. It suppresses 

the instability by combining the trust region approach from 

the LMA with the CGM approach. This enables scaled 

conjugate gradient method to calculate the optimal step size 

in the selected search direction without complex and 

expensive computation of line search used by the traditional 

conjugate gradient algorithms. But, there is a cost involved 

in estimation of the second order derivatives. 

 

III. TECHNIQUES EMPLOYED FOR TRAINING THE NETWORK 

A. Gradient (Steepest) descent method 

In this method, we move near to the point of minimum 

error in small steps on the multidimensional error surface, in 

a direction opposite of the error gradient to search for the 

point of minima on the error surface [26]. It is shown in the 

Fig. 2. for a three dimensional error surface and it is difficult 

to visualize the error surface for higher dimensions. 

 

 
Fig. 2. A cross-section of three dimensional error surface in employing 

gradient descent method for weight update in training of the network. 

 

If we train our prediction model for N number of data 

points for the given data set and use error back propagation 

[27], [28] as supervised method for learning of the network, 

then overall training error present in the output layer for the 

n
th

 data point is calculated as: 
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Where, dataset D comprises of all the output neurons 

present in the output layer of the network model. For n
th 

data 

point of the employed data set, 
n

jT  represents desired target 

output and 
n

jO  represents actual observed output from the 

designed system, for the j
th

 output neuron in the output layer. 

Now, the gradient of overall error energy for n
th

 data point 

i.e. changes of error energy w. r. t. weight values can be 

calculated as: 
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Where, jiw  represents the synaptic weights from the i
th

 

neuron in the previous hidden layer to the j
th

 neuron in the 

output layer.  

Using the chain rule of differentiation, we can rewrite ng  

as: 
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Now, from (1), we can say that: 
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Also, in a multilayer perceptron neural network, output of 

any neuron present in the output layer is written as: 
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Here, iI  represents the input from i
th

 neuron in previous 

layer. Now, using (2), (3) and (4), we can write: 
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In order to move towards point of minimum error, a 

corrective weight adjustment must be applied in the reverse 

direction of error gradient, therefore, we can write: 

 

ijjji IOTw )(   

 

And thus, next updated values of the synaptic weights are 

computed in terms of previous weight values as: 
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Equation (6) is rewritten as (7), by introducing a control 

parameter
.
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The learning rate parameter   regulates the speed at 

which we move toward the point of minimum error on the 

error surface and decides for the rate at which the network 

learns. Also performance of gradient descent is dependent 

upon type of back propagation used like incremental back 

propagation (IBP), batch back propagation (BBP) or Quick 

Propagation (QP) [29]. 

B. Scaled conjugate gradient method 

When computing the error energy for the next iteration, 

the scaled conjugate gradient method computes a numerical 

estimate close to the second order derivatives, instead of 

computing complex hessian matrix. In the k
th

 iteration, a new 

search direction kd  and a new step size k  are calculated 

to find the new values for the weight vector for the network, 

such that: 
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The quadratic approximation to )( kWE  in a 

neighbourhood of a point kW  is given by the Taylor’s 

expansion [30]: 
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Since it is time consuming and takes more memory to 

compute the hessian )( kWE   therefore, second order 

information kO  in terms of error gradient is approximated 

and computed as: 
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Where, )( kWE  is the overall error energy in employing 

supervised learning, kW  denotes the weight vector for k
th

 

iteration, )( kWE  is the gradient of error energy. The 

parameter k  sets the incremental change in the weight 

vector for the second derivative approximation. 

In this method, the trust region case of Levenberg 

Marquardt Algorithm is applied with the conjugate gradient 

approach to compute for the next step size. A new control 

variable kc  is introduced to regulate the indefiniteness 

of )( kWE  . This is done by setting: 
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And side by side we keep on computing k

T

kk Od  for 

checking the indefiniteness of )( kWE  . 

In each iteration, we keep on adjusting kc , looking at the 

sign of k , and it shows that hessian )( kWE   is not 

positive definite. If 0k  then kc  is slightly increased 

and kO  is computed again. 

Every time, the updated weight vector is computed as: 

 

kkkk dWW 1  

 

We keep on computing the new weight values until we 

reach the point of desired minimum by utilizing the above 

mentioned technique or stopping criterion for the training 

algorithm is met. 
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IV. EXPERIMENTAL OUTCOMES 

Data sets of very large size, extracted from the running 

data warehouse in life insurance sector are used for training 

and testing of the prediction models for life insurance. These 

models based on the error back propagation technique with 

various error minimization learning algorithms under 

consideration are experimented with variety of model 

configurations with changed values of network parameters. 

The output variable, type of policy taken by the customer, is 

approximated for a set of input predictor variables like 

customers’ age, area and occupation of policy holders. The 

simulations are developed and tested in MathWorks 

MATLAB software and IBM SPSS software. Training 

performance, error gradient and time taken to converge for 

minimum gradient values are observed to check for the 

efficiency of algorithms. 

For developing all prediction models, we have simulated 

neural networks with tan–sigmoid transfer function at the 

hidden layer for normalizing the data signal coming from 

previous layers. We have tried a variety of configurations for 

the neural network with number of neurons in the hidden 

layer varying from 10 to 50. But 15 neurons in the hidden 

layer seem to be the optimal configuration for the data set 

and training methods under consideration. 

Plots of training performance for different training 

methods, showing variation of mean square error verses 

numbers of epochs are shown in Fig. 3. to Fig. 5. as follows:

 

 
Fig. 3. Training performance plot when employing gradient descent method 

 

 
Fig. 4. Training performance plot when employing conjugate gradient method 

 

 
Fig. 5. Training performance plot when employing scaled conjugate gradient method 
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The error gradient plots, employing different training 

methods are shown in Fig. 6. to Fig. 8. These graphs show 

the variation of error gradient with number of epochs. These 

plots also show the initial and final values of the gradients. It 

has been observed that gradient decent was unable to 

accomplish the target value of 0.0001 even in the 1000
th

 

epoch and on the other hand conjugate gradient method 

achieved the target in 135 epochs but the best and fastest 

output was accomplished with the scaled conjugate gradient 

training function in 119 epochs, showing excellent accuracy 

in minimum time of convergence. 

We have developed a total of 66 simulations for 

prediction models of life insurance in MATLAB and 9 are 

developed in SPSS. The training results obtained with 

MATLAB for different training methods are as shown in 

Table I, which are the best performance values.

 

 
Fig. 6. Gradient plot when employing gradient descent method 

 

 
Fig. 7. Gradient plot when employing conjugate gradient method 

 

 
Fig. 8. Gradient plot when employing scaled conjugate gradient method 

 
TABLE I 

SUMMARY OF OPTIMAL RESULTS WHEN EMPLOYING DIFFERENT TRAINING METHODS 

Training 

Method 

Hidden Layer 

Neurons 

Minimum 

Gradient 

Transfer 

Function 

Final 

Epochs 

Training 

Time 

Training 

Performance 

Initial 

Gradient 

Final 

Gradient 

Gradient Descent 15 0.0001 TANSIG 1000 0:16:14 0.0566 0.646 3.20E-02 

Conjugate Gradient 15 0.0001 TANSIG 135 0:07:24 0.039 0.676 6.96E-05 

Scaled Conjugate Gradient 15 0.0001 TANSIG 119 0:04:41 0.0375 0.447 8.04E-05 

Experimental results with MATLAB (Neural Network Toolbox) software. 
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V. CONCLUSIONS AND FUTURE SCOPE 

Training of neural network based prediction models, when 

applied to life insurance data, the scaled conjugate gradient 

method shows faster convergence in comparison with simple 

gradient descent and conjugate gradient methods. On an 

average, it shows approximately 3½ times faster 

convergence than simple gradient descent method toward 

minimum error.  Moreover, our experiments indicate that 

gradient decent could train the models, maximum in the 

limits of order of 10
-3

, but scaled conjugate gradient was 

able to train the network to an accuracy level of the order of 

10
-4

 and 10
-5

. Further, the results obtained by increasing the 

number of neurons in hidden layers from perceived optimal 

values only seem to increase the complexity of the network 

and don’t achieve any improvement in error correction. 

However, analysis of problem can be extended in different 

angles like studying the effects of network parameters like 

number of neurons, hidden layers, learning rate and other 

network parameters etc. and drive mathematical 

formulations for optimal values of these parameters. Finding 

of new techniques and algorithms for more speedy training 

of the network model with faster convergence and prediction 

accuracy and guaranteed search for global minima in error 

surface are major works for future research. 
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