
 

 
Abstract— FDM (finite difference method) has by its 
nature difficulties during the relaxation process when 
finding the values of meshpoints close to the boundary of 
the geometry. Significant progress at solving this 
problem had been recently reported but unfortunately 
this solution has been found to be “brittle” in that 
occasionally a geometry departing slightly from one in 
the set of test geometries would be unstable. In addition 
meshpoints near the boundary required different 
algorithms dependent upon the local geometry of the 
meshpoint. The order 8 solution required in fact over 
100 different separately determined algorithms. In this 
paper the solution has been made considerably more 
robust by the implementation of a new interpolation 
process concomitant with the development and use of a 
single algorithm for all meshpoints. 
 

 
Index Terms— FDM, curved boundaries, electrostatics, high 

precision calculations, finite difference method. 
 

I. INTRODUCTION 

FDM is a simple computational process for finding the 
solution to boundary value problems by an iterative method 
[1].  The FDM solution is a function, having fixed values on 
the boundary, which satisfies a differential equation at all 
interior points. The method involves overlaying a set of 
equally spaced meshpoints on the geometry, creating an 
algorithm that allows the determination of the value of any 
mesh point from its neighboring values, and relaxing the 
mesh using the created algorithm(s). 

For boundaries lying on meshpoints, a multi-region 
process for FDM has been previously described [2-8] 
demonstrating the high precision capabilities of FDM for 
this class of geometries. 

A serious limitation affecting the precisions obtained by 
FDM occurs when the boundary does not lie on but passes 
between meshpoints. A solution to this problem has been 
recently reported [9], in which the mesh point space was 
extended to the other side of the boundary and algorithms 
found to determine the values of these external meshpoints.  
A solution was found for a reasonably large set of test 
geometries but suffered from two distinct but likely related 
limitations. The first was that it was necessary for stability 
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considerations to construct algorithm for a meshpoint 
depending on the local distribution of its neighbors.  For the 
8th order algorithm this involved creating 103 distinct 
algorithms each having been determined by a laborious trial 
and error process. [9] The result was stable over the set of 
test geometries for which the algorithms were determined, 
but when slight departures were made from the test 
geometries unstable geometries were consistently found 
albeit somewhat rarely.  This situation (and criticism) was 
explicitly noted in [9].  Thus a solution has continued to be 
needed that would be considerably more robust than that of 
[9] and have a smaller number of required algorithms. 

Without loss of generality the discussion the boundary 
value problem will be restricted to cylindrically symmetric 
electrostatics in which both Laplace’s equation and 
cylindrical symmetry are assumed, the solution of this 
problem having immediate applicability to field of electron 
and ion optics 

A.    Background, the FDM process 

In order to both standardize the notation and emphasize 
certain features of FDM, a quick overview of the FDM 
process is useful [1]. Consider figure 1 in which an array of 
mesh points is overlaid on a geometry represented by three 
connected line segments all lying on either rows or columns 
of meshpoints. This geometry represents a closed cylinder in 
three dimensions, the outer cylinder being at 10 volts with 
the ends at 0 volts.   
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 Figure 1.   A cylinder is shown with its boundaries lying on meshpoints 
and the potentials on the various segments are indicated. 
 

 
  In order to relax such a mesh, the points of the mesh are 
stepped through in a sequential manner.  At each meshpoint 
its value is found by means an algorithm using as input the 
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values of a selection of surrounding mesh points. This 
process is continued until all values have been determined 
for the iteration. Iterations are continued until a suitable end 
criterion is met for the potentials within the net; i.e. the 
values at all meshpoints have stopped changing.  When this 
occurs, the mesh is said to be relaxed and the solution 
determined.   

B.  The algorithm development process 

The algorithm development process has been described 
previously [9] and only a brief summary of essential 
features is presented here in order to familiarize the reader 
with certain concepts of the process.  

About any mesh point in the geometry there is assumed to 
be a power series expansion of the potential v(r, z) as a 
function of the relative coordinates r, z with respect to the 
origin of the mesh point. (In this notation the potential at the 
position of the mesh point itself is v (0, 0).)   
 The power series expansion of v (r, z) is written: 
(1)  v(r,z) = c0 + c1*z + c2*r +…+ c44*z*r^8+c45*r^8  

+…+ O (j) 
Where O (j) (read order j) means terms of order rk zl are 
neglected for k+l> j.   Thus for any meshpoint given the 
values of {cj} the value of the potential at any neighboring 
point r, z of the central point can be found.  It will be the 
task of the algorithm to evaluate all of the required 
coefficients cj. The algorithm at a meshpoint will be a 
function which has as input the values of a selection of its 
neighbors, its distance “a” from the axis, and an index j.  
The output will be the value of cj. 

To develop the algorithm a particular set of neighboring 
meshpoints is selected and using both the power series 
expansion of (1) and the differential equation governing the 
boundary value problem and the algorithm is be found by a 
process described in [9]. For an 8th order algorithm the 
number of neighboring meshpoints required is 17. 

The solution for any ck depends on both the particular set 
of 17 meshpoints {bj} and “a” the distance of the meshpoint 
from the axis (coming from Laplace’s equation). It may be 
written: 
(2)   ck = ck_coeff_b0 (a)*b0+ ck_coeff_b1 (a)*b1 + ….   
where coeff_bj (a) is a truncated power series in “a”, the 
highest power of “a” depending upon the order of the 
algorithm. The coeff_bj’s are determined using the 
algorithm development process described in [9]. 

C.  Point type definitions. 

As discussed in [9] high order algorithms for points near 
the boundary will require mesh points on the other side of 
the boundary.  To accommodate this an overlaid mesh on 
the geometry is extended over the entire space.  

Different types of meshpoints within the space are defined 
as follows: Externalpts will be those exterior to the 
geometry or within ~1/2 unit of the boundary. Those within 
½ unit of the boundary will be further defined as near_ 
points. The remainder are denoted as internalpts. 
Internalpts are further subdivided into 4 subgroups, groups, 
ingeom_near, middle, far, and veryfar points. Ingeom_near 
points are internal pts with near pts as neighbors, 
ingeom_middle having ingeom_near points as neighbors, 
the other subgroups being similarly defined. It is noted that 
each subgroup is further from the boundary than its 

preceding one. The remaining internalpts points are denoted 
as ingeometry points. 

For all points internal to the geometry which comprise the 
majority of meshpoints only the value of the central point is 
required during the relaxation process, its value being given 
by c0 

For any external point its value will be determined by 
essentially integrating the field from the boundary to the 
point using the field centered on a particular internal point, 
thus allowing for the separation(at variable distances) of the 
central point from both the boundary and the external point. 
The details of this process are described below. 

II. FINDING THE VALUES AT EXTERNAL POINTS BY 

INTERPOLATING FROM THE BOUNDARY 

Figure 2 shows an external point s, the point b on the 
boundary (not necessarily a meshpoint) closest to s, and a 
point o about which the field is calculated. Point o will be 
considered the central point. 
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Figure 2.  This figure shows the points used in deriving the algorithm for 
any external point (s). The coordinates for x, b, and s are relative wrt o. 
interpolations are made from the boundary to s using the field surrounding 
o. 

 
Simplifying the notation of (2), the potential at any point 

x in an nhbd of o may be written as:  
(3)  v (r, z) = b0 + sumk ck*fk(r, z) sum k = 1 to kmax, 
where b0 is the value at the point o, fk(r, z) is rl*zm for the 
kth term in the expansion (1). Note that r and z are relative 
coordinates with respect to point o and that kmax depends 
upon the order of the algorithm used. 
Now the potentials at b and s may be explicitly written: 
(4) vb = b0 + sumk ck*fk (rb_o, zb_o) sum k 1 to kmax   
(5) vs = b0 + sumk ck*fk (rs_o, zs_o) sum k 1 to kmax 
Where rx_o = rx - ro, zx_o = zx - zo for x being either b or 
s.  
From the algorithm development process of [9], ck may be 
written as: 
(6)  ck = sumj abj_ck*bj, the sum being over all 
meshpoints bj used in creating the algorithm, and abj_ck is a 
coefficient depending upon both j and k and is determined 
by the algorithm development process [9]. 
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After a brief calculation, the following are found: 
(7) vs = vb + sumj (coeff_bj *bj  ) 
where:   
 (8) coeff_bj = sumk abj_ck*gk (rs, zs, rb, zb) 
and 
(9) gk (rs, zs, rb, zb) = {fk (rs_o, zs_o) - fk (rb_o, zb_o)} 
Thus even though we are using all ck’s in the evaluation of 
vs, at the end of the day an equation for vs is formulated in 
terms of a summation over the neighboring meshpoints, 
each meshpoint multiplied by  coeff_bj.  This is of identical 
form as the expression for the evaluation of all of the 
ingeometry meshpoints (see (2)) and finds use in the 
software development.  It may be worthwhile to remark that 
when evaluating the value of s, the neighboring meshpoints 
to be used are those of o and not the neighbors of s itself 
since the coefficients ck used in (8) for s were determined 
using the neighbors of o. 

III. THE MINIMAL ALGORITHM. 

It can easily be shown that the average of n algorithms is 
also an algorithm. By way of contrast it is noted that the 
sum of algorithms is not an algorithm which may be 
recognized by its violation of the sum rule for the 
coefficients of c0 (=1). 
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Figure 3.  The base set of 16 meshpoints are given by the solid 
disks excluding the central point.  For an order 8 algorithm a total 
of 17 meshpoints are needed and hence one of the additional empty 
circles is used to complete the set. 
 
 

The above averaging proposition has been used in 
constructing the minimal algorithm for order 8.  As the 
order 8 algorithm requires 17 neighbors any particular 
algorithm of the minimal algorithm set may be formed using 
the solid points of figure 3 together with one of the 
additional points of this figure.  This construction provided 
a set of 16 distinct algorithms, one for each of the added 
circles.  The set of base points, seen to exhibit notable 
symmetry, was chosen as the coefficients for c0 for this 
algorithm was found to be less than other algorithms 
investigated.  The coefficients of the base points themselves 
were quite insensitive to the additional point chosen and 

hence the average coefficient for any of the base points was 
quite similar to the coefficient of any of the individual 
algorithms.  The coefficient of the added meshpoint while 
being much smaller than any of the coefficients in the base 
set was not negligible and when an individual algorithm was 
used by itself many geometries were found which were 
unstable.  However when the minimal algorithm was 
constructed, each of the coefficients of the added 
meshpoints would be reduced by 16 and hence the 
sensitivity of the stability to any added meshpoint was 
considerably reduced. This is likely the reason for its 
remarkable stability property.  It is noted that other likely 
candidates for a base algorithm (which would then be 
rotated and reflected to construct an algorithm set) were also 
tried, and average algorithms constructed.  None of these 
candidates exhibited the degree of stability of our minimal 
algorithm. 

IV. CONCENTRIC SPHERE TESTS 

A. The test geometries 

The test geometries were chosen to be concentric spheres as 
these geometries both had a wide variety of point topologies 
(the type of neighbors surrounding any particular near 
boundary meshpoint) and allowed for exact solutions so that 
the precision as well as algorithm stability could be 
determined.  The concentric sphere geometry consisted of 
two spheres with a common center, the outer having a 
potential 10 volts, the inner being at 0 volts.  The basic 
geometry is shown in figure 4 from which an enlarged set is 
constructed by scaling. 
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 Figure 4 illustrates the basic concentric sphere geometry together 
with a median sphere over which precisions are evaluated. The 
outer, inner radius of the basic geometry was 30, 20 resp. 

 
To form a set of 100 test spheres the basic geometry was 

scaled by 1+j*.025 for j=0 to 99. It is noted that each 
geometry would represent the same physical geometry while 
having an ever increasing number of mesh points in the grid 
overlay. 
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For any external point s, let b be the closest boundary 
point to s and o be the central point from which the field is 
to be calculated for the interpolation of the value at s (see 
section 2 above) from the boundary.  o is specified as the 
closest point to b and also being in one of the following 5 
sets:  {near_ pts, ingeom_near pts, ingeom_middle pts, 
ingeom_far pts, ingeom_veryfar pts} defined previously. 

B. Stability for types of central points chosen for point o 

Taking the central point o from the set of near_ pts, all 
geometries were unstable.  When the central point was taken 
from the set of ingeom_near pts the relaxations were stable 
but the convergence during the relaxation extraordinarily 
slow and in for this reason not usable.  For the remaining 
sets, i.e., ingeom_middle, ingeom_far, and ingeom_veryfar 
the relaxations were stable and the convergence of the 
relaxation process reasonably rapid.   
It is of course not surprising that an unstable situation 
resulted when the central point was taken from the set of 
near points as this situation closely mimics the situation of 
the previous work as in that work the near_ points were 
evaluated by interpolating from the boundary to the point 
itself which necessitated that the algorithm be matched to 
local neighborhood of the particular near_ point. One 
algorithm fits all manifestly did not work there and does not 
work here for this choice of central point. 

C. Precision tests 

For precision tests the base geometry of figure 4 was used 
and the precision test sets obtained by scaling by 1+.25*j for 
j =0 to 20. As the concentric sphere geometry has a known 
potential errors may be determined for any point in the 
relaxed net.  The test plane chosen for error measurements 
was median sphere and errors for points on or near this 
surface were determined and then averaged over the test 
plane.  A plot of the average error on the median sphere vs 
the geometry index is shown in figure 5 together with our 
previous data [9] using multi algorithms. 
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Figure 5. Shown is the average error over the median sphere vs the 
geometry index for both our previous solution (multi algorithm) 
and the current solution (minimal algorithm). Seen is the 
remarkable similarity of the two curves for two distinctly different 
algorithmic processes. 
 
 

Shown in this figure is the solution from [9] using many 
algorithms having the algorithm center point being the point 
itself and the current solution using the minimal algorithm 
but centered on an ingeometry point well separated from the 
external point whose value is being calculated. The central 
point o in the above figure was taken from the set of 
ingeom_far points.  It is clear that the two solutions have in 
fact very similar resultant precisions for markedly different 
point value evaluations. There does seem to be a noticeably 
larger scatter in the errors of the solution [9] for adjacent 
geometries than for the minimal solution.  This scatter can 
also be seen in plots of error vs point position on the median 
sphere (not shown).  It is noted that the error deviations of 
the current solution were reasonably constant over the test 
plane.  

The minimal solution curve of figure 4 is seen to have a 
minimum in the error plot near index 8 after which the curve 
exhibits a slow rise to an error value of 10-11.  This type of 
effect has been seen in previous work and is attributable to 
the cumulative effect of roundoff errors. It should be noted 
that it was somewhat suppressed in the multi algorithm 
curve in that certain operations in the relaxation process 
were made with a high precision arithmetic unit which was 
not used in the current version as precisions less then ~10-11 
were not required. 

It is noted that when the central point o was taken from 
the set of ingeom_middle points the set of geometries was 
also stable as mentioned above but the precision was 
degraded by several orders of magnitude.  At the present it 
is felt that this is the result of feedback from the setting of 
the near_ points on the values of the ingeom_middle points 
themselves. This is further supported by the fact that when 
the measurement sphere was scanned from the inner to outer 
sphere the errors were considerably enhanced near the inner 
or outer measurement spheres.   

As reported above taking o from the set of ingeom_near 
points was not useable.  In spite of this a measurement was 
made for the basic geometry and the result found (after a 
lengthy relaxation process) was that the precisions over the 
median sphere was 3 orders of magnitude less precise than 
the ingeom_middle situation further supporting the possible 
interpretation of these errors in the previous paragraph. 

In figure 6 the precisions are graphed for central points 
taken from both ingeom_far and ingeom_veryfar points 
showing the similarity of the two curves with a slight 
deterioration (between 4 and 10)  in the precision for the 
ingeom_veryfar points.  As the distance from the particular 
point s to the central point is larger for ingeom_veryfar 
points than from the ingeom_far points the interpolation 
precision from these points is expected to be less precise 
than from the points closer to s. This observation is 
consistent with observed precision decrease. This graph also 
shows that for geometry indices in the region in which 
cumulative errors are dominating the two curves merge 
together which implies that the cumulative errors dominate 
the single point interpolation errors in this region. This 
figure gives clear evidence that the precisions of the process 
are capable of being less than 10-11 for either of the two 
choices of the central point o. 
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Figure 6.   Plotted are the error distributions along the median 
plane for central points taken from the ingeom_far and 
ingeom_veryfar points showing both their similarity for large 
index and the slight precisional deterioration of the 
ingeom_veryfar points for points not in the region dominated by 
cumulative errors. (See text.) 
 

V. CONCLUSION 

The attempt of [9] to solve the potential evaluation for 
points near a curved boundary in FDM was partially 
successful in that it solved the problem for a particular set of 
test geometries with the proviso (considered unacceptable) 
that with departures of a geometry from any of the test set 
the solution might very well be unstable. 
The foundation of the present work has been built largely on 
[9] with modification in two significant ways.  The first was 
to not use the point itself when interpolating to the point but 
to use a central point some distance from the point being 
evaluated. The effect of this was to minimize feedback 
between the external point and the central point on the 
values calculated and hence constructed a substantially more 
stable solution. The second modification was to construct a 
minimal algorithm being the sum of algorithms created 
using highly symmetric neighboring points as the base 
neighbor set. This single algorithm was then used in all 
interpolations rather than the 103 algorithms required in 
[9]. 

The result has been a considerably more robust solution 
with very little if any deterioration in the resultant precision 
from that reported in [9].  The simplicity of the process 
makes it accessible to others who wish to take advantage of 
the enhanced FDM precision that order 8 algorithms 
provide.  

The problem of setting the values of points in an FDM 
process near curved boundaries has been essentially 
unsolved since the inception of FDM.  It is now solved.   
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