
 

 
Abstract— This paper aims to treat the adaptive control of 

nonlinear system with un-model uncertainty and bounded 
disturbance by using a novel recurrent fuzzy neural system. The 
used recurrent interval type-2 fuzzy neural network with 
asymmetric membership functions (RT2FNN-A) combines the 
interval asymmetric type-2 fuzzy sets and fuzzy logic system 
and implements in a five-layer neural network structure which 
contains four layer forward network and a feedback layer. The 
RT2FNN-A is modified to provide memory elements for 
capturing the system’s dynamic information and has the 
properties of high approximation accuracy and small network 
structure (fewer rules and tuning parameters) from the 
simulation results. Based on the Lyapunov theorem, adaptive 
updat laws of RT2FNN-A derived and the stability of 
closed-loop system is guaranteed for control of the nonlinear 
uncertain systems. Simulation result is also introduced to show 
the performance and effectiveness of RT2FNN-A system. 
 

Index Terms— Nonlinear control, uncertainty, recurrent, 
interval type-2 fuzzy system 

I. INTRODUCTION 

ecently, the fuzzy systems and control are regarded 
as the most widely used application of fuzzy logic 

system [8-11, 20, 23, 26, 31, 32]. In traditional fuzzy system 
models, the structure is characterized by using type 1 fuzzy 
sets, which are defined on a universe of discourse, map an 
element of the universe of discourse onto a precise number in 
the unit interval [0, 1]. The concept of type-2 fuzzy sets was 
initially proposed by Zadeh as an extension of typical fuzzy 
sets (called type-1) [34]. Mendel and Karnik developed a 
complete theory of type-2 fuzzy logic systems (T2FLSs) [12, 
21, 26]. Recently, T2FLSs have attracted more attention in 
many literatures and special issues [5, 9, 15, 21, 26]). 

T2FLSs are more complex than type-1 ones. The major 
difference being the present of type-2 is their antecedent and 
consequent sets. T2FLSs result in better performance than 
type-1 fuzzy logic systems (T1FLSs) on the applications of 
function approximation, modeling, and control. Besides, 
neural networks have found numerous practical applications, 
especially in the areas of prediction, classification, and 
control [18, 23]. The main aspect of neural networks lies in 
the connection weights which are obtained by training 
process. Based on the advantages of T2FLSs and neural 
networks, the type-2 fuzzy neural network (T2FNN) systems 
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are presented to handle the system uncertainty and reduce the 
rule number and computation [15, 26]. In addition, recurrent 
fuzzy neural network (RFNN) has been successfully used in 
many areas, such as the nonlinear dynamic system 
identification and control problems [11, 18, 24]. One of the 
most important features of RFNN is its feedback path in the 
circuit. The feedback paths of RFNN make it have the 
advantages of storing past information and speeding up 
convergence [18].  

The design of a fuzzy partition and rules engine normally 
affects system performance. Symmetric and fixed 
membership functions (MFs) (e.g., Gaussian or triangular) 
are commonly used to simplify the design procedure. 
Therefore, a large number of rules should be used to achieve 
the specified approximation accuracy [25]. Several 
approaches have been introduced to optimize fuzzy MFs and 
choose an efficient scheme for structure and parameter 
learning. This problem has been discussed and analyzed 
using asymmetric fuzzy MFs (AFMFs) [1, 13, 15, 22, 24, 28]. 
The results showed that using AFMFs can improve the 
modeling capability. According to the results above, our 
purpose is to introduce a recurrent interval type-2 fuzzy 
neural network with asymmetric membership functions 
(RT2FNN-A). 

Recently, there are many literatures addressing in 
nonlinear dynamic system identification and control using 
neural fuzzy systems [5, 15, 16, 18, 20, 24, 32]. Literature [30] 
introduced the design method of nonlinear control, whereas 
in [32], the adaptive fuzzy control approach was introduced. 
The parameter update laws can be obtained by Lyapunov 
theorem. In [18], there were successful application cases in 
nonlinear system identification and control by using RFNN, 
but lots of rules should be used. In [15, 16], the T2FNN was 
successfully applied in many cases. However, the network 
structure was a static model and lots of rule numbers should 
be used. In [14], the T2FNN with AFMFs was proposed to 
improve the system performance. The AFMFs improved 
approximation accuracy and reduced the fuzzy rules, but the 
network structure still is static. In [15, 16], the T2FNN has 
been successfully applied in time-series prediction problem, 
but lots of rules should be used. Literature [29] adopted 
wavelet network for nonlinear system modeling, but the 
initial values of translations and dilations required more care 
in procedure design. 

In this paper, we proposed a combining interval type-2 
fuzzy asymmetric membership functions with recurrent 
neural network system, called RT2FNN-A. The proposed 
RT2FNN-A is a modified version of the T2FNN [15-17] 
which provides memoried elements to capture system 
dynamic response [18]. The RT2FNN-A system capability 
for temporarily storing information allowed us to extend the 
application domain to include temporal problem. Simulations 
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are shown to illustrate the effectiveness of the RT2FNN-A 
system. 

This paper is organized as follows. Section II introduces 
the problem formulation of nonlinear control problem. The 
RT2FNN-A system and the corresponding adaptive control 
scheme is described in Section III. Several simulations for 
nonlinear system identification and control problems are 
done and introduced in Section IV. Finally, conclusion is 
given.  

II. PROBLEM FORMULATION 

Consider an nth-order nonlinear dynamic system in the 
companion form or controllability canonical from 
 DuxGxFx n  )()()(                           

 xy                                                  (1) 

where u  and y  are the control input and output of 

the nonlinear system.   nTnxxx   )1(x ,  F , and 

 G  are unknown nonlinear and continuous functions; D  is 

the external bounded disturbance or system uncertainty. If (1) 
is controllable, the )(xG  needs to be invertible for all 

n

CU x .  

Our purpose is to design a robust adaptive control scheme 
to guarantee boundedness of all closed-loop variables and 
tracking of a given bounded reference trajectory ry . We 

define the tracking error e  as ,yyr   and 

   Tneee )1(  E .                    (2) 

If all the parameters of the plant dynamics are exactly 
known, the ideal control law u  can be design by feedback 
linearization approach [30] 

       )(1 KExx   tDFyGu n

r  (3) 

where   n

nn kkk   11 K  and ,0ik  .,...,1 ni   

Substituting (46) into (44) and yields 
  0)1(

1

)(   ekeke n

nn                    (4) 

which implies that 0)(lim  tet . This can be done by 

choosing proper K so that all roots of the polynomial 

0)1(

1  
n

nn ksks   are located in the open left-half 

plane. However, the nonlinear functions  xF  and  xG  are 

not exactly known in general. Therefore, we cannot 
implement the ideal control law (3). In order to solve this 
problem, the adaptive RT2FNN-A control system is 
proposed to approximate to the ideal control law u . The 
adopted recurrent fuzzy neural system is introduced in next 
section. 

III. RECURRENT FUZZY NEURAL SYSTEM BASED ADAPTIVE 

CONTROLLER DESIGN  

A. Recurrent Fuzzy Neural System 

We first introduce the recurrent type-2 neural fuzzy 
inference system with asymmetric fuzzy MFs (RT2FNN-A) 
that was modified and extended from previous results [10, 
14]. The RT2FNN-A uses the interval asymmetric type-2 
fuzzy sets and it implements the FLS in a five-layer neural 
network structure which contains four-layer forward network 
and a feedback layer. Layer-1 nodes are input nodes 
representing input linguistic variables, and layer-4 nodes are 

output nodes representing output linguistic variables. The 
nodes in layer 2 are term nodes that act as MFs, where each 
membership node is responsible for mapping an input 
linguistic variable into a corresponding linguistic value for 
that variable. All of the layer-3 nodes together formulate a 
fuzzy rule basis, and the links between layers 3 and 4 
function as a connectionist inference engine. The rule nodes 
reside in layer 3, and layer 5 is the recurrent part in type-2 
fuzzy sets.  
 

B. Construction of Type-2 Asymmetric Fuzzy Member 
Functions 

In general, given an system input data set ix , i=1, 2, …, n, 

and the desired output py , p=1, 2, …, m, the representation 

of jth rule for RT2FNN-A is 

Rule j: IF x1 is jG1

~
 and … xn is njG

~
  and gj is F

jG
~

 

     THEN y1 is jw1
~ and … ym is j

mw~ ,  

g1 is ja1
~ , g2 is ja2

~ , …, and gM is j

Ma~ . 

where ijG
~

 represents the linguistic term of the antecedent 

part, j

pw~  and j

pa~  represents the interval real number of the 

consequent part; and M is the rule number. Here the fuzzy 

MFs of the antecedent part ijG
~

 are asymmetric interval 

type-2 fuzzy sets, which represent the different from typical 
Gaussian MFs.  

The MFs of the precondition part discussed in this 
article are of asymmetric type as described below. Each 
type-2 fuzzy MF is constructed by parts of four Gaussian 
functions. Each upper and lower MFs is constructed by two 
Gaussian MFs and one segment. Herein, we use superscript l 
and r to denote the left and right curves of Gaussian MF. The 

parameters of lower and upper MFs are denoted by  and , 

respectively. Thus, the upper MF is constructed as 
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where lm  and rm  denote the uncertain means of two 

Gaussian MFs satisfying rl mm  , l  and r  denote the 
uncertain deviations (width) of two Gaussian MFs. Similarly, 
the lower MF is defined as 
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where rl mm  . The corresponding width of MFs are l  and 
r . To avoid the activation value is too small,   is chosen 

between 0.5 and 1. Thus, the following restrictions should be 
added to avoid the unreasonable MFs 
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                                  (7)  

This introduces the properties of uncertain mean and 
variance [16]. Additionally, we can construct other type-2 
asymmetric MFs by tuning the parameters. The 
corresponding tuning algorithm is derived to improve system 
accuracy and approximation ability.  

 

C. Network Structure 

In this section, the structure of recurrent type-2 fuzzy 
neural network with AFMFs (RT2FNN-A) is introduced. 
The MISO case is considered here for convenience. The 
RT2FNN-A is implemented as the four-layer network with 
feedback layer shown in Fig. 1. We first indicate the signal 
propagation and the operation functions of the nodes in each 
layer. In the following description, )(l

iO  denotes the ith 

output of a node in the lth layer. 
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Figure 1: Diagram of MISO recurrent type-2 fuzzy neural network with 

AFMFs (RT2FNN-A). 

 
Layer 1: Input Layer 

For the ith node of layer 1, the net input and output are 
represented as 

 )1()1(

ii xO  .                                         (8) 

 
Layer 2: Membership Layer 

In layer 2, each node performs a type-2 fuzzy MF 
introduced by (5)–(7). The following simplified notation is 
adopted 
 ).(~ )1(

~
)2(

iFij OO j
i

                                              (9) 

It is clear that there are two parts in this layer, regular nodes 
and feedback nodes. Their input are )1(

jO  and gj(k). Therefore, 

for network input ix , the output is 

     .)()( )1(
~

)1(
~

)2()2()2( T

iGiG

T

ijijij OOOOO
ijij

  (10) 

For internal or feedback variable jg , 

   TjGjG

TF

j

F

j

F

j kgkgOOO F
j

F
j

))(())(( ~~
)2()2()2(   (11) 

where the subscript ij indicates the jth term of the ith input 
)1(

iO , where j=1,…,M. The superscript F indicates the 

feedback layer. 
 
Layer 3: Rule Layer 

The links in this layer are used to implement the 
antecedent matching and these are equal to the work in rule 
layer. Using the product t-norm, the firing strength associated 
with the jth rule is 

)()()( ~~1~
1


jF
j

j
n

j GnFF

j xxf        (12a) 
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j
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j GnFF
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where )(~ 
jG

  and )(~ 
jG

  are the lower and upper 

membership grades of )(~ 
G

 . Therefore, a simple 

PRODUCT operation is used. Then, for the jth input rule 
node 
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(13) 

where the weights )3(

ijw  are assumed to be unity. 

 
Layer 4: Output Layer 

Without loss of generality, the consequent part of 

interval T2FLS is   ,~ T

jjj www   jj ww  . The vector 

notations T

Mwww ][ 1   and T

Mwww ][ 1   are 

used for clarity. The remaining works are type reduction and 
defuzzification. For type-reduction, we should calculate the 
lower and upper bounds ],[ rl yy  [12, 26]. Modifying the 

Karnik-Mendel procedure [12, 26], we let 

    
.1

1, , , ,

)4(

111 111

       


M

i ii
www www fff fff

TR wfO
MMM MMM

            (14) 

Note that the normalization (

M

i if1
) is removed to simplify 

the type-reduction procedure, computation, and the 
derivation of learning algorithm by gradient descent method. 

We denote the maximum and minimum of 

M

i iiwf
1

 as 

)4(O and )4(O , as follows 

   ,
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where  

    ,,,,,,,,,,, )3()3(

1
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111

T
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T

MLLL OOOOfffff  
  

     . ,,,,,,,,,, )3()3(

1
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111

T

MRR

T

MRRR OOOOfffff              

It is obvious that R and L should be calculated first. The 
weights are arranged in order as Mwww  21  and 

Mwww  21 . According to the Karnik-Mendel procedure 

[12, 26], L and R are 

 , minarg )4(
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  (16) 

Finally, the crisp output is  

.
2

)4()4(

)4(
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O


                                          (17) 

Layer 5: Feedback Layer 
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This layer contains the context nodes which is used to 
produce the internal or feedback variable jg . Each rule is 

associated with a particular internal variable. Hence, the 
number of the context nodes is equal to the number of rules. 
The same operations (type-reduction and defuzzification) as 
layer 4 are performed here. 

   ,)1(
1

)3(

1

)3()5( 



M

Lh
jhh

L

h
jhhL

T

jj
F
j

F
j

aOaOfakO            (18a) 

   ,)1(
1

)3(

1

)3()5( 



M

Rh
jhh

R

h
jhhR

T

jj
F
j

F
j

aOaOfakO           (18b) 

and  
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Finally, the crisp output of this layer is  
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Figure 2: Diagram of robust adaptive control scheme using RT2FNN-A. 

 

C.  Adaptive Controller Design for Nonlinear uncertain 
Systems 

The configuration of the proposed RT2FNN-A control 
system is depicted in Fig. 2. The RT2FNN-A controller tu  is 

connected with a compensated controller cu  to generate the 

control signal u , which is 
 ct uuu  .                                               (21) 

According to (15)-(20), we may define the control input 
produced by RT2FNN-A as  

.
2

1

2

1
R

T

L

T

t fwfwu                                       (22) 

Based on the universal approximation theorem of [23, 18], 

there exists optimal parameters *  and ww  such that 

  **, tt uwwu   approximates the ideal controller u  defined 

in (3). Define the minimum approximation error    

 **

tuu  ,                                              (23) 

where ,   and 0  is the uncertainty bound of 

approximation error. 
The control objective is let *

tu  be able to approximate *u  

as close as possible, meaning, minimum approximation error 
  can be made as small as possible. Therefore, *

tu  can be 

represented as 
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Thus, the following error dynamic is obtained 
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Thus, we have the following stability Theorem. 
 
Theorem 1: Consider the nonlinear system (1) having 
adaptive control input (21). The adaptive control input tu  are 

design by (22). Let the parameter vectors w  and w  be 

adjusted by the following adaptive laws 
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                                        (26) 

where w  is positive constant. P  is a symmetric positive 

definite matrix satisfies  
,QPΛPΛT                                         (27) 

where Q  is a symmetric positive definite matrix and is 

selected by the designer. The compensated controller cu  is  

)sgn( ˆ Bu T

c PE                                        (28) 

where ̂  is the estimation error bound by 












max

max

ˆˆ if,0

 ˆˆ if 0 ,ˆ~





BT PE

                (29) 

where max̂  is the maximum of ̂  and is selected by the 

designer.                                                                                
 

Using Lyapunov theorem, we can only obtain the update 
laws of consequent part parameters. In order to obtain a better 
performance of the system, we need to obtain the update laws 
of antecedent part parameters. We can also use the gradient 
descent method to obtain the update laws for the antecedent 
part’s parameters for interval type-2 asymmetric membership 
functions to enhance the performance of the recurrent fuzzy 
neural system.  More details can be found in literature [6 ].  

Remark 1: Theorem 1 introduces the compensated 

controller )sign( ˆ Bu T

c PE , the sign function signal often 

results in chattering phenomenon. In order to reduce the 
chattering, we choose the compensated controller as [14] 

 ),sat( ˆ hBu T

c PE                               (30) 

where 














,  ,           

  ,  )sign(

),sat(
hB

h

B

hBB

hB
T

T

TT

T

PE
PE

PEPE

PE            

in which h  is a small positive number. If h  we chose is 
small enough ( 0h ), then E  can be limited to a small range 
as the sliding mode control with sliding surface. Although the 
saturation function can solve the chattering property, it loses 
the accuracy of system. In this section, we only take cu  to be 

a compensated controller. The main function of this 
controller is to maintain system convergence when the error 
is large. If the RT2FNN-A system can achieve the accuracy, 
the whole control framework then can make the error 
converge to zero [14]. 
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IV. SIMULATION RESULTS 

The inverted pendulum system is [30, 32] 

DuxxGxxFx

xx
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         (31) 

The nonlinear functions ),( 21 xxF  and ),( 21 xxG  in (31) are 

defined as
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  where 2/8.9 smg   is the 

acceleration due to gravity, Mc is the mass of the cart, m is the 
mass of the pole, l is the half-length of the pole, u is the 
applied force (control), and D is the external bounded 
disturbance.  

Suppose we set kgM c 1 , kgm 1.0 , ml 5.0 , and the 

reference signal chose as TT

dd xx ]00[][ 21    in the 

following simulations (other choices are possible). The initial 
condition of state is TTxx ]018[][ 21 x ; 

compensated controller parameters are chosen as 

,
18.0

8.01
 ,

4

4

















 PK ,01ˆ  2, 0.01, max0    and 

0.1;h  the learning parameter is chosen as 

1  w .Then, we simulate two cases as follows 

Case 1: External disturbance free, i.e., 0D , 
Case 2: The external disturbance D as follows exists. 

 








.8if),sin(

8if,0

tt

t
D                   (32) 

The simulation results of our approach for Case 1 and 
Case 2 are shown in Figs. 3 and 4. Figure 3 presents the 
comparison results of state trajectories for Case 1, 
(solid-line: RT2FNN-A, dashed-line: T2FNN-A, 
dash-dotted-line: T2FNN, and dotted-line: reference 
trajectory). Figure 4 shows the corresponding control 
effort for Case 1 (solid-line: total control force, 
dash-dotted-line: compensated controller, and dotted-line: 
RT2FNN-A controller). The comparison results of state 
trajectories for Case 2 are shown in Fig. 5 (solid-line: 
RT2FNN-A, dashed-line: T2FNN-A, dash-dotted-line: 
T2FNN, and dotted-line: reference trajectory). Figure 6 
shows the corresponding control effort for Case 2 
(solid-line: total control force, dash-dotted-line: 
compensated controller, and dotted-line: RT2FNN-A 
controller). Obviously, the RT2FNN-A system performs 
well with using less adjustable parameters and fuzzy rules. 
In addition, the constructed fuzzy control rules are 

R1: IF x1 is 11

~
G  and x2 is 21

~
G  and g1 is FG1

~
 THEN y is 

]8653.29104.1[  , and g1 is ]9193.09323.0[   

and g2 is ]1348.11937.1[  . 

R2: IF x1 is 12

~
G  and x2 is 22

~
G  and g2 is FG2

~
 THEN y is 

]2559.01327.0[ , and g1 is ]1594.19666.0[ , and 

g2 is ]9146.09781.0[ . 

where 2, 1, ,  ,
~

jiGij  are shown in [6]. 
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Figure 3: Simulation results in Case 1 of inverted pendulum system: 

state trajectories (solid-line: RT2FNN-A, dashed-line: T2FNN-A, 
dash-dotted-line: T2FNN, and dotted line: reference trajectory). 
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Figure 4: Control effort in Case 1 of inverted pendulum system (solid-line: 

the total control force, dash-dotted-line: compensated controller, and 
dotted-line: RT2FNN-A controller). 

 

V. CONCLUSIONS 

In this paper, we have proposed a recurrent interval 
type-2 fuzzy neural network with asymmetric membership 
functions (RT2FNN-A) for solving the control problem of 
nonlinear systems with system uncertainty. The 
RT2FNN-A uses the interval asymmetric type-2 fuzzy 
sets implements the fuzzy logic system in a five-layer 
neural network structure which contains four layer 
forward network and a feedback layer. According to the 
Lyapunov theorem, the stability of the closed-loop system 
of nonlinear system is guaranteed and the adaptive laws of 
RT2FNN-A’s parameters is derived. The perfromance of 
the proposed approach has been introduced by the  
illustration example. 
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Figure 5: Simulation results in Case 2 of inverted pendulum system in large 
sacle at 8-12 seconds: state trajectories (solid-line: RT2FNN-A, dashed-line: 
T2FNN-A, dash-dotted-line: T2FNN, and dotted-line: reference trajectory). 
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Figure 6: Control effort in Case 2 of inverted pendulum system (solid-line: 
total control force, dash-dotted-line: compensated controller, and dotted-line: 

RT2FNN-A controller). 
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