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Weighted Type of Quantile Regression and its
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Xuejun Jiang, Tian Xia, and Dejun Xie

Abstract—In this paper we introduce a weighted composite f (-, 3) is known up to g-dimensional vector of parameters
qguantile regression (CQR) estimation approach and study its

application in nonlinear models such as exponential models ' ; ; ; ; ;
and ARCH type of models. The weighted COR is augmented We will address the issue of choosing weights when using

by using a data-driven weighting scheme. With the error dis- the weighted CQR. Smce_the weights in the We!ghted CQR
tribution unspecified, the proposed estimators share robustness are allowed to be negative, the proposed weighted CQR
from guantile regression and achieve nearly the same efficiency is different from the common QR and the CQR (see also
as the oracle maximum likelihood estimator(MLE) for a variety = Section 2). When the weights are all equal and the model is

of error distributions including the normal, mixed-normal, jinear with a fixed number of parameters, our method reduces
Student’s t, Cauchy distributions and etc,. We also suggest an

algorithm for fast implementation of the proposed methodology. to that.of Zou and Yuan (2008). _Slnce the proposed weighted
Simulations are conducted to compare the performance of CQR involves a vector of weights, we develop a data-
different estimators, and the proposed approach is used to driven weighting strategy which maximizes the efficiency
analyze the daily S&P 500 Composite index, which endorse of the weighted CQR estimators. The resulting estimation
our theoretical results. is adaptive in the sense that it performs asymptotically the
Index Terms—weighted CQR, Oracle MLE, Extended inte- same as if the theoretically optimal weights were used. The

rior algorithm, Double threshold ARCH models. adaptive estimation is robust against outliers and heavy-
tailed error distributions, like the Cauchy distribution, and
|. INTRODUCTION efficient as nearly as the oracle MLE for a variety of error

n(H'stributions(see Table I). This is a great advantage of the
posed estimation method, since the adaptive weighted
R estimators do not require the form of error distribution
d achieves nearly the Cramér-Rao lower bound.

he weighted CQR estimators admit no close form and
olve minimizing complicate nonlinear functions, so it is
llenging to derive asymptotic properties and to implement

Quantile regression (QR), introduced by Koenker al
Bassett (1978), receives increasing attention in econometr%g
and statistics for its advantages over mean regression
least in two aspects: (i) the stochastic relationship betwed
random variables can be portrayed much better and with
much more accuracy using quantile regression than simff’g
mean regression (see for example Chaudhuri, Doksum g ) . :
Samarov, 1997); (ii) quantile regression provides more robJ £ methodglogy. Theoretlc_ally, we will_establish asymp-
and consequently more efficient estimates than the meantPeI'-? no_rmallty of the resulting estimators a_nd ShO.W t.h?'r
gression when the error is non-normal (Koenker and Bass&'i’,“mamy’ no matter whgther the error variance 1S finite
1978; Koenker and Zhao, 1996). This motivates us to wofl not. Prac_t|cally, we will develop an aIgonthr_n for f‘?‘St
along the line of QR for developing more efficient estimatioHn|°|emem"’Itlon of_the pro_pose_d methqdology. This algorithm
methods. solves a succession of linearized weighted CQR problems,

The CQR in Zou and Yuan (2008) is robust compare%aCh of whose dual problems is derived. We will use the
to traditional QR. The CQR they used is a sum of differimeri(_)r point algorithm” [see Jiang, X., et.cl.(2012), Van-
ent quantile regression (QR) [Koenker and Bassett (197 ?rbeu et.cl.(1986), Koenl_<er and F_’ark (1996)] o .SOIVe these
at predetermined quantiles, which uses equal weights |]1al prqblems. The resultm_g algorithm is easy to implement.
different QR (see Section 2 for details). Intuitively, equa imulations endorsg ou_r dlscovgry. .
weights are not optimal in general, and hence a more e1°ficientT,he rest of the art|c_;le Is organized as follows. In Sectlon I
CQR should exist. Therefore, in this article we introduce §© mtroduc% thehwelghted CQR for T]Oge]l (I'lg' n sectlor:j
“weighted CQR” estimation method and let the data decid we consider the compu_tatlon_met od for the propose
the weights to improve efficiency while keeping robustne ethodology and con(_juct simulations to demonstrate the per-
from the QR. The weighted CQR method is applicable jgrmance of it. In Section IVwe apply the proposed methods
various models, but in this article we focus only on thi® analyse a real dataset. Finally, Proofs for theorems are put
nonlinear modei In supplementary materials to save space.

yi=[f(xi,B) +ei, i1=1...,n, (11) Il. WEIGHTED COMPOSITE QUANTILE REGRESSION

where ¢;’s are independent random errors with unknown Our idea can be well motivated from the linear model,
distribution functionG(-) and densityy(-), and the function
v =x;B+¢;, fori=1,...,n, (1.2)
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zn:pT(yi —x'8—b,) For model (11.2),G = var(x;). If all w;, are equal, then
=1 ' Theorem 1 reduces to the asymptotic normality of the CQR
. estimators in Zou and Yuan (2008). Wh&n= 1 andr, = T,
over 3 and b, where p,(u) = u(r — I(u < 0)) is the i y15ws from the above theorem that theth QR estimate

check function with derivative),(u) = 7 — I(u < 0) for ot g5 /7 consistent and asymptotically normal with mean
u # 0. Noticing that the regression coefficients are the sangg g variancg—2(b*)r(1 — 7)G !

across different QR models, Zou and Yuan (2008) proposedSince G does not involvew, the weights should be

to estimate@ by minimizing selected to minimizer?(w). Letg = (g(b%,),...,g(b%.))\
K n and letQ? be aK x K matrix with the(k, k') element being
Z me (yi —xiB —br,), (.3) Qup = min(7g, 7% )(1 — max(7, 7%+ )). Then the optimal
k=1 i=1 weightw,,:, which minimizess?(w), can be shown as

overgd andb., , where{r; } X, are predetermined ovés, 1).
This is the aforementioned CQR in the introduction section.
Note that the CQR method uses the same weight ffhe optimal weight components can be very different, and
different QR models. Intuitively, it is more effective ifsome of them may even be negative. In fact, in our simu-
different weights are used. Applying the weighting schemations we also experience such a scenario. This reflects the
to model (I.1), one can estimaf# by minimizing necessity to use a data-driven weighting scheme. The usual

K " nonparametric density estimation methods such as kernel
L.(B,b) = Z“sz’m (yi — f(xi,8) —by,), (1.4) smoothing based on estimated residualscan provide a
k=1 =1 consistent estimation(-) of g(-). Let the resulting estimate
of g beg. Thenw = (§Q %g)"'/2Q 'g provides a
nonparametric estimator ab. This leads to an adaptive
estimator of3 by minimizing

wopt = (80 %g) /20 g,

over3 andb = (b,...,br ), Wherew = (wy,...,wg)’
is a vector of weights such tht|| = 1 with || - || denoting
the Euclidean norm. The weight, controls the amount of
contribution of ther,-th QR. For convenience, we denote by K &
3, the minimizer of3 for (1.4) and refer to it as “the WCQR Z Wk Z pri(yi = f(xi38) = b)) (1.5)
estimator”. In general, giveriK, one can use the equally k=l =t
spaced quantiles af, = k/(K + 1) for k =1,2,...,K. In overb, andg, wherewy is the k-th component otv. Let
practice, one can choog€é = 10 to gain efficiency for most the resulting estimator g8 be 3,. Theng, is asymptotically
of situations. See Table | for details. normal from the following theorem.

In order to derive the asymptotic property of the proposed Theorem 2: Under the same conditions as in Theorem 1,
estimator, in the following we introduce some notations - D o
and conditions. Let3" be the true value of3, b be Vn(B, -8 >%N(Ov(glﬂ '8)'G 1)'
the 7,-th quantile ofe, andb* = (b5 ,...,b%, )". Denote
by fz* - f(xivlg*>a Vi = [af(xhﬁ)/a/g] |ﬂ:ﬁ*7 and
Vi = 0% f (xi,3)/0B0B'] | g_g+- Assume that

Sinceo?(wopt) = (@271g) "1, B, has the same asymptotic
variance matrix a:;é1 as if wop: Were known. That is, the
estimatorg, is adaptive. Therefore; is called the adaptive
(@) G =var(Vf{)>0. o , weight vector. By Theorem 2, the asymptotic relative effi-
(b) The errore; .has the (.ﬂIStI’.Ibutlor? .funct|0’G(') ) and ciency (ARE) of the adaptive WCQR estimation with respect
density functlong(-) which is positive and continuous, ihe |east squares (LS) estimationd@VCQR, LS) =
at ther,-th quantileshy, . . o?gQ'g. Since the oracle maximum likelihood (ML) esti-
(c) There is a large enough open subSet R” which a0r of 3 has asymptotic variance matriy ' G~!, where
contains the true parameter p02yﬁf, such that for all I, = [[g'(t)]2/g(t) dt is the Fisher information. Therefore,
x; the second derivative matri®f(x;, 8) of f(xi,3)  the relative efficiency of the adaptive WCQR estimation with
with respect to3 satisfies that respect to the oracle maximum likelihood estimation (MLE)

IV2f(xi, B1) — V2 (xi, Bo) || < M(x;)||B1 — Bol| 18

e(WCQR,ML)=1I'gdQ 'g.
102 (x:, 8)/ (98;08¢)| < Njk(x:) o
for all B, € 9, where EM?(x;)] < oo and For ?qu;!ly spacee[hrk}k:l,I the ada]E)tlve estimatoB, is
E[NQ (x)] < C1 < oo for all j. k nea}ry efficient as the orgc el MLEs for various error d.|str|.—
kX 1 » e butions (see Theorem 4 in Jiang,X., et.al. (2012)), which is

Under these mild conditions, we have the followin%1 great advantage of the proposed methodology.

asymptotic normality result. For eachK, the AREs of the adaptive estimat@s, with
Theorem 1: Let respect to some common estimators can be calculated. To
K appreciate how much efficiency is gained in practice, we
S(w) =Y wywp min(7g, i) (1 — max(7, 74))- investigate the performance of common estimators. Table |
k=1 reports those AREs for linear models with various error dis-
Under the conditions (a)b(c), tributions, which demonstrates thdj, is highly efficient for
Vn(B, - B*) — N(O, ag(w)G‘l), all the distributions under consideration. For linear models,
1% Leng (2009) demonstrated that his regularized rank regres-
where o2(w) = S > wrg(b:,)} 2 sion estimator k2) was quite efficient and robust. Table |
1 indicates that the proposed adaptive estimate dominates the
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TABLE |
THE RELATIVE EFFICIENCY OF ESTIMATORS LAD- L EAsT assoLute ~ Whose dual problem can be shown as

DEVIATION. . , "
max{g'd|d = (di',...,dK"),

K e(R?) e(ML) e(LS) e(LAD)
10 1.009 0.964 0.964 1514
Normal | 100  1.045 0998  0.998 1567 dy € |wi(me — 1), weT]", X'd = 0}, (111.10)
1000  1.047 1.000 1.000 1.571 , .
Mied | 100 TOML 0998  T4%0 432 where § = (yi ..oy )y Xo= (Xp. 0 Ko )y Xi =
Normal | 1000  1.044 1000  1.434 1.436 (@1ky - - > Tnk)'s ANy = (Y1k, - - -, Ynk)'- The interior point
10  1.036  0.984 1.967 1214 method can be used to solve the dual problem (I11.10), the
ts 100  1.052 0.999 1.998 1.233 ; : : .
1000  1.053 1,000 5 000 1234 algorithm details are listed as follows:
10 1387 0585 L7585 2.913 1. For any initial feasible poind, e.g.,d = 0, following
x2(6) | 100  1.904 0.803 2.410 4.001 X .
1000  2.154 0.909 2.726 4.525 Meketon (1986), seD;, = diagmin{wy i — dix, dir, —
10 1.601 0.973 int 1.201 wi(te — 1)}), D = diagDy,...,Dg), s = D*(I —
Cauchy | 100 1.644 1.000 inf 1.233 2 21 2\ ~ ) 1 2~
1000 1.645  1.000 inf 1.234 X(X'D*X)~'X'D?)g, andt = (X'D*X)~* X' D?g.

2. Set df = dp + (n/vk)sk. Wwhere v, =
max; (max{sg/(WeTh — dix), —Sik/(dix — wr(Te —

R? for all error distributions and is much more efficient ~ 1))}), and n € (0,1) is the constant chosen to

than it when the error follows the Cauchy or chi-squared ensure feasibility. As suggested by Koenker and Park,

distribution. It also suggests that typically one could choose 7 = 0.97.

K =10 in practice and efficiency is much gained, as shown3. Setd = d*. UpdatingD, s, and the newi* continues

in simulations. the iteration.
After solving (111.10) using the above interior point algo-
I11. NUMERICAL IMPLEMENTATION rithm, we arrive at the next loop which uses the current value

6 = 6U+1) for the primal problem in (111.9). This leads to the

L . , _ updated dual problem (111.10) with}, = y; — fir(09+D)
Mln.|m|;at|on in (11.4) involves a.corr.lpllcat_e nonlm_earandxgk = Vf;x(6U+D). The current! should be adjusted to

optimization problem. We use the interior point algorithm g re that it is feasible for the new value ¥t Similar to

(see Jiang, X., et. al. (2012) to solve the problem. Matlgh,enker and Park (1996), we project the curréminto the
codes are available upon request for the proposed methoggy space of the neX, i.e.d = (I - X(X'X)~'X")d and

Consider the equivalent problem of (I1.4): then shrinking it to insure thak, lies in [wy (7, — 1), wpTs]™,
K n so the adjusted becomes
min Y wi Y pr (i — i (6)), (11.6) A di =
0 = = ) + 5}) dg

dy, = (max{max( ,
(2 wk(rk—l) WETE

efl%r some tolerance paramet&r> 0.

A. Extended interior algorithm

wherel;1,(0) = f(x;,8) + b.,, and@ = (b,,,... b, 3.
Following Osborne and Watson (1971), we solve the probl
(111.6) using the following algorithm:
(1) Given the current value¢?), of 6, calculatet to B- Smulations
minimize In this section, we report on simulations to investigate
the advantages of the WCQR estimation. An exponential

K n
Zwk me{yi —13(09)) — VI (09)t}, (N1.7) regression model was used:
k=1 i=1

y=1+bexp(c'x) +¢,
where Vi, (09)) = (dlix(0)/d0")|g—gw - Let the mini-
mum bes?), and let the minimizer be = t().
(2) Calculateh to minimize

whereb andc = (e1, co,c3)’ are parameters; is the error.
The true values of parameters were sebas1.5, andc =
P . (—0.6,d—0.8,f—0.7)’.h ’ ol | f
’ , , We draw from the working model00 samples of sizes
Zwkme{yi—lik(G(” AN} (18) 900 and 400. In each simulation, the components &f
k=1 =l were jointly normal distributed with the pairwise correlation
Let the minimum besU+1 with A = \). coefficient0.5 and standard normal as marginals. We con-
(3) SetpU+h) = gl) 4+ AUl Update the current value sidered three sets of errord(0, 1), t(4), andx?(4). All of
of # by #U+1) | and repeat the above procedure until thihem were centralized and scaled so that the medians of the
new iterate fails to improve the objective function by @absolute errors were ones. As before, we ukee: 10 and
specified tolerance such ae—*. equally spacedy, on (0,1).
In the above method, the problem (I11.8) can be easily We compared four estimation methods: thhe, CQR,
solved by line search in the resulting directior- t/), but WCQR estimation, and the oracle MLE (maximum likeli-

one has to solve a succession of linearized weighted quanfiRod estimation) of known error distribution. In each simu-
regression problems in (I11.7). Lef;, = i — Li(09)) and lation the “root of mean squared errors (RMSE)” for different

xhy = Vlik(e(j)). Then the problem (I11.7) becomes c_oefficignt e§timators were calculated, and their average over
K " simulations is reported in Tables II-IV, whekedenotes the
miny wi > pr (Wi — Tpt), (I.9) sum of RMSE for all components i. Therefore, better
¢ ; ; R g estimators should have small®&r values. As expected, the
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TABLE II TABLE V
RMSE(MULTIPLIED BY 103) FOR DIFFERENTQR ESTIMATORS UNDER ESTIMATES OF PARAMETERS WITH ESTIMATED STANDARD ERRORS IN
THE NORMAL ERROR PARENTHESES(MULTIPLIED BY 102).
n = 400
Estimates| b & ¢é& é % Method | QR(K = 1,7x = 0.75) CQR WCQR
Ly 145 47 33 29 255 o'l -11.30 (2.13) -11.60 (3.03)| -11.02 (2.09)
CQR
woer | 154 38 58 51 514 al? -4.86 (2.57) -4.64 (2.96) | -5.08 (2.39)
oML 121 37 28 24 210 aiM 0.50 (0.06) 0.50 (0.03) | 0.51 (0.03)
g 19.04 (4.81) 19.20 (2.42) | 19.31 (2.42)
RMSE(MULTIPLIED BY 103) :?)‘ELDIT:FII!:ERENTQR ESTIMATORS UNDER 682) 0.51 ( 0.06) 0.51 (0.03) | 051 (0.03)
THE STUDENT T ERROR 2 6.39 (5.33) 6.36 (2.67) | 6.42 (2.67)
n = 400
Estimates| & & & & % _ .
I, 144 412 54 gl 550 (,e. K = 1) at 7x = 0.5 and 0.75 to fit the model. We
CQR 127 37 30 28 222 i i
WgQR %6 35 38 55 554 _crralculate Ithe estimated %ar.am_lt_etzlrs ar\1/d their siandarq errors.
oML 196 37 29 27 219 e results are reported in Tables V. Fox = 0.5, it

corresponds to thd.;-estimate. Since the result frotb,-
estimation is poor, we omit it there.

oracle MLE performs the best, the WCQR performs better It is observed that all the estimation approaches identify

than the CQR and.;, and theL, is the worst. In terms positive beta’s values. This is desired because the volatility
) . . , . - (1 2

of overall performance (the value af), WCQR estimators Coefficients,5's, are nonnegative. Nega_tw@ﬁ ' and of”

uniformly dominate theL; and CQR estimators and ardndicate that the future mean return will be forecasted as

comparable to the oracle MLE under all kind of errorROSitive (negative) if the current return is negative (positive).

we considered. This is in accordance with our previoddVs is expected in an efficient market. On the other hand,
theoretical results. negative returns in this model have abguiimes the effect

of positive returns on future conditional scales. This indicates

that the volatility is significantly higher when prices are

falling. That is, volatility tends to be higher in bear mar-
We study the daily S&P 500 Composite index fronkets, an asymmetric volatility effect described by Nelson’s

January 3, 2000 to July 27, 2011. This index represerB&ARCH model (Nelson (1991)).

the bulk of the daily value in the US equity market. The Among the three estimation methods, the WCQR estimator

return seriesy; is defined as the difference of the logis the best for all estimators because it has the smallest

price. We are interested in the asymmetry of the conditiona&kndard deviation.

mean and conditional variance. The double-threshold ARCH

(DTARCH) model [see Li and Li (1996), Hui, Y.V. and Jiang, ACKNOWLEDGMENT
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IV. A REAL EXAMPLE

2 .
a§ )yt71 + ey, if yi—1 >0,

wheree; = hiuy, With REFERENCES
(1) (1) i <0 [1] G. W. Bassett and R. W. Koenker. (1992). A Note on Recent Proposals
hy = 02 + ﬂlQ |5t*1|’ I y-1 =Y, for Computing L, Estimates Computational Statistics & Data Analy-
Bé ) + BE )|5t—1|; if Ye—1 > 0. SIS. 14 207-211. -
. . . ‘Lﬂ P. Billingsley (1995).Probability and Measure, 3rd ed. New York:
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Estimates| b é& ¢ & X [7] X. Jiang, J. Jiang and X. Song (2012) Oracle model selection for
Ly 147 42 34 30 254 nonlinear models based on weighted composite quantile regression.
SR W2 R O 2 139 Statistica Sinica, 22(4), 1479-1506.
QR 86 26 21 19 151 N A o . .
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