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Abstract— Particle Swarm Optimization (PSO) is a popular 

algorithm used extensively in continuous optimization. One of 

its well-known drawbacks is its propensity for premature 

convergence. Many techniques have been proposed for 

alleviating this problem. One of the popular and promising 

approaches is low-level hybridization (LLH) of PSO with 

Genetic Algorithm (GA). Nevertheless, the LLH 

implementation is considerably difficult due to internal 

structure modifications of the original hybrid algorithms. 

Many success works have been reported on LLH for PSO-GA 

but a wide range of presumption terms and terminology are 

used. This paper describes the numerous techniques of LLH 

for PSO-GA in a form of simple taxonomy.  Then, examples of 

several implementation models based on the taxonomy are 

given. Recent trends are also briefly discussed from an 

implementations review. 

 

Index Terms—Meta-heuristics, Particle Swarm Optimization 

(PSO), Genetic Algorithm (GA), Low-level Hybridization 

(LLH), Taxonomy 

 

I. INTRODUCTION 

ROM the family of meta-heuristics algorithms, Particle 

Swarm Optimization (PSO) [1] and Genetic Algorithm 

(GA) [2] are the two well-known and popular search 

strategies that have gained widespread appeal amongst 

researchers to solve optimization problems in a variety of 

application domains.  These algorithms were developed 

based on nature analogy but have different in several 

principles.  The searching idea of PSO is to mimic social 

activities of animals such as birds flocking and fish 

schooling. GA in other ways is simulating natural evolution 

of creatures such as genetic reproduction and mutation.  

Due to the different searching paradigm, each PSO and 

GA has its own strengths and weaknesses when generating 

optimal solutions for optimization problems. PSO is known 

to be very effective in producing fast results but tends to 

converge to a local optimum [3].  It often has problem with 

less diversity to explore a wide range of potential solutions 

in the search space. Therefore, in most cases especially to 

real life optimization problem, the optimal results produced 

by PSO are still insufficient.  
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On the other hand, GA was generally found to have better 

search diversity than PSO [4].  Although it is still 

susceptible to premature convergence like PSO, the search 

diversity in GA can be controlled with several operators 

such as mutation and crossover.   As a result, GA is very 

effective in producing accurate results. Nevertheless, GA 

faces with long processing time from the excessive 

computational burden of the control operators [5]. 

An integration of strengths from PSO and GA can yield a 

new meta-heuristic with better efficiency than the single 

algorithm. Generally known as meta-heuristics 

hybridization, the combination techniques have been proven 

to be very effective in solving many kinds of optimization 

problems [6][7]. Nevertheless, to implement meta-heuristics 

hybridization is considerable difficult than the single 

version. While almost every report on meta-heuristics 

hybridization presents such a success story, attempting to 

understand the algorithm designs and replicating the 

experiments appears to be so heavily.  Besides, most works 

provide very brief reports on the hybridization techniques 

and use a variety of presumption terms and terminology [8].    

As to reduce the difficulties, many researchers attempt to 

provide general and simplified descriptions for different 

implementations of metaheuristics hybridization by 

proposing classification or taxonomy.  Based on the 

different taxonomies, researchers have a common view that 

metaheuristics hybridizations can be generally classified as 

high-level hybridization (HLH) and low-level hybridization 

(LLH) [9][6][7]. 

In HLH, both algorithms interact each other through a 

well defined interface or protocol and  the components from 

different algorithms are not strongly dependent [10]. 

Therefore, the algorithms in HLH can be retained with their 

original identity or algorithm structured. 

Different with LLH, the techniques involve internal 

structure modifications of the hybrid algorithms.  In other 

words, LLH creates new algorithm that combine 

components from different hybrid algorithms [11]. The 

components are strongly inter-dependent and must be fit 

well together.   Therefore, an appropriate design and 

technique for LLH implementation is essential which needs 

programmer to understand well the structure and working 

paradigm of the different algorithms.  Although several 

taxonomies are reported to increase users understanding on 

metaheuristics hybridizations, there are still limited works 

provided by LLH [12].  

 

II. RELATED WORKS 

The main idea that classified meta-heuristics 

hybridization into its hybrid level was originally proposed 

by Talbi in [9].  He has introduced taxonomy for 

metaheuristics hybridizations with regards to high-level 

F 
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teamwork, high-level relay, low-level teamwork and low-

level relay.  Furthermore, in a more general view, 

researchers in[6], has divided the hybrid metaheuristics 

scheme into three general forms which are component 

exchange among meta-heuristics, cooperative search from 

different meta-heuristics and integration with others 

methods. The researchers agree that component exchange 

among meta-heuristics can be implemented with high-level 

or low-level methods.   

Parallel metaheuristics are also considered as 

metaheuristics hybridization due to the occurrence of 

cooperation among different metaheuristics [6]. There are 

several taxonomies for parallel metaheuristics have been 

proposed but it is more significant to HLH. For examples, a 

taxonomy that categorized the implementation as operation 

parallelization, search space decomposition and multi-

search threads [13].  In  [14], the researchers have classified 

parallel metaheuristics according to algorithm types and 

space decomposition.  

There are also taxonomies proposed for a particular 

metaheuristics type. Some of them are Tabu search  [15], 

Particle Swarm Optimization [16], Ant Colony Optimization 

[17] and Evolutionary Algorithms (EAs) [8] [18][19][20]. 

Although these taxonomies are relevant to hybridization, 

none is found to be specifically proposed for LLH. 

Given previously limited works for LLH and with the 

advantages of PSO-GA hybridization, this paper proposes 

taxonomy of LLH for PSO-GA. Before the proposed 

taxonomy is presented, the following part describes the 

fundamental elements and processes of LLH.  

 

III. GENERAL DEFINITIONS 

The LLH of PSO-GA can be formally defined as a 

composition of (m,s) where       are the two different 

algorithms of PSO and GA from a family of meta-heuristics 

algorithms, M            . The parameter m and s are 

devoted to master-metaheristic and sub-metaheuristic 

respectively.  In this study, the focus is given to one-way 

LLH where PSO is always the m and GA as the s. 

As a meta-heuristic M, each PSO and GA consists of 

general components            and proprietary 

components P            .  The general components are 

common to all M algorithms but they are distinct with 

proprietary components.       

The general component S consists of solutions in search 

space that has a finite set of decision variables    where 

i        .  The type of variables can be in discrete, 

continuous or mixed format, represented with a particular 

encoding of algorithm M [6]. Each PSO and GA can work 

on identical representations for all solutions in the search 

space or employs different representations respectively [14].  

Therefore, the LLH might be able to operate not just on one 

search space but also on different search space compositions 

[12]. 

The set of constraints among the variables is defined in a 

set of penalty functions                        where 

i       . The objective function       assigns a 

cost value MIN and MAX to each solution of S. 

Proprietary components P are exclusive to their 

respective meta-heuristic M which can be crossover into the 

routine of another metaheuristics [21]. In order to maintain 

the main paradigm of PSO as a master-metaheuristic, the 

LLH must implement PSO’s proprietary components but is 

option to include one or more GA’s proprietary components.  

The general and proprietary components have several 

parameters that can be associated with dynamic or static 

value[22][12].  Static parameter value is constant along all 

search iterations while dynamic value is changeable 

according to self-adaptive               or time-varying 

              behaviour. The sets of A and V consist of 

different functions with different types T that formulating 

the dynamic behaviour.  

 

IV. THE TAXONOMY 

Based on the LLH definition, the taxonomy for LLH of 

PSO-GA is generally divided into component and 

implementation as shown in Fiq. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.  Taxonomy for LLH of PSO-GA 
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A. Components 

As meta-heuristics, PSO and GA have general and 

proprietary components. The general components include 

problem to be solved, a group of solutions for the problem 

and the solutions constraints.   

The solutions for the problems in the search space are 

represented according to the particular algorithm. PSO uses 

particle for representing solutions while in GA in the form 

of chromosome.  The problem is defined through one or 

more objective functions while solutions constraints can be 

derived with constraint functions.   

The proprietary consists of specific components for PSO 

and GA. While PSO proprietary components based on 

blackboard type, GA components comprised of evolution 

and selection categories.  The evolution approach uses some 

operators (e.g., mutation and crossover) to reproduce new 

population of solutions while blackboard type is utilizing 

shared memory concept when generating new population by 

updating some information of solutions. PSO uses its shared 

memory in the form of personal and global best.  

Selection technique is common to GA algorithm. There 

are varieties of selection techniques have been introduced 

into the algorithm including roulette wheel, tournament and 

rank-based. Another popular method that can also be 

associated with selection is elitism that create new group of 

best solutions from the current solutions [11].   

 

B. Implementations 

Implementation refers to execution method for the LLH 

components. For example, the solutions component in 

search space can be composed into several sub-search 

spaces which can be explored in parallel or sequential. If 

encoding method for the solutions representation is identical 

for each sub-search spaces, it is categorized as explicit. 

Otherwise it is classified as implicit decomposition. Further, 

each algorithm might solve on global or partial problem. 

The problem is global if both PSO and GA solve the same 

target optimization problem while partial problem occurs if 

the problem is different for each algorithm.  

The behavior element refers to parameters value of each 

parameter of components which can be constant or dynamic.  

Formulation of dynamic behavior derives either from 

random, time-varying or adaptive. The time-varying 

depends majorly on search iteration number while adaptive 

behavior reflects on current performance of algorithm search 

such as the local or global fitness. Some of available 

formulations for time-varying are linear increasing (LI), 

non-linear increasing (NLI) and non-linear decreasing[23]. 

C. Implementation models 

There are ten models of implementation can be applied 

for the LLH in relation to the component and 

implementation classification as shown in Fig. 2. Each 

method is categorized relatively to search space exploration 

(parallel or sequential), solution decomposition (explicit or 

implicit) and problem (global or partial). 

In more details, the following part gives flow chart of 

some implementation models. Then, in order to illustrates 

connection between the taxonomy elements (components 

and implementation), the configurations for each model is 

given in a form of simple statements.  

 

i. Parallel explicit global 

As illustrated in Fig. 3, this method divides search 

spaces into two sub-search spaces. Each PSO and GA is 

exploring their respective search space in parallel. Since 

both search spaces are represented with PSO particle, the 

solutions decomposition is defined as explicit. Besides, both 

PSO and GA work on solving the same global problem. 

Furthermore, Fig. 4 shows extra descriptions for the 

method that includes behavior characteristics.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Implementation models

  

 

 

 

Implementation of component for LLH 

Search space exploration Solution decomposition Problem 

Parallel 

Sequential 

Explicit 

Implicit 

Global 

Partial 

a. Parallel explicit global(PEG)     e. Sequential explicit global(SEG)     i. Sequential global(SG) 
b. Parallel implicit global(PIG)     f. Sequential implicit global(SIG)      j. Sequential partial(SP) 

c. Parallel explicit partial(PEP)    g. Sequential explicit partial(SEP)  

d. Parallel implicit partial(PIP)    h. Sequential implicit partia(SIP) 
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- Search space (parallel [2, 0.5]) 
- Solutions (explicit [particle]) 
-Problem (Global [f(x])) 
- Update (inertia [constant]), personal learning [constant], 
social learning [constant]) 
- Selection (Elite [constant]) 
- Crossover (rate [constant], operation [one point, adaptive 
[bestfitness]]) 
- Mutation (rate [constant], operation [Gaussian, adaptive 
[personalfitness]]) 
 

- Search space (parallel [2, 0.5]) 
- Solutions (explicit [particle]) 
- Problem (Partial [f1(x], [f2(x] ) 
- Update (inertia [time-vary[LD]]), personal learning [constant], 

social learning [constant]) 
-  Mutation (rate [constant], operation [Gaussian, adaptive 

[personalfitness]]) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Flow chart for parallel explicit global 

 

 

  

 

 

 

 

 

 

Fig.4.  Example of configurations for  parallel explicit global 

In the configurations, search space is divided into two 

sub-search spaces with equal percentage defines with Search 

space (parallel [2, 0.5]).  The behaviour characteristics are 

configured through the parameters. For example the 

adaptive behavior for crossover operation is derived from 

bestfitness formulation while mutation operation is 

dynamically determined with personalfitness adaptive 

factor. 

 

ii. Parallel explicit partial 

Similar with parallel explicit global, this method divides 

search spaces into two sub-search spaces where all solutions 

represented with PSO particle.  However, the method solves 

partial kind of problem where main problem solved by PSO 

as the master-metaheuristic while sub-problem solved by 

GA. Fig. 5 shows the flow chart while Fig. 6 gives examples 

of the configurations. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.5.  Flow chart for parallel explicit partial 

 

 

 

 

 

   

 

 

 

 

 

Fig. 6.Example of configurations for  parallel explicit partial 

In the configurations, the adaptive behaviour for inertia 

parameter is time-vary with  linear decreasing  (LD) 

formulation. Besides, only mutation operation from GA 

components is included to the LLH. 

 

iii. Sequential implicit partial 

Different with parallel methods, the sequential method 

performs search exploration for different search space in a 

serial manner. As shown  

in Fig. 7, solutions in each search space are represented in 

particle and chromosome respectively. Thus, it is 

categorized as implicit decomposition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7.  Flow chart for sequential implicit partial 

The method can be configured as in the Fig. 8 where 

mutation rate is determined according to time-vary behavior 

with Non-linear decreasing (NLD) formulation. 

 

 

 

 

 

 

 

 

Fig.8  Example of configurations for  sequential implicit partial 

iv. Sequential global 

This is an example of sequential implementation without 

solutions decomposition and thus not applicable for 

explicit/implicit element.  Fig. 9 and Fig. 10 show the flow 

chat and configurations respectively . 
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Fig.9.  Flow chart for sequential global 

 

 

 

 

 

 

Fig. 10  Example of configurations for  sequential global 

The selection and crossover components from GA are not 

included. The mutation operation is implemented prior to 

update operation from PSO. This configuration is to show 

that the implementation of proprietary components and its 

arrangement is flexible for sequential implementation. 

 

v. Sequential partial 

This is another model of sequential implementation with 

partial kind of problem.  As seen in Fig. 11, the PSO 

components are firstly implemented than GA components. 

This is because PSO is the master-metaheuristic and works 

for main (global) problem while GA solves partial problem 

as it acted as sub-metaheuristic. Example of configurations 

for this method can be viewed in Fig. 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11  Flow chart for sequential partial 

 

 

 

 

 

 

 

 

 

Fig. 12.  Example of configurations for  sequential partial 

V. IMPLEMENTATION REVIEW 

The purpose of this section is to show that many LLHs 

for PSO-GA use methods that fit into the proposed 

taxonomy. Therefore, some LLH techniques are reviewed 

based on the published literature in Google Scholar and 

Elsevier databases. Since the reported works in LLH are 

very progressing, only the most current works (years of 

2010-2013) are taken.  Table I and Table II at the Appendix 

part, list the related works for sequential and parallel 

models respectively. The configurations part is not 

completely listed depending on the information given in 

each reference. 

According to Table I, implementation model with 

sequential global appears to be the most popular. This is 

regarding to the less complexity of sequential global model 

which is not involving search space and problem 

distributions. Furthermore, as shown in the configurations 

lists, mutation operations  have been widely included into 

PSO.  In GA, mutation operation is generally thought to 

enable high exploration [5] whereas both exploratory and 

exploitative aspects are ascribed to crossover. Since PSO is 

mostly fine with exploitation, the inclusion of mutation is 

likely more essential than crossover.  

 Compared to sequential implementations,  relatively few 

approaches are found for the parallel LLH as depicted in 

Table II.  Prior literature studies in [9] and [12] also gained 

less number of implementations with parallel methods 

although for general meta-heuristics hybridizations and in a 

more extensive scopes of publications. However, the 

different number of implementation have should not be used 

as a performance measurement. It might subjects to many 

other factors including the type and size of a particular 

problem. 

VI. CONCLUSION 

Taxonomy provides general and simplified descriptions 

for different kinds of meta-heuristics hybridization 

techniques. This paper introduced taxonomy specifically for 

LLH of PSO-GA. Based on the taxonomy, it is also 

illustrates the compositions of LLH implementation models. 

Nevertheless, the implementation models have several 

limitations that demand for many research extension. A 

possible future research direction for improving the models 

can engage in handling optimization problems with multiple 

objectives and solutions constraints. Besides, another 

interesting study is to tackle two-ways LLH for the different 

hybrid algorithms. 
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APPENDIX 

TABLE I 

SEQUENTIAL MODELS 

Ref. Implementation model Configurations 

[3] Sequential explicit global Update (inertia[const],personal learning [const ], social learning [const]) 

Selection (random) 

Mutation (rate [const], operation[adaptive[population size])) 
 

[4] Sequential global Mutation (rate [const], operation [Gaussian , Adaptive[personal fitness, global fitness]) 

Update (Adaptive[personal fitness, global fitness],personal learning [const ], social learning [const]) 
 

[5] Sequential global Update (inertia[const]],personal learning [const ], social learning [const]) 

Mutation (rate [const], operation[adaptive[distance])) 
 

[22] Sequential global Mutation (rate [const], operation [Gaussian, adaptive [best fitness]]) 

Update (inertia [adaptive [best fitness]), personal learning [const ], social learning [const]) 
 

[23] Sequential global Update (inertia[time-vary],personal learning [const ], social learning [const]) 

Mutation (rate [time-vary], operation [Cauchy]) 
 

[24] Sequential global Crossover (rate [const], operation [adaptive[personal best], time-vary [modulus]) 

Update (const]), personal learning [const ], social learning [const]) 
 

[25] Sequential global Selection (Random) 

Mutation (rate [const], operation [Real value, Random)) 
Update (inertia [const], personal learning [const ], social learning [const]) 

 

[26] 1.Sequential partial 
2.Sequential global 

1. Selection (Elite) 
Crossover (rate [const], operation [Uniform,[personal best],Adaptive [fitnessvalue]) 

Mutation (rate [const], operation [Random, Random)) 

Update (basic[const], personal learning [const ], social learning [const]) 
 

[27] Sequential global Update (inertia[const],personal learning [const ], social learning [const]) 

Mutation (rate [const], operation [Cauchy)) 
 

[28] Sequential explicit global Update (inertia[time-vary],personal learning [const ], social learning [const]) 

Mutation (rate [const], operation [non-uniform)) 
Mutation (rate [const], operation [Cauchy)) 

 

[29] Sequential implicit global Update (inertia[const],personal learning [const ], social learning [const]) 
Selection (proportional) 

Crossover (rate [const], operation [one-point, random)) 

Mutation (rate [const], operation[random)) 
 

[30]  Sequential global Update (constriction[const],personal learning [const ], social learning [const]) 

Selection (random) 
Mutation (rate [const], operation[random)) 

 

[31] Sequential explicit global Update (inertia[adaptive],personal learning [const ], social learning [const]) 
Selection (roulette wheel) 

Crossover (rate [const], operation [adaptive[])) 
Mutation (rate [const], operation[adaptive[])) 

 

[32] Sequential global Update (inertia[time-vary],personal learning [const ], social learning [const]) 
Mutation (rate [const], operation[Gaussian,adaptive[])) 

 

[33] Sequential explicit global Update (inertia[time-vary[LD]],personal learning [const ], social learning [const]) 
Selection (tournament) 

Mutation (rate [const]) 

 
[34] Sequential explicit global Update (inertia[time-vary[LD]],personal learning [const ], social learning [const]) 

Selection (random) 

Crossover (rate [const]) 
 

[35] Sequential global Update (inertia[time-vary[LD]],personal learning [const ], social learning [const]) 

Selection (Elite) 
Crossover (rate [const]) 

Mutation (rate [const]) 

 
[36] Sequential implicit global Update (inertia[time-vary[LD]],personal learning [const ], social learning [const]) 

Crossover (rate [const]) 

Mutation (rate [const]) 
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TABLE II 

PARALLEL MODELS 

 

Ref. Implementation model Configurations 

[37] Parallel implicit global 

- Search space (parallel [2, 0.3/0.5/0.7]) 
-Update (inertia [const], personal learning [const ], social learning [const])  
-Selection (Tournament) 
-Mutation (rate [const], operation [Real value, Random)) 
-Crossover (rate [const], operation [Random] ) 
 

[38] Parallel explicit global 

- Search space (parallel [2, 0.4]) 
-Update (constriction [const], personal learning [const ], social learning [const]) 
-Selection (Elite) 
-Mutation (rate [const], operation [Real value, Random)) 
-Crossover (rate [const], operation [Random]) 
 

[39] Parallel explicit global 

- Search space (parallel [2, 0.5)  
-Update (inertia [const], personal learning [const ], social learning [const]) 
-Selection (Elite) 
-Crossover (rate [const], operation [Random]) 
- Mutation (rate [const], operation [Random]) 
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