

Abstract—Business analysts define business process models

for describing a series of activities to produce services or

products to serve business goals. Hence business process models

represent business requirements for development of the

software that enables automation of the business processes.

When activities in a business process are changed, such changes

also trigger changes in the artifacts that have been produced

during development of the related software. Analysis of an

impact a business process change has on the software is useful

for the software project leader and the system analyst to plan

the effort to change the artifacts, including the software itself,

accordingly. This paper proposes change pattern-driven

traceability of a business process by maintaining traceability

information of a current business process model and comparing

such a model with the newly designed one that incorporates the

changes. The comparison discovers change patterns and

traceability allows the artifacts that are affected by such change

patterns to be identified. We present a tool to support the

proposed approach.

Index Terms—business process model, business process,

traceability, change pattern, change impact

I. INTRODUCTION

USINESS process modeling is an activity to capture
processes of business applications into business process

models. Business process models hence describe a series of
activities to produce services or products to serve business
goals under certain business rules. They are used for
communicating business process information to all business
users – from business analysts who create the models of
processes, to technical developers who are responsible for
implementing the technology that will perform the activities
in those processes, and to business people who will manage
and monitor those processes [1]. To visualize business
processes, a business process model presents process
information using a flow chart-like graphical notation such
as the Business Process Model and Notation (BPMN) [1].

From a technical perspective of a software project team, a
business process model captures business requirements for
the development of software that enables automation of the
business process. That is, it leads to development of several

Manuscript received December 8, 2013 revised January 9, 2014.
Watcharin Uronkarn is with the Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University, Bangkok 10330
Thailand; email: watcharin.u@student.chula.ac.th

Twittie Senivongse is with the Department of Computer Engineering,
Faculty of Engineering, Chulalongkorn University, Bangkok 10330
Thailand; corresponding author phone: +66 2 2186996; fax: +66 2
2186955; email: twittie.s@chula.ac.th

software artifacts such as requirement specifications,
analysis and design models, implementation components,
tests, and other project documents [2]. When activities in a
business process model are changed, such changes also
trigger changes in the artifacts related to those activities.
Analysis of an impact a business process change has on the
software is useful for the software project leader and the
system analyst to plan the effort to change the artifacts,
including the software itself, accordingly. For example, if
the change has a small impact, change to software
documents and code is preferable. On the other hand, it
might be better to develop new software if the change affects
the existing software to a large extent in such a way that only
a small part can be reused. As a result, this paper addresses
three requirements to manage business process change:

Requirement#1: To determine the impact of a change on a
current business process, we need to make the current
business process traceable. As software requirements
traceability refers to the ability to describe and follow the
life of a requirement in both forward and backward
directions, information about the relationships between
software requirements and many kinds of associated artifacts
have to be maintained [2] so that the scope of the initiating
change can be analyzed. This is called traceability impact

analysis [3]. In our case, we need to extend traceability
information to also document the relationships between
activities in the current business process model and other
kinds of software artifacts.

Requirement#2: To determine the impact of a business
process change, we need to locate the change made to the
current business process, determine the type of change, and
identify the affected activities.

Requirement#3: As the business process and the change
may be complex and there may be several associated
software artifacts, informative information regarding the
types of change and parts of the existing software that are
impacted should be provided to the project leader and the
system analyst so that they can determine subsequent
changes that are to be made to complete the change in the
business process. This information should be provided in a
manner that is as automated as possible.

To answer to these requirements, this paper proposes
change pattern-driven traceability of a business process
together with a tool to support the proposed approach. We
associate a current business process model with traceability
information that links the model to other software artifacts,
i.e., requirements, use cases, design classes, and programs.
When a new version of the business process model is
designed to incorporate changes in business requirements,

Change Pattern-Driven Traceability of
Business Processes

Watcharin Uronkarn and Twittie Senivongse

B

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

the two versions are compared to identify the patterns (or
types) of change, affected business process activities, and
affected software artifacts.

The rest of this paper is organized as follows. Section II
discusses related work and section III describes the approach
which comprises business process traceability, change
pattern detection, and change impact analysis. Section IV
concludes the paper with a future outlook.

II. RELATED WORK

Traceability impact analysis is a widely addressed issue in
software requirements management. Literature has reported
different approaches to enable traceability and the use of
traceability information to analyze the scope and degree of
requirement change impact at both code and design level of
the software, by tracing the relationships between software
artifacts. Here we focus on the impact of change that is not
initiated at the software but at the business process level.

Piprani et al. [4] argue that, in reality, business
requirements are generally surfaced over several years in
memos, e-mails, meeting minutes, consultant reports etc.
Usually these requirements are not documented and hence
the requirements gathering effort for a software project has
to start all over again to capture those already stated but
undocumented requirements. They propose an Object Role
Modeling (ORM) based metamodel for modeling
traceability information across a multitude of documents and
across development phases. Their approach is seen as an
effort to extend traceability information to include
documents other than typical software artifacts. Similarly,
we extend traceability to the business process level and
allow tracing between a business process model and an
analysis model of the software by documenting a
relationship between an atomic activity (or a task) in a
business process model and a use case in a use case diagram.
This is the approach taken by IBM’s Rational System
Architect for transforming a BPMN diagram to a UML use
case diagram [5].

A number of researchers have tackled the problem of
change impact analysis for business processes. For example,
Wang et al. [6] define change types and change impact
patterns for business processes that involve invocation to
Web services. Their change types are process change and
service change. Specifically, process change consists of
change types such as insert/remove/move an activity and
replace/parallelize/sequence activities etc. Change impact
patterns define how changes in the internal activities of the
process and changes in the external services are propagated
to the business process. Similarly, Xiao et al. [7] define a
number of service change types and their business
component impact set that signifies a set of tasks in the
business process which are affected by a particular service
change. Unlike these approaches, ours targets business
process change at the modeling level, not the execution
level, and our impact set will comprise the software artifacts
that relate to the changed process model.

In addition, change types such as those by [6] and [7] are
rather primitive and not so informative for the system analyst
to reason about business requirements change. We choose to

adopt Dijkman’s classification of structural differences
between business processes [8] as the patterns of change
between two versions of a business process model. For a
complete detail, refer to [8]; here we summarize the
classification as follows:

1) Authorization differences: An activity in one process is
assigned to different roles in the other process, i.e., different

roles, single role vs. collection of roles, and different

collections of roles.
2) Activity differences: A collection of activities in one

process corresponds to a different collection of activities, or
not at all, in the other process, i.e., skipped activity,
interchanged activities, refined activities, corresponding

collections of activities, and partly corresponding

(collections of) activities.
3) Control flow differences: Control flow relations

between a collection of activities in one process are different
from those between an equivalent collection of activities in
the other process, e.g., different dependencies, additional

dependencies, activities occur at different moments in

processes, iterative vs. once-off occurrence.

III. CHANGE PATTERN-DRIVEN TRACEABILITY

The process of change pattern-driven traceability of
business processes is depicted in Fig. 1. A business analyst
who designs a business process model can use our
supporting tool to perform each step of this process.

Fig. 1. Overview of change pattern-driven traceability.

We assume that, first there were business requirements

and a business analyst designed a business process model
(i.e., BPMN version 1) whose activities answered to the
requirements. Based on this BPMN version 1, artifacts were
produced during the software development process,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

including the application program. Therefore, to enable
traceability, the project leader and the system analyst will
have to define mapping between the business process model
and associated software artifacts.

Later when there are changes in the business process, the
business analyst designs a new version of the business
process model (i.e., BPMN version 2) to reflect the changes.
The question raised by the software project team is, to what
extent these changes will affect the associated application?
Hence, the two versions of the business process model will
be compared so that the change patterns can be detected and
parts of the business process model and software artifacts

that may need modification can be reported.
The rest of this section explains each step in detail.

A. Traceability Information Management

Using the supporting tool, first the business analyst
imports the BPMN version 1 in XML format. (Note that, the
XML representation of a BPMN business process model can
be obtained from a BPMN tool such as Visual Paradigm.)
An under-warranty after-sales service of an agricultural
machinery company in Thailand, as shown in Fig 2(a),
exemplifies the BPMN version 1.

Fig. 2. Under-warranty after-sales service business process model (a) version 1 (b) version 2.

(a)

(b)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

This business process model depicts the steps a dealer
takes to service a machine repair job under warranty. The
dealer does not charge the customer for the repair but the
dealer can request compensation from the headquarters for
all labor and spare parts costs.

To make the BPMN version 1 traceable, the project leader
and the system analyst provide the artifact information that is
relevant to the software that automates it. This includes (1)
requirement and business objective, (2) use case in a use
case diagram, (3) functional requirement in a software
requirement specification, (4) class in a class diagram, and
(5) program. An example of traceability information (i.e., a
requirement named Request compensation) related to the
BPMN version 1 is shown in Fig. 3.

Fig. 3. Example of traceability information (a) adding information (b) list
of recorded information.

B. Traceability Information Mapping

Using XML DOM parser, the supporting tool will extract
the activities in the BPMN version 1 and other structural
information (i.e., flow objects, data, connecting objects, and
swimlanes). We assume that all activities are atomic
activities (aka. tasks in BPMN) and each activity will be
mapped to appropriate software artifacts so that the
relationships can be traced between them. Fig. 4 presents the
metamodel of traceability information mapping which
extends traceability information by not only tracing software
artifacts but also documenting the relationships between
software artifacts and the activities (or tasks) in the BPMN
version 1 (i.e., Requirement#1). A task in the BPMN version
1 can be traced backward to a requirement and business
objective, and forward to a use case which in turn can be
traced further to a functional requirement in a software
requirement specification and also to a class in a class

diagram, followed by the program code by which the class is
implemented. An example of a mapping that traces a task in
the BPMN version 1 (i.e., a task named Close service job

and send service job paper to service center) to all relevant
artifacts (e.g., requirements named Service job under

warranty and Request compensation) is shown in Fig. 5. The
mapping information is stored in a traceability information
mapping database.

Fig. 4. Metamodel for traceability information mapping.

Fig. 5. Example of traceability information mapping (a) select task to be
mapped (in blue) (b) select software artifacts to map them to selected task.

C. Business Process Model Structural Change Detection

When there are changes in the business process, the
business analyst redesigns the business process model such
as the BPMN version 2 in Fig. 2(b) and inputs its XML
representation to the supporting tool. Its activities and
structural information are extracted and compared to those
of the BPMN version 1. The comparison can detect the
changes made to the BPMN version 1, determine the types
of changes, and identify the affected activities (i.e.,
Requirement#2).

For the two versions of the business process model in Fig.

(b)

(a)

(a)

(b)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

2, the following change patterns are applied to a number of
activities:

1) Authorization differences – different roles is applied to
the activities Pay money to dealer and Notify no payment to

dealer as the performing role is changed from Service
headquarters employee in the BPMN version 1 to CRM
headquarters employee in the BPMN version 2.

2) Activity differences – skipped activities is applied to the
activity Inform service center in the BPMN version 1.

3) Activity differences – interchanged activities is applied
to the activity Inspect machine condition by mechanic and

record service job information in the BPMN version 1 as it
is equivalent to or has the same effect as the corresponding
activity Inspect machine condition by program and record

service job information in the BPMN version 2.
4) Activity differences – corresponding collections of

activities is applied to the following four activities in the
BPMN version 1: Close service job and send service job

paper to service center, Verify service job (preliminary) and

customer signature in service job paper, Send to

headquarters employee, and Verify service job (final) and

customer signature in service job paper. These activities
altogether are equivalent to or produce the same effect as the
following four corresponding activities in the BPMN version
2: Close service job and record customer information,
Verify service job (preliminary), Send to headquarters

employee, and Verify service job (final) and call customer to

verify and record data.
5) Control flow differences – different dependencies is

relevant to the following five activities in the BPMN version
1 because the sets of preceding activities in the two BPMN
versions on which they depend are different: Verify problem,
Issue spare parts, Send to headquarters employee, Pay

money to dealer, and Notify no payment to dealer. In this
example, these five activities form a natural impact set of
other change patterns, e.g. Verify problem has different
dependencies as its preceding activity is changed from
Inform service center in the BPMN version 1 to Create

service job in the BPMN version 2 because Inform service

center is skipped.

The developed tool supports the detection of 12 of

Dijkman’s change patterns previously mentioned in Section
II. When comparing the two versions of the business
process, the tool applies change pattern detection algorithms.
Most of these change patterns can be detected automatically,
while four of them cannot (i.e., interchanged activities,
refined activities, corresponding collections of activities,
and partly corresponding (collections of) activities) since
the semantic knowledge about the activities is required. For
these latter cases, the tool works in a semi-automatic
manner, i.e., the business analyst has to guide the detection
by specifying corresponding activities between the two
versions. Due to space limitation, here we summarize the
detection algorithms that are used to find the change patterns
in our example as above.

Detection Algorithm for Authorization Differences –

Different Roles

1) Check to see that an activity exists in both BPMN

version 1 and BPMN version 2.
2) Check to see that this activity is performed by a single

role in each version.
3) Check to see if the performing roles for this activity are

different in both versions. If so, it is the case of the different
roles pattern.
Detection Algorithm for Activity Differences – Skipped

Activities

1) Check to see that an activity in the BPMN version 1
does not exist in the BPMN version 2.

2) Check to see that the closest preceding and succeeding
activities of this activity exist in the BPMN version 2.

3) Check to see if those closest preceding and succeeding
activities are directly connected in the BPMN version 2. If
so, it is the case of the skipped activities pattern.

Detection Algorithm for Activity Differences – Interchanged

Activities
1) Check for the activities in the BPMN version 1 which

do not exist in the BPMN version 2.
2) Receive input from the business analyst which specifies

that a set of activities in the BPMN version 1 is equivalent to
a set of activities in the BPMN version 2.

3) Receive input from the business analyst which specifies
that the corresponding set of activities in the BPMN version
2 is fully or partly equivalent to the set of activities in the
BPMN version 1.

4) Check to see if each of the two sets contains a single
activity and the activities are fully equivalent. If so, it is the
case of the interchanged activities pattern.

An example of interchanged activities is shown in Fig. 6.
The business analyst selects from the lists of activities that
cannot find corresponding activities in the other version of
the BPMN model. It is specified that the activity Inspect

machine condition by mechanic and record service job

information in the BPMN version 1 is interchanged with and
fully equivalent to the activity Inspect machine condition by

program and record service job information in the BPMN
version 2.

Fig. 6. Example of interchanged activities specified by business analyst.

Detection Algorithm for Activity Differences –

Corresponding Collections of Activities

1) Check for the activities in the BPMN version 1 which
do not exist in the BPMN version 2.

2) Receive input from the business analyst which specifies
that a set of activities in the BPMN version 1 is equivalent to
a set of activities in the BPMN version 2.

3) Receive input from the business analyst which specifies

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

that the corresponding set of activities in the BPMN version
2 is fully or partly equivalent to the set of activities in the
BPMN version 1.

4) Check to see if the set of activities in the BPMN
version 1 contains multiple activities and they are fully
equivalent to the corresponding set of activities in the
BPMN version 2. If so, it is the case of the corresponding
collections of activities pattern.

 An example of corresponding collections of activities is
shown in Fig. 7. The business analyst specifies that the task
performed by four activities in the BPMN version 1 is fully
equivalent to the task performed together by four different
activities in the BPMN version 2.

Fig. 7. Example of corresponding collections of activities specified by
business analyst.

Detection Algorithm for Control flow differences – different

dependencies

1) Check to see that an activity exists in both BPMN
version 1 and BPMN version 2.

2) Check to see that this activity has the same number of
closest preceding activities in both versions.

3) Check to see if the sets of closest preceding activities in
both versions are different. If so, it is the case of the
different dependencies pattern.

D. Change Impact Analysis Report

When change patterns are identified, the activities to
which the change patterns are applied form an impact set,
i.e., a set of impacted activities. From each impacted
activity, the supporting tool traces its traceability
information mapping to its associated software artifacts to
analyze further impact. The tool reports the impacted
activities in the BPMN version 1, change patterns that are
applied to them, and each kind of software artifacts that are
affected (i.e., Requirement#3). An example of the change
impact report for the activities in the BPMN version 1 with
regard to the requirement and business objective artifact is
shown in Fig. 8. The project leader and the system analyst
may use the report to guide them through the evaluation of
the impact scope and planning for the change.

IV. CONCLUSION

The proposed approach uses the business process change
patterns that exist between two versions of a business
process model to drive the traceability impact analysis in the
presence of business process change. Traceability
information is extended to record the relationships between
software artifacts and a business process activity that

originates them. The developed tool can detect change
patterns and report the impacted activities and artifacts.
However, detection of some change patterns cannot be fully
automated as semantic knowledge about the activities is
required. To improve the situation, we can adopt techniques
to determine semantic similarity between activities. We can
also have the impact analysis results visualized to make the
analysis report more intuitive.

Fig. 8. Example of change impact report with regard to a certain kind of
artifact.

REFERENCES

[1] Object Management Group. (2011, January 3). Business Process
Model and Notation (BPMN) [Online]. Available:
http://www.omg.org/spec/BPMN/2.0/PDF

[2] F. A. C. Pinheiro and J. A. Goguen, “An object-oriented tool for
tracing requirements,” IEEE Software, March 1996, pp. 52-64.

[3] S. A. Bohner and R.S. Arnold, Software Change Impact Analysis.
Los Alamitos, California, USA: IEEE Computer Society Press, 1996.

[4] B. Piprani, M. Borg, J. Chabot, and É. Chartrand, “An adaptable
ORM metamodel to support traceability of business requirements
across system development life cycle phases,” in Proc. On the Move

to Meaningful Internet Systems: OTM 2008 Workshops, Lecture
Notes in Computer Science Volume 5333, 2008, pp. 728-737.

[5] IBM. (2013, December 8). Mapping Business Process Diagrams to
UML Use Case Diagrams [Online]. Available:
http://pic.dhe.ibm.com/infocenter/rsysarch/v11/index.jsp?topic=/com
.ibm.sa.bpr.doc/topics/t_ovwmapbp2uml.html

[6] Y. Wang, J. Yang, and W. Zhao, “Change impact analysis for service
based business processes,” in Proc. IEEE Int. Conf. Service-Oriented

Computing and Applications (SOCA), Perth, WA, 2010, pp. 1-8.
[7] H. Xiao, J. Guo, and Y. Zou, “Supporting change impact analysis for

service oriented business applications,” in Proc. Int. Workshop

Systems Development in SOA Environments (SDSOA), Minneapolis,
MN, 2007, 6 pp.

[8] R. Dijkman, “A classification of differences between similar business
processes,” in Proc. 11th IEEE Int. Conf. Enterprise Distributed

Object Computing Conference (EDOC), Annapolis, MD, 2007, pp.
37-47.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol I,
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19252-5-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014

