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Abstract—In this paper, we suggest a hybrid extragradient
method for finding a common element of the set of fixed point
sets of an infinite family of nonexpansive mappings and the
solution set of the split feasibility problem (SFP) in real Hilbert
spaces.
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I. I NTRODUCTION

T HROUGHOUT this paper, letH be a real Hilbert space,
whose inner product and norm are denoted by〈·, ·〉 and

‖·‖, respectively. LetC andQ be a nonempty closed convex
subset of infinite-dimensional real Hilbert spacesH1 andH2,
respectively. The split feasibility problem (SFP) is to find a
point x∗ with the property:

x∗ ∈ C and Ax∗ ∈ Q, (1)

whereA ∈ B(H1, H2) andB(H1, H2) denotes the family
of all bounded linear operators fromH1 to H2.

We useΓ to denote the solution set of the (SFP), i.e.,

Γ = {x∗ ∈ C : Ax∗ ∈ Q}.
In 1994, the SFP was introduced by Censor and Elfving

[1], in finite dimensional Hilbert spaces, for modeling inverse
problems which arise from phase retrievals and in medical
image reconstruction and many researches; see, e.g., [2–5].

A special case of the SFP is the following convex con-
strained linear inverse problem [6] of finding an elementx

such that

x ∈ C such that Ax = b. (2)

This problem, due to its applications in many applied
disciplines, has extensively been investigated in the literature
ever since Lanweber [7] introduced his iterative method in
1951.

In 2002, Byrne [2] proposed his CQ algorithm to solve (1).
The sequence{xn} is generated by the following iteration
scheme:

xn+1 = PC(I − γA∗(I − PQ)A)xn, n ∈ N, (3)
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whereγ ∈ (0, 2
λ
), with λ being the spectral radius of the

operatorA∗A.
The variational inequality problemV I(C,A) is to find

u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (4)

Variational inequality theory has emerged as an important
tool in studying a wide class of obstacle, unilateral and
equilibrium problems, which arise in several branches of pure
and applied sciences in a unified and general framework.
Several numerical methods have been developed for solving
variational inequalities and related optimization problems,
see, e.g., [8–10]. Let us start with Korpelevich’s extragradient
method which was introduce by Korpelevich [10] in 1976
and which generates a sequence{xn} via the recursion;

{

yn = PC(xn − λAxn),
xn+1 = PC(xn − λAyn), n ≥ 0,

(5)

wherePC is the metric projection fromRn ontoC,A : C →
H is a monotone operator andλ is a constant. Korpelevich
[10] prove that the sequence{xn} converges strongly to a
solution ofV I(C,A). Note that the setting of the problems
in the Euclidean spaceRn.

We note that Nadezhkina and Takahashi [11] employed
the monotonicity and Lipschitz-continuity ofA to define a
maximal monotone operatorT as follows:

Tv =

{

Av +NCv if v ∈ C,

∅ if v 6∈ C.
(6)

whereNCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C} is the
normal cone toC at v ∈ C (see, [12]). However, if the
mappingA is a pseudomonotone Lipschitz-continuous, then
T is not necessarily a maximal monotone operator.

Yu, Yao and Liou [13] introduced a new iterative method
as follows:























x1 = x0 ∈ C,

yn = PC(xn − λnAxn),
zn = αnxn + (1− αn)WnPC(xn − λnAyn),
Cn+1 = {z ∈ Cn : ‖zn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1

x0, n ≥ 1,

(7)

under their condition, they proved that the sequences
{xn}, {yn} and {zn} converge strongly to the same point
P∩∞

n=1
Fix(Sn)∩Ωx0.

Ceng, Ansari and Yao [14] introduce an extragradient
method for solving split feasibility and fixed point problems.
They propose the following method:






x0 = x ∈ C,

yn = PC(xn − λn∇fαn
xn),

xn+1 = βnxn + (1− βn)SPC(xn − λn∇fαn
yn).

(8)

They prove that the sequences{xn} and {yn} converge
weakly to the same elemaentx̂ ∈ Fix(S) ∩ Γ.
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In 2013, Ceng, Wong and Yao [15] investigate the hybrid
extragradient-like iteration algorithm with regularization:















































x0 = x ∈ C,

yn = PC(xn − λn∇fαn
xn),

zn = (1− βn − γn)xn + βnyn
+γnSPC(xn − λn∇fαn

yn),
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2
+2αnλnk(k + ‖y‖)},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn

x0,

(9)

They prove the sequences{xn}, {yn} and {zn} converge
strongly toq = PFix(S)∩Γx0.

Motivated and inspired by the works of Nadezhkina and
Takahashi [11], Yu, Yao and Liou [13] and Ceng, Ansari
and Yao [14], and Ceng, Wong and Yao [15], in this
paper we suggest a hybrid shrinking method for finding a
common element of the set of solution of the split feasibility
problem and common fixed points of an infinite family of
nonexpansive mappings.

II. PRELIMINARIES

We write xn → x (respectively,xn ⇀ x), the strong
(respectively, weak) convergence of the sequence{xn} to x.
Recall that a mappingS defined onC of H is nonexpansive
if there holds that‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C and the
set of fixed points ofS by Fix(S).

The metric (or nearest point) projection fromH onto C

is the mappingPC : H → C which assigns to each point
x ∈ H the unique pointPCx ∈ H satisfying the property

‖x− PCx‖ = inf
y∈C

‖x− y‖ =: d(x,C). (10)

Proposition 1. For givenx ∈ H and z ∈ C :

(i) z = PCx ⇔ 〈x− z, y − z〉 ≤ 0, ∀y ∈ C.

(ii) z = PCx ⇔ ‖x− z‖2 ≤ ‖x− y‖2 − ‖y− z‖2, ∀y ∈ C.

(iii) 〈PCx−PCy, x− y〉 ≥ ‖PCx−PCy‖2, ∀y ∈ H, which
implies thatPC is nonexpansive and monotone.

Definition 2. Let T be a nonlinear operator whose domain
is D(T ) ⊆ H and whose range isR(T ) ⊆ H .

(i) T is monotone if

〈x − y, Tx− Ty〉 ≥ 0, ∀x, y ∈ D(T ).

(ii) Given a numberβ > 0, T is said to beβ-strongly
monotone if

〈x− y, Tx− Ty〉 ≥ β‖x− y‖2, ∀x, y ∈ D(T ).

(iii) Given a numberν > 0, T is said to beν-inverse strongly
monotone(ν-ism) if

〈x− y, Tx− Ty〉 ≥ ν‖Tx− Ty‖2, ∀x, y ∈ D(T ).

It can be easily seen that ifS is nonexpansive, thenI−T

is monotone. It is also easy to see that a projectionPC is
1-ism.

A mappingT : H → H is said to be beaveragedmapping
if it can be written as the average of the identityI and a
nonexpansive mapping, that is,

T ≡ (1− α)I + αS,

whereα ∈ (0, 1) andS : H → H is nonexpansive. More
precisely, when the last equality holds, we say thatT is α-
averaged. Thus firmly nonexpansive mappings (in particular,
projection) are1

2 -averaged maps.

Proposition 3. [16] Let T : H → H be a given mapping.
Then consider the following.

(i) T is nonexpansive if and only if the complementI − T

is 1
2 -ism.

(ii) T is averaged if and only if the complementI − T is
ν-ism for someν > 1

2 . Indeed, forα ∈ (0, 1), T is
α-averaged if and only ifI − T is 1

2α -ism.
(iii) The composite of finite many averaged mappings is

averaged. That is, if each of the mappings{Ti}ni=1 is
averaged, then so is the compositeT1 ◦T2 ◦ . . .◦TN . In
particular, if T1 is α1-averaged andT2 is α2-averaged,
whereα1, α2 ∈ (0, 1), then the compositeT1 ◦ T2 is
α-averaged, whereα = α1 + α2 − α1α2.

Recall that a Banach space is said to satisfies the Opial
condition [17] ; i.e., for any sequence{xn} in X the
condition that{xn} converges weakly tox ∈ X implies
that the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖,

holds for everyy ∈ X with y 6= x. It is well-known that
every Hilbert spaces satisfies the Opial condition.

Let {Si}∞i=1 be an infinite family of nonexpansive map-
pings of C into itself and let {ξi}∞i=1 be real number
sequences such that0 ≤ ξi ≤ 1 for every i ∈ N. For any
n ∈ N, define a mappingWn of C into itself as follows:

Un,n+1 = I,

Un,n = ξnSnUn,n+1 + (1 − ξn)I,

Un,n−1 = ξn−1Sn−1Un,n + (1− ξn−1)I,

...

Un,2 = ξ2S2Un,3 + (1− ξ2)I,

Wn = Un,1 = ξ1S1Un,2 + (1− ξ1)I. (11)

SuchWn us called theW -mapping generated by{Si}∞i=1

and{ξi}∞i=1.

Lemma 4. Let C be a nonempty closed convex subset of a
real Hilbert spaceH . Let S1, S2, . . . be nonexpansive map-
pings ofC into itself such that∩∞

n=1Fix(Sn) is nonempty,
and letξ1, ξ2, . . . be real numbers such that0 < ξ1 ≤ b < 1
for any i ∈ N. Then, for everyx ∈ C and k ∈ N, the limit
limn→∞ Un,kx exists.

Lemma 5. Let C be a nonempty closed convex subset of a
real Hilbert spaceH . Let S1, S2, . . . be nonexpansive map-
pings ofC into itself such that∩∞

n=1Fix(Sn) is nonempty,
and letξ1, ξ2, . . . be real numbers such that0 < ξ1 ≤ b < 1
for any i ∈ N. Then,Fix(W ) = ∩∞

n=1(Sn).

Lemma 6. [18] Using Lemmas 4 and 5, one can define a
mappingW of C into itself as:Wx = limn→∞ Wnx =
limn→∞ Un,1x, for every x ∈ C. If {xn} is a bounded
sequence inC, then we have

lim
n→∞

‖Wxn −Wnxn‖ = 0.
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We also need the following well-known lemmas for prov-
ing our main results.

Lemma 7. ([19], Demiclosedness Principle). LetC be a
nonempty closed and convex subset of a real Hilbert space
H and let S : C → C be a nonexpansive mapping with
Fix(S) 6= ∅. If the sequence{xn} ⊆ C converges weakly
to x and the sequence{(I −S)xn} converges strongly toy,
then(I−S)x = y; in particular, if y = 0, thenx ∈ Fix(S).

Lemma 8. [20] Let C be a closed convex subset ofH . Let
{xn} be a sequence inH and u ∈ H . Let q = PCu. If
{xn} is such thatωω(xn) ⊂ C and satisfies the condition
‖xn − u‖ ≤ ‖u− q‖, ∀n ∈ N. Thenxn → q.

Lemma 9. [21] Let H be a real Hilbert space. Then the
following equations hold:
(i) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H ;
(ii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H ;
(iii) ‖tx+(1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2− t(1− t)‖x−

y‖2, ∀t ∈ [0, 1] and x, y ∈ H .

Throughout this paper, we assume that the SFP is consis-
tent, that is, the solution setΓ of the SFP is nonempty. Let
f : H1 → R be a continuous differentiable function. The
minimization problem:

min
x∈C

f(x) :=
1

2
‖Ax− PQAx‖2 (12)

is ill-posed. Therefore, (see [5]) consider the following
Tikhonov regularize problem:

min
x∈C

fα(x) :=
1

2
‖Ax− PQAx‖2 +

1

2
α‖x‖2, (13)

whereα > 0 is the regularization parameter. The regularized
minimization (13) has a unique solution which is denoted by
xα.

It is know thatx∗ is a solution of the SFP if and only if
x∗ solves the fixed point equation:

PC(I−λ∇f)x∗ = PC(I−λA∗(I−PQ)A)x
∗ = x∗. (14)

It is proved in [5, Proposition 3.2].

Lemma 10. [5] The following hold:
(i) Γ = F (PC(I − λ∇f)) = V I(C,∇f) for any λ > 0,

whereF (PC(I − λ∇f)) and V I(C,∇f) denoted the
set of fixed point ofPC(I − λ∇f) and the solution set
of VIP;

(ii) PC(I − λ∇fα) is ξ-averaged for each λ ∈
(0, 2

(α+‖A‖2) ), whereξ = (2+λ(α+‖A‖2))
4 .

Proposition 11. [14] There hold the following statement:
(i) the gradient

∇fα = ∇f + αI = A∗(I − PQ)A+ αI

is (α + ‖A‖2)-Lipschitz continuous andα-strongly
monotone;

(ii) the mappingPC(I − λ∇fα) is a contraction with
coefficient
√

1− λ(2α− λ(‖A‖2 + α)2)(≤
√
1− αλ ≤ 1− 1

2
αλ),

where0 < λ ≤ α
(‖A‖2+α)2 ;

(iii) if the SFP is consistent, then the stronglimn→∞ xα

exists and is the minimum norm solution of the SFP.

III. M AIN RESULTS

Theorem 12. Let C be a nonempty closed convex subset
of a real Hilbert spaceH . Let {Sn}∞n=1 be an infinite
family of nonexpansive mappings ofC into itself such that
∩∞
n=1Fix(Sn)∩Γ 6= ∅. Letx1 = x0 ∈ C. For x1 ∈ C,C1 =

C, let {xn}, {yn} and {zn} be the sequences generated as






















yn = PC(xn − λn∇fαn
xn),

zn = βnxn + (1 − βn)WnPC(xn − λn∇fαn
yn),

Cn+1 = {z ∈ Cn : ‖zn − z‖2 ≤ ‖xn − z‖2
+2αnλnk(k + ‖y‖)},
xn+1 = PCn+1

x0, n ≥ 1,

(15)

where {Wn : n ≥ 1} are W -mappings of (11),
supp∈∩∞

n=1
Fix(Sn)∩Γ ‖p‖ ≤ k for somek ≥ 0, and the

following conditions:

(i) limn→∞ αn = 0;
(ii) {λn} ⊂ [a, b] for somea, b ∈ (0, 1

‖A‖2 );
(iii) {βn} ⊂ [c, d] for somec, d ∈ (0, 1);

then the sequences{xn}, {yn} and {zn} generated by (15)
converge strongly to the same pointP∩∞

n=1
Fix(Sn)∩Γx0.

Proof: By Lemma 10 (ii), we getPC(I − λ∇fα)
is ζ-averaged for eachλn ∈ (0, 2

α+‖A‖2 ), where ζ =
2+λ(α+‖A‖2)

4 ∈ (0, 1). It is known thatPC(I − λ∇fα) is
nonexpansive. Furthermore, for{λn} ∈ [a, b] with a, b ∈
(0, 1

‖A‖2 ), PC(I − λn∇fαn
) is ζn-averaged withζn =

2+λn(αn+‖A‖2)
4 ∈ (0, 1). It is known thatPC(I − λn∇fαn

)
is nonexpansive for alln ≥ 0.

Step 1.We will show
(1) EveryCn is closed and convex,n ≥ 1;
(2) ∩∞

n=1Fix(Sn) ∩ Γ ⊂ Cn+1, ∀n ≥ 1;
(3) {xn+1} is well-defined.

First, we note thatC1 = C is closed and convex. Assume
that Ck is closed and convex. From (3) and sinceCk+1 =
{z ∈ Ck : ‖zk−xk‖2+2〈zk−xk, xk−z〉 ≤ 2λkαk(‖yk‖+
k)}. Thus, Ck+1 is closed and convex. By induction, we
deduce thatCn is closed and convex for alln ≥ 1.

Next, we show that∩∞
n=1Fix(Sn) ∩ Γ ⊂ Cn+1, ∀n ≥ 1.

Setgn = PC(xn − λn∇fαn
yn) andPC(I − λn∇fαn

) is
nonexpansive for eachn ≥ 0. Pick upp ∈ ∩∞

n=1Fix(Sn)∩Γ.
Then, we getPC(I − λ∇f)p = p for λ ∈ (0, 2

‖A‖2 ). From
(15)

‖yn − p‖ ≤ ‖PC(I − λn∇fαn
)xn − PC(I − λn∇fαn

)p‖
+‖PC(I − λn∇fαn

)p− PC(I − λn∇f)p‖
≤ ‖xn − p‖+ ‖(I − λn∇fαn

)p− (I − λn∇f)p‖
≤ ‖xn − p‖+ αnλn‖p‖.

Then, by Proposition 1 (ii), we have

‖gn − p‖2
≤ ‖xn − λn∇fαn

yn − p‖2 − ‖xn − λn∇fαn
yn − gn‖2

= ‖xn − p‖2 − ‖xn − gn‖2 + 2λn〈∇fαn
yn, p− gn〉

≤ ‖xn − p‖2 − ‖xn − gn‖2
+2λn(〈∇fαn

p, p− yn〉+ 〈∇fαn
yn, yn − gn〉)

= ‖xn − p‖2 − ‖xn − gn‖
+2λn[〈(αnI +∇f)p, p− yn〉+ 〈∇fαn

yn, yn − gn〉]
≤ ‖xn − p‖2 − ‖xn − gn‖2 + 2λn[αn〈p, p− yn〉

+〈∇fαn
yn, yn − gn〉]
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= ‖xn − p‖2 − ‖xn − yn‖2 − 2〈xn − yn, yn − gn〉
−‖yn − gn‖2 + 2λn[αn〈p, p− yn〉
+〈∇fαn

yn, yn − gn〉]
= ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − gn‖2

+2〈xn − λn∇fαn
yn − yn, gn − yn〉

+2λnαn〈p, p− yn〉.
Further, by Proposition 1 (i), we have

〈xn − λn∇fαn
yn − yn, gn − yn〉

= 〈xn − λn∇fαn
xn − yn, gn − yn〉

+〈λn∇fαn
xn − λn∇fαn

yn, gn − yn〉
≤ 〈λn∇fαn

xn − λn∇fαn
yn, gn − yn〉

≤ λn‖∇fαn
xn −∇fαn

yn‖‖gn − yn‖
≤ λn(αn + ‖A‖2)‖xn − yn‖‖gn − yn‖.

So, we obtain

‖gn − p‖2 (16)

≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − gn‖2
+2λn(αn + ‖A‖2)‖xn − yn‖‖gn − yn‖
+2λnαn‖p‖‖p− yn‖

≤ ‖xn − p‖2 − ‖xn − yn‖2 − ‖yn − gn‖2
+λ2

n(αn + ‖A‖2)2‖xn − yn‖2 + ‖gn − yn‖2
+2λnαn‖p‖‖p− yn‖

= ‖xn − p‖2 + 2λnαn‖p‖‖p− yn‖
+(λ2

n(αn + ‖A‖2)2 − 1)‖xn − yn‖2
≤ ‖xn − p‖2 + 2λnαn‖p‖‖p− yn‖.

Them, from Lemma 9 (iii), (15) and the last inequality,
we conclude that

‖zn − p‖2
= βn‖xn − p‖2 + (1 − βn)‖Wngn − p‖2

−βn(1 − βn)‖xn −Wngn‖2
≤ βn‖xn − p‖2 + (1 − βn)‖gn − p‖2

−βn(1 − βn)‖xn −Wngn‖2
≤ βn‖xn − p‖2 + (1 − βn)[‖xn − p‖2

+2λnαn‖p‖‖p− yn‖
+(λ2

n(αn + ‖A‖2)2 − 1)‖xn − yn‖2]
−βn(1 − βn)‖xn −Wngn‖2

= ‖xn − p‖2 + 2λnαn‖p‖‖p− yn‖
−2βnλnαn‖p‖‖p− yn‖
+(1− βn)(λ

2
n(αn + ‖A‖2)2 − 1)‖xn − yn‖2

−βn(1 − βn)‖xn −Wngn‖2
≤ ‖xn − p‖2 + 2λnαn‖p‖‖p− yn‖

−(1− βn)(1− λ2
n(αn + ‖A‖2)2)‖xn − yn‖2

−βn(1 − βn)‖xn −Wngn‖2 (17)

≤ ‖xn − p‖2 + 2λnαn‖p‖‖p− yn‖
≤ ‖xn − p‖2 + 2λnαnk(‖yn‖+ k),

which implies thatp ∈ Cn+1. Therefore∩∞
n=1Fix(Sn)∩Γ ⊂

Cn+1, ∀n ≥ 1. This implies that{xn+1} is well-defined.
Step 2. We will show that the sequences{xn}, {zn} and
{gn} are all bounded andlimn→∞ ‖xn − x0‖ exists.

From xn+1 = PC+1x0 and Proposition 1 (i), we have

〈x0 − xn+1, xn+1 − y〉 ≥ 0, ∀y ∈ Cn+1.

Since∩∞
n=1Fix(Sn) ∩ Γ ⊂ Cn+1, we have

〈x0 − xn+1, xn+1 − p〉 ≥ 0, ∀p ∈ ∩∞
n=1Fix(Sn) ∩ Γ.

So, forp ∈ ∩∞
n=1Fix(Sn) ∩ Γ, we have

0 ≤ 〈x0 − xn+1, xn+1 − p〉
≤ −〈x0 − xn+1, x0 − xn+1〉+ 〈x0 − xn+1, x0 − p〉
≤ −‖x0 − xn+1‖2 + ‖x0 − xn+1‖‖x0 − p‖,

hence

‖x0 − xn+1‖ ≤ ‖x0 − p‖, ∀p ∈ ∩∞
n=1Fix(Sn)∩ Γ. (18)

Therefore{xn} is bounded and so{zn} and{gn}. From
xn = PCn

x0 andxn+1 = PCn+1
x0 ∈ Cn+1 ⊂ Cn, we have

〈x0 − xn, xn − xn+1〉 ≥ 0. (19)

Hence

0 ≤ 〈x0 − xn, xn − xn+1〉
≤ −〈x0 − xn, x0 − xn〉+ 〈x0 − xn, x0 − xn+1〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖,

and therefore‖x0−xn‖ ≤ ‖x0−xn+1‖. Thus the sequence
{‖xn − x0‖} is a bounded and nonincreasing sequence, so
limn→∞ ‖xn − x0‖ exists, that islimn→∞ ‖xn − x0‖ = m.

Step 3. We will show that limn→∞ ‖xn+1 − xn‖ =
limn→∞ ‖xn−yn‖ = limn→∞ ‖xn−zn‖ = limn→∞ ‖xn−
gn‖ = 0 and limn→∞‖xn − Wnxn‖ = limn→∞ ‖xn −
Wxn‖ = 0.

It is well know that in Hilbert spacesH , the following
identity holds:

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, ∀x, y ∈ H.

Therefore,

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2
= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉.

It follow from (19), we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2.

Sincelimn→∞ ‖xn − x0‖ exists, so we get‖xn+1 − x0‖2 −
‖xn − x0‖2 → 0. Therefore,

lim
n→∞

‖xn+1 − xn‖ = 0. (20)

Sincexn+1 ∈ Cn, we have

‖zn − xn+1‖2 ≤ ‖xn − xn+1‖2 + 2αnλnk(k + ‖y‖).

Since{yn} is bounded,λn ⊂ [a, b] and limn→∞ αn = 0,
we deduce from (20) that

lim
n→∞

‖zn − xn+1‖ = 0. (21)

Again from (20) and (21) it follows that

‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖ → 0. (22)
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For eachp ∈ ∩∞
n=1Fix(Sn) ∩ Γ, from (17), we get

(1− βn)(1 − λ2
n(αn + ‖A‖2)2)‖xn − yn‖2

+βn(1 − βn)‖xn −Wngn‖2
≤ ‖xn − p‖2 − ‖zn − p‖2 + 2λnαn‖p‖‖p− yn‖.

So, we obtain

0 < (1− d)(1 − b2(αn + ‖A‖2)2)‖xn − yn‖2
+c(1− d)‖xn −Wngn‖2

≤ (1− βn)(1 − λ2
n(αn + ‖A‖2)2)‖xn − yn‖2

+βn(1− βn)‖xn −Wngn‖2
≤ ‖xn − p‖2 − ‖zn − p‖2 + 2λnαn‖p‖‖p− yn‖
= (‖xn − p‖+ ‖zn − p‖)‖xn − zn‖

+2λnαn‖p‖‖p− yn‖.

Since‖xn − zn‖ → 0, αn → 0, [a, b] ∈ (0, 1
‖A‖2 ), we have

1−b2‖A‖4 > 0 , {βn} ⊂ [c, d], we have0 < 1−d ≤ 1−βn

and0 < c(1− d) ≤ βn(1− βn), it follows that

lim
n→∞

‖xn − yn‖ = lim
n→∞

‖xn −Wngn‖ = 0. (23)

Consider

‖yn − gn‖
= ‖PC(xn − λn∇fαn

xn)− PC(xn − λn∇fαn
yn)‖

≤ ‖(xn − λn∇fαn
xn)− (xn − λn∇fαn

yn)‖
= λn‖∇fαn

xn −∇fαn
yn‖

= λn(αn + ‖A‖2)‖xn − yn‖.

This together with (23) implies that

lim
n→∞

‖yn − gn‖ = 0. (24)

From ‖xn − gn‖ ≤ ‖xn − yn‖ + ‖yn − gn‖, we also have
from (23) and (24)

lim
n→0

‖xn − gn‖ = 0. (25)

Sincezn = βnxn + (1 − βn)Wngn, we have

(1− βn)(Wngn − gn) = βn(gn − xn) + (zn − gn).

Then

(1− d)‖Wngn − gn‖
≤ (1− βn)‖Wngn − gn‖
≤ βn‖gn − xn‖+ ‖zn − gn‖
≤ βn‖gn − xn‖+ ‖zn − xn‖+ ‖xn − gn‖
= (1 + βn)‖gn − xn‖+ ‖zn − xn‖,

and from (22) and (25), hence

lim
n→∞

‖Wngn − gn‖ = 0. (26)

Observe that

‖xn −Wnxn‖
≤ ‖xn − gn‖+ ‖gn −Wngn‖+ ‖Wngn −Wnxn‖
≤ ‖xn − gn‖+ ‖gn −Wngn‖+ ‖gn − xn‖
≤ 2‖xn − gn‖+ ‖gn −Wngn‖,

from (25) and (26), we have‖xn − Wnxn‖ → 0. On the
other hand, since{xn} is bounded, from Lemma 6, we have
limn→∞ ‖Wnxn −Wxn‖ = 0. Therefore, we have

lim
n→∞

‖xn −Wxn‖ = 0. (27)

Step 4. We claim thatωω(xn) ⊂ ∩∞
n=1Fix(Sn)∩Γ, where

ωω(xn) denotes theω-limit set of{xn}, i.e.,ωω(xn) := {u ∈
H1 : xnj

⇀ u for some subsequence{xnj
} of {xn}}.

Step. 4.1 We will show thatu ∈ Fix(W ).
Indeed, since{xn} is bounded, it has a subsequence which

converges weakly to some point inC and henceωω(xn) 6= ∅.
Let u ∈ ωω(xn) be arbitrary. Then there exists a subsequence
{xnj

} ⊂ {xn} which converges weakly tou. Since we also
have limj→∞ ‖xnj

−Wxnj
‖ = 0. Note that, from Lemma

7, it follows that I − W is demiclosed at zero. Thusu ∈
Fix(W ).

Step. 4.2 We will show thatu ∈ Γ.
Since‖xn − gn‖ → 0 and‖yn − gn‖ → 0, it is know that

gnj
⇀ u andynj

⇀ u.
Let

Tv =

{

∇fv +NCv if v ∈ C,

∅ if v 6∈ C,

whereNCv = {w ∈ H1 : 〈v − y, w〉 ≥ 0, ∀y ∈ C}. Then
T is maximal monotone and0 ∈ Tv if and only if v ∈
V I(C,∇f); (see [12]) for more details.

Let (v, w) ∈ G(T ), we havew ∈ Tv = ∇fv+NCv, and
hencew −∇fv ∈ NCv. So, we have〈v − y, w −∇fv〉 ≥
0, ∀y ∈ C. On the other hand, fromgn = PC(xn −
λn∇fαn

yn) and v ∈ C, we have〈xn − λn∇fαn
yn −

gn, gn−v〉 ≥ 0, and hence,

〈

v−gn,
gn−xn

λn
+∇fαn

yn

〉

≥ 0.

Therefore, fromw − ∇fv ∈ NCv and gnj
∈ C, it follows

that

〈v − gnj
, w〉

≥ 〈v − gnj
,∇fv〉

≥ 〈v − gnj
,∇fv〉 −

〈

v − gnj
,
gnj

− xnj

λnj

+∇fαnj
ynj

〉

= 〈v − gnj
,∇fv〉 − 〈v − gnj

,
gnj

− xnj

λnj

+∇fynj
〉

−αnj
〈v − gnj

, yni
〉

= 〈v − gnj
,∇fv −∇fgnj

〉+ 〈v − gnj
,∇fgnj

−∇fynj
〉

−
〈

v − gnj
,
gnj

− xnj

λnj

〉

− αnj
〈v − gnj

, ynj
〉

≤ 〈v − gnj
,∇fgnj

−∇fynj
〉 −

〈

v − gnj
,
gnj

− xnj

λnj

〉

−αnj
〈v − gnj

, ynj
〉.

So, we obtain〈v − u,w〉 ≥ 0, as j → ∞. SinceT is
maximal monotone, we haveu ∈ T−10, and henceu ∈
V I(C,∇f). Therefore, by Lemma 10 (i), it is clear thatu ∈
Γ. Consequentlyu ∈ ∩∞

n=1Fix(Sn) ∩ Γ. That isωω(xn) ⊂
∩∞
n=1Fix(Sn) ∩ Γ.
Step 5. We show that{xn}, {yn} and {zn} converge

strongly toP∩∞

n=1
Fix(Sn)∩Γx0.

In (18), if we takep = P∩∞

n=1
Fix(Sn)∩Γx0, we get

‖x0 − xn+1‖ ≤ ‖x0 − P∩∞

n=1
Fix(Sn)∩Γx0‖. (28)
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Notice that ωω(xn) ⊂ ∩∞
n=1Fix(Sn) ∩ Γ. Then, (28)

and Lemma 8 ensure the strong convergence of{xn+1}
to P∩∞

n=1
Fix(Sn)∩Γx0. Consequently,{yn} and {zn} also

converge strongly toP∩∞

n=1
Fix(Sn)∩Γx0. This completes the

proof.
TakingWn = S, one finds the following result:

Corollary 13. LetC be a nonempty closed convex subset of
a real Hilbert spaceH . LetS be a nonexpansive mapping of
C into itself such thatFix(S)∩Γ 6= ∅. Letx1 = x0 ∈ C. For
x1 ∈ C,C1 = C, let {xn}, {yn} and {zn} be the sequences
generated as























yn = PC(xn − λn∇fαn
xn),

zn = βnxn + (1 − βn)SPC(xn − λn∇fαn
yn),

Cn+1 = {z ∈ Cn : ‖zn − z‖2 ≤ ‖xn − z‖2
+2αnλnk(k + ‖y‖)},
xn+1 = PCn+1

x0, n ≥ 1,

(29)

wheresupp∈∩∞

n=1
Fix(S)∩Γ ‖p‖ ≤ k for somek ≥ 0, and the

following conditions:
(i) limn→∞ αn = 0;
(ii) {λn} ⊂ [a, b] for somea, b ∈ (0, 1

‖A‖2 );
(iii) {βn} ⊂ [c, d] for somec, d ∈ (0, 1);
then the sequences{xn}, {yn} and {zn} generated by (29)
converge strongly to the same pointP Fix(S)∩Γx0.
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