
 

  
Abstract—This paper proposes an appropriate activation 

function for the fault classification decision algorithm. The 
decision algorithm based on the hybrid of discrete wavelet 
transform (DWT) and back-propagation neural network 
(BPNN) has been proposed to classify the fault type. The DWT 
is employed to decompose high frequency component of 
current signals. The maximum coefficient from the first scale 
at ¼ cycle of phase A, B, and C of post-fault current signals 
and zero sequence current obtained by the DWT have been 
used as an input variable in a decision algorithm. The 
activation functions in each hidden layer and output layer have 
been varied, and the results obtained from the decision 
algorithm have been investigated with the variation of fault 
inception angles, fault types, and fault locations. The results 
have illustrated that the use of Hyperbolic tangent sigmoid 
function in the first and the second layers with Linear function 
in the output layer is the most appropriate scheme for the 
transmission system.   
 

Index Terms—Neural Networks, Discrete Wavelet 
Transform, Power Transformer 
 

I. INTRODUCTION 
RTIFICIAL neural networks (ANNs) techniques have 
been proposed in some approaches in the literature to 
improve protective relay [1-9] due that these 

algorithms can give precise results. ANNs is characterized 
by (1) its pattern of connection between the neurons (called 
its architecture), (2) its method of determining the weights 
on the connections (called its training or learning algorithm), 
and (3) its activation function. Back-propagation neural 
network (BPNN) is a kind of neural networks, which is 
widely applied today owing to its effectiveness to solve 
almost all types of problem. Therefore, a decision algorithm, 
used for fault diagnosis in the power system to decrease 
complexity and duration of maintenance time, is required. 
Generally, the basic operation of an artificial neuron 
involves most units in neural networks transform their net 
input by using a scalar-to-scalar function called an 
"activation function", yielding a value called the unit's 
"activation". The activation function is sometimes called a 
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"transfer function". As a result, the activation function is a 
key factor in the artificial neural network structure. Back-
propagation neural networks support a wide range of 
activation functions such as sigmoid function, linear 
function, and etc. The choice of activation function can 
change the behavior of the BPNN considerably. There is no 
theoretical reason for selecting a proper activation function. 
Hence, the objective of this paper is to investigate an 
appropriate activation function for the fault diagnosis 
decision algorithm. The activation functions in each hidden 
layers and output layer are   varied, and the results obtained 
from the decision algorithm are studied.  

The decision algorithm is a part of a transmission 
system scheme proposed in this paper. It is noted that the 
discrete wavelet transform is employed for extracting the 
high frequency component contained in the fault signals. 
The construction of the decision algorithm is detailed and 
implemented with various case studies based on Thailand 
electricity transmission and distribution systems. 

II. SIMULATION 
The ATP/EMTP is used to simulate fault signals at a 

sampling rate of 200 kHz. The fault types are chosen based 
on the Thailand’s transmission system as shown in Fig. 1. 
Fault patterns in the simulations are performed with various 
changes in system parameters as follows:  

- Fault types considered in this study are : single line to 
ground (SLG : AG, BG, CG), double-line to ground 
(DLG : ABG, BCG, CAG), line to line (L-L : AB, BC, 
CA) and three-phase fault (3-P : ABC).   

- Fault locations are varied from 10% to 90%, with the 
increase of 10% of the transmission line length 
measured from the bus MM3.   

- Inception angle on a voltage waveform is varied 
between 0°-330°, with the increasing step of 30°.  Phase 
A is used as a reference.   

- Fault resistance is equal to 10 Ω   
 

 
Fig. 1 The system used in simulation studies [1, 10]. 
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The fault signals generated using ATP/EMTP are 
interfaced to MATLAB for the fault detection algorithm. 
Fault detection decision [1, 7] is processed using the 
positive sequence current signals. The Clark’s 
transformation matrix is employed for calculating the 
positive sequence and zero sequence of currents. The mother 
wavelet daubechies4 (db4) [1, 4, 7, 9] is employed to 
decompose high frequency components from the signals. 
Coefficients obtained using the DWT of signals are then 
squared to clearly identify the abrupt change in the spectra. 
It is evident that the coefficients of high-frequency 
components are abruptly changed when a fault occurs, as 
shown in Fig. 2. The coefficients of scale 1 of DWT are 
used in the training processes for the neural networks in our 
case study. 

 

 
Fig. 2 Wavelet transform from scale 1 to 5 for the positive sequence of 
current signal. 

III. DECISION ALGORITHM 
After the fault detection process, the coefficients detail 

of scale 1, which is obtained    using the DWT, is used for 
training and test processes of the back-propagation (BPNN). 
In this paper, a structure of a BPNN consists of three layers 
which are an input layer, two hidden layers, and an output 
layer as shown in Fig. 3. Each layer is connected with 
weights and biases. In addition, the activation function is a 
key factor in the BPNN structure. The choice of activation 
function can change the behavior of the BPNN          
considerably. Hence, the activation functions in each hidden 

layers and output layer are varied as illustrated in Table 1 in 
order to select the best activation function. A training   
process was performed using neural network toolboxes in 
MATLAB which can be summarized in Fig. 4. 

 
Table 1 Activation functions in all hidden layers and output layers for 

training neural networks 
 

Activation function in 

first hidden layer second hidden layer output layer 

Hyperbolic 
Tangent sigmoid 

function 

Logistic 
sigmoid function 

Linear function 
Logistic sigmoid 

Hyperbolic Tangent sigmoid 

Hyperbolic 
Tangent sigmoid 

function 

Linear function 
Logistic sigmoid 

Hyperbolic Tangent sigmoid 

Logistic 
sigmoid function 

Logistic 
sigmoid function 

Linear function 
Logistic sigmoid 

Hyperbolic Tangent sigmoid 

Hyperbolic 
Tangent sigmoid 

function 

Linear function 
Logistic sigmoid 

Hyperbolic Tangent sigmoid 
 

By observing Fig. 4, before the fault classification 
decision algorithm process, a structure of the BPNN consists 
of 4 inputs. The maximum  coefficients detail (phase A, B, 
C and zero sequence of post-fault current) of DWT at the 
first peak time that can detect fault, is performed as input 
variables. The output variables of the BPNN for identifying 
fault types are designated as either 0 or 1, corresponding to   
phases A, B, C and ground (G). If each output value of 
BPNN is less than 0.5, no fault occurs on each phase; 
conversely, if this output value of BPNN is more than 0.5, a 
fault does occur. The output variables of the BPNN for 
locating the fault along the transformer windings are 
designated as values range of 0.1 to 0.9, corresponding to 
length of the winding that fault occurs. In addition, before 
training process, it is important to prepare the data before 
analysis because the obtained data will be clearly analyzed 
for the pattern between input pattern and output pattern. 
Input data sets define value range of 0 to 1 by normalization. 
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Fig. 3. Structure of BPNN. 
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Fig. 4. Flowchart for the training process 

 
A training process for back-propagation neural network 

can be divided into three parts as follows [1]: 
1. The feedforward input pattern, which has a propagation 

of data from the input layer to the hidden layer and finally to 
the output layer for calculating responses from input 
patterns illustrated in Equations 1 and 2. 

 
( )( )211,111,222 ** bbpiwflwfa ++= ,    (1) 

( )322,33 */ balwfpo ANN += .      (2) 
 

where,   
p is the input vector of ANNs 
iw1,1 is the weights between input and the first hidden 

layer 
lw2,1 is the weights between the first and the second 

hidden layers 
lw3,2 is the weights between the second hidden layer and 

output layers 
b1, b2 are the bias in the first and the second hidden layers 

respectively 
b3 is the bias in output layers 
f1, f2 are the activation functions (Hyperbolic tangent 

sigmoid function: tanh) 
f3 is the activation function (Linear function) 
 
2. The back-propagation for the associated error between 

outputs of neural networks and target outputs; the error is 
fed to all neurons in the next lower layer, and also used to an 
adjustment of weights and bias.     

3. The adjustment of the weights and bias by Levenberg-
Marquardt (trainlm). This process is aimed at trying to 
match between the calculated outputs and the target outputs. 
Mean absolute percentage error (MAPE) as an index for 
efficiency determination of the back-propagation neural 
networks is computed by using Equation 3. 
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where, n is the number of test sets. 

 
During training process, the weight and biases are 

adjusted by Levenberg-Marquardt (trainlm), and there are 
20,000 iterations in order to compute the best value of 
MAPE. The number of neurons in both hidden layers is 
increased before repeating the cycle of the training process. 
The training procedure is stopped when reaching the final 
number of neurons for the first hidden layer or the MAPE of 
test sets is less than 0.5%.  

After training process, the decision algorithm is 
employed to identify the fault types in the transmission line. 
Case studies were performed with various fault types at each 
location along the transmission lines and varying fault 
inception angles and locations along each transmission line, 
as shown in Fig. 5 and Fig. 6. By observing Fig. 5, the 
comparison of average accuracy among the type of fault for 
various lengths of the transmission lines that fault occurs is 
presented. The comparison between an average accuracy in 
fault identifications obtained from the various activation 
functions is shown in Fig. 6. From Fig. 6, it is shown that 
when the case studies are tested with various locations at 
each transmission line, the accuracy of fault type from the 
BPNN algorithm is highly satisfactory. In addition, the 
proposed algorithm Hyperbolic tangent – Hyperbolic 
tangent – Linear as activation function in each layer can 
give a better performance in predicting the fault types. 
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(a) Hyperbolic in first hidden layer              (b) Logistic in first hidden layer 

 
Fig. 5. Comparison of average accuracy when identifying the fault type at various lengths of the transmission line among various fault types.  
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(a) Hyperbolic in first hidden layer             (b) Logistic in first hidden layer 

Fig. 6. Comparison of average accuracy when identifying the fault type at various lengths of the transmission line among various activation 
functions. 

IV. CONCLUSION 
In this paper, study of an appropriate activation 

function for the decision algorithm used in the transmission 
system has been discussed. The fault classification decision 
algorithm can be classified the fault type and fault location 
using the back-propagation neural networks (BPNN). The 
maximum coefficient from the first scale at ¼ cycle of phase 
A, B, and C of post-fault current signals and zero sequence 
current obtained by the DWT have been used as an input 
variable in a decision algorithm. The activation functions in 
each hidden layer and output layer have been varied, and the 
results obtained from the decision algorithm have been 
investigated with the variation of fault inception angles, 
fault types, and fault locations. The results have       
illustrated that the use of Hyperbolic tangent sigmoid 
function in the first and the second layers with Linear 
function in the output layer is the most appropriate scheme 
for the transmission system.   
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