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Abstract—In this paper we introduce a weighted composite
quantile regression (CQR) estimation approach and study its
application in nonlinear models such as exponential models
and ARCH type of models. The weighted CQR is augmented
by using a data-driven weighting scheme. With the error dis-
tribution unspecified, the proposed estimators share robustness
from quantile regression and achieve nearly the same efficiency
as the oracle maximum likelihood estimator(MLE) for a variety
of error distributions including the normal, mixed-normal,
Student’s t, Cauchy distributions and etc,. We also suggest an
algorithm for fast implementation of the proposed methodology.
Simulations are conducted to compare the performance of
different estimators, and the proposed approach is used to
analyze the daily S&P 500 Composite index, which endorse
our theoretical results.

Index Terms—weighted CQR, Oracle MLE, Extended inte-
rior algorithm, Double threshold ARCH models.

I. I NTRODUCTION

Quantile regression (QR), introduced by Koenker and
Bassett (1978), receives increasing attention in econometrics
and statistics for its advantages over mean regression at
least in two aspects: (i) the stochastic relationship between
random variables can be portrayed much better and with
much more accuracy using quantile regression than simple
mean regression (see for example Chaudhuri, Doksum and
Samarov, 1997); (ii) quantile regression provides more robust
and consequently more efficient estimates than the mean re-
gression when the error is non-normal (Koenker and Bassett,
1978; Koenker and Zhao, 1996). This motivates us to work
along the line of QR for developing more efficient estimation
methods.

The CQR in Zou and Yuan (2008) is robust compared
to traditional QR. The CQR they used is a sum of differ-
ent quantile regression (QR) [Koenker and Bassett (1978)]
at predetermined quantiles, which uses equal weights for
different QR (see Section 2 for details). Intuitively, equal
weights are not optimal in general, and hence a more efficient
CQR should exist. Therefore, in this article we introduce a
“weighted CQR” estimation method and let the data decide
the weights to improve efficiency while keeping robustness
from the QR. The weighted CQR method is applicable to
various models, but in this article we focus only on the
nonlinear model

yi = f(xi,β) + εi, i = 1, . . . , n, (I.1)

where εi’s are independent random errors with unknown
distribution functionG(·) and densityg(·), and the function
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f(·,β) is known up to ap-dimensional vector of parameters
β.

We will address the issue of choosing weights when using
the weighted CQR. Since the weights in the weighted CQR
are allowed to be negative, the proposed weighted CQR
is different from the common QR and the CQR (see also
Section 2). When the weights are all equal and the model is
linear with a fixed number of parameters, our method reduces
to that of Zou and Yuan (2008). Since the proposed weighted
CQR involves a vector of weights, we develop a data-
driven weighting strategy which maximizes the efficiency
of the weighted CQR estimators. The resulting estimation
is adaptive in the sense that it performs asymptotically the
same as if the theoretically optimal weights were used. The
adaptive estimation is robust against outliers and heavy-
tailed error distributions, like the Cauchy distribution, and
efficient as nearly as the oracle MLE for a variety of error
distributions(see Table I). This is a great advantage of the
proposed estimation method, since the adaptive weighted
CQR estimators do not require the form of error distribution
and achieves nearly the Cramér-Rao lower bound.

The weighted CQR estimators admit no close form and
involve minimizing complicate nonlinear functions, so it is
challenging to derive asymptotic properties and to implement
the methodology. Theoretically, we will establish asymp-
totic normality of the resulting estimators and show their
optimality, no matter whether the error variance is finite
or not. Practically, we will develop an algorithm for fast
implementation of the proposed methodology. This algorithm
solves a succession of linearized weighted CQR problems,
each of whose dual problems is derived. We will use the
“interior point algorithm” [see Jiang, X., et.cl.(2012), Van-
derbei, et.cl.(1986), Koenker and Park (1996)] to solve these
dual problems. The resulting algorithm is easy to implement.
Simulations endorse our discovery.

The rest of the article is organized as follows. In Section II
we introduce the weighted CQR for model (I.1). In section
III we consider the computation method for the proposed
methodology and conduct simulations to demonstrate the per-
formance of it. In Section IV we apply the proposed methods
to analyse a real dataset. Finally, Proofs for theorems are put
in supplementary materials to save space.

II. W EIGHTED COMPOSITE QUANTILE REGRESSION

Our idea can be well motivated from the linear model,

yi = x′

iβ + εi, for i = 1, . . . , n, (II.2)

where{εi} are i.i.d. noise with unknown distributionG(·)
and densityg(·).

By Koenker and Basset (1978), theτ -th QR estimate of
β can be obtained via minimizing
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n
∑

i=1

ρτ (yi − x′

iβ − bτ )

over β and bτ , where ρτ (u) = u(τ − I(u < 0)) is the
check function with derivativeψτ (u) = τ − I(u < 0) for
u 6= 0. Noticing that the regression coefficients are the same
across different QR models, Zou and Yuan (2008) proposed
to estimateβ by minimizing

K
∑

k=1

n
∑

i=1

ρτk(yi − x′

iβ − bτk), (II.3)

overβ andbτk , where{τk}Kk=1 are predetermined over(0, 1).
This is the aforementioned CQR in the introduction section.

Note that the CQR method uses the same weight for
different QR models. Intuitively, it is more effective if
different weights are used. Applying the weighting scheme
to model (I.1), one can estimateβ by minimizing

Ln(β,b) ≡
K
∑

k=1

ωk

n
∑

i=1

ρτk(yi − f(xi,β)− bτk), (II.4)

over β andb = (bτ1 , . . . , bτK )′, whereω = (ω1, . . . , ωK)′

is a vector of weights such that‖ω‖ = 1 with ‖ · ‖ denoting
the Euclidean norm. The weightωk controls the amount of
contribution of theτk-th QR. For convenience, we denote by
β̃1 the minimizer ofβ for (II.4) and refer to it as “the WCQR
estimator”. In general, givenK, one can use the equally
spaced quantiles atτk = k/(K + 1) for k = 1, 2, . . . , K. In
practice, one can chooseK = 10 to gain efficiency for most
of situations. See Table I for details.

In order to derive the asymptotic property of the proposed
estimator, in the following we introduce some notations
and conditions. Letβ∗ be the true value ofβ, b∗τk be
the τk-th quantile ofε, and b∗ = (b∗τ1 , . . . , b

∗

τK )′. Denote
by f∗

i = f(xi,β
∗), ∇f∗

i = [∂f(xi,β)/∂β] |β=β∗ , and
∇

2f∗

i = [∂2f(xi,β)/∂β∂β′]|β=β∗ . Assume that

(a) G = var(∇f∗

1 ) > 0.
(b) The error εi has the distribution functionG(·) and

density functiong(·) which is positive and continuous
at theτk-th quantilesb∗τk .

(c) There is a large enough open subsetΩ ∈ Rp which
contains the true parameter pointβ

∗, such that for all
xi the second derivative matrix∇2f(xi,β) of f(xi,β)
with respect toβ satisfies that

‖∇2f(xi,β1)−∇2f(xi,β2)‖ ≤M(xi)‖β1 − β2‖
|∂2f(xi,β)/(∂βj∂βk)| ≤ Njk(xi)

for all βi ∈ Ω, where E[M2(xi)] < ∞ and
E[N2

jk(xi)] < C1 <∞ for all j, k.
Under these mild conditions, we have the following

asymptotic normality result.
Theorem 1: Let

S(ω) =

K
∑

k,k′=1

ωkωk′ min(τk, τk′ )(1−max(τk, τk′ )).

Under the conditions (a)-(c),√
n(β̃1 − β∗)

D−→ N
(

0, σ2(ω)G−1
)

,

where
σ2(ω) = S(ω){

K
∑

k=1

ωkg(b
∗

τk)}−2

For model (II.2),G = var(x1). If all ωk are equal, then
Theorem 1 reduces to the asymptotic normality of the CQR
estimators in Zou and Yuan (2008). WhenK = 1 andτ1 = τ ,
it follows from the above theorem that theτ -th QR estimate
of β is

√
n-consistent and asymptotically normal with mean

zero and varianceg−2(b∗τ )τ(1 − τ)G−1.
Since G does not involveω, the weights should be

selected to minimizeσ2(ω). Let g = (g(b∗τ1), . . . , g(b
∗

τK ))′,
and letΩ be aK×K matrix with the(k, k′) element being
Ωkk′ = min(τk, τk′ )(1 − max(τk, τk′ )). Then the optimal
weightωopt, which minimizesσ2(ω), can be shown as

ωopt = (g′Ω−2g)−1/2Ω−1g.

The optimal weight components can be very different, and
some of them may even be negative. In fact, in our simu-
lations we also experience such a scenario. This reflects the
necessity to use a data-driven weighting scheme. The usual
nonparametric density estimation methods such as kernel
smoothing based on estimated residualsε̂i can provide a
consistent estimation̂g(·) of g(·). Let the resulting estimate
of g be ĝ. Then ω̂ = (ĝ′Ω−2ĝ)−1/2Ω−1ĝ provides a
nonparametric estimator ofω. This leads to an adaptive
estimator ofβ by minimizing

K
∑

k=1

ω̂k

n
∑

i=1

ρτk(yi − f(xi;β)− bτk) (II.5)

over bτk andβ, whereω̂k is thek-th component of̂ω. Let
the resulting estimator ofβ beβ̃2. Thenβ̃2 is asymptotically
normal from the following theorem.

Theorem 2: Under the same conditions as in Theorem 1,
√
n(β̃2 − β∗)

D→ N
(

0, (g′Ω−1g)−1G−1
)

.

Sinceσ2(ωopt) = (g′Ω−1g)−1, β̃2 has the same asymptotic
variance matrix asβ̃1 as if ωopt were known. That is, the
estimatorβ̃2 is adaptive. Therefore,̂ω is called the adaptive
weight vector. By Theorem 2, the asymptotic relative effi-
ciency (ARE) of the adaptive WCQR estimation with respect
to the least squares (LS) estimation ise(WCQR,LS) =
σ2g′Ω−1g. Since the oracle maximum likelihood (ML) esti-
mator ofβ has asymptotic variance matrixI−1

g G−1, where
Ig =

∫

[g′(t)]2/g(t) dt is the Fisher information. Therefore,
the relative efficiency of the adaptive WCQR estimation with
respect to the oracle maximum likelihood estimation (MLE)
is

e(WCQR,ML) = I−1
g g′Ω−1g.

For equally spaced{τk}Kk=1, the adaptive estimator̃β2 is
nearly efficient as the oracle MLEs for various error distri-
butions (see Theorem 4 in Jiang,X., et.al. (2012)), which is
a great advantage of the proposed methodology.

For eachK, the AREs of the adaptive estimatorβ̃2 with
respect to some common estimators can be calculated. To
appreciate how much efficiency is gained in practice, we
investigate the performance of common estimators. Table I
reports those AREs for linear models with various error dis-
tributions, which demonstrates thatβ̃2 is highly efficient for
all the distributions under consideration. For linear models,
Leng (2009) demonstrated that his regularized rank regres-
sion estimator (R2) was quite efficient and robust. Table I
indicates that the proposed adaptive estimate dominates the
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TABLE I
THE RELATIVE EFFICIENCY OF ESTIMATORS. LAD- L EAST ABSOLUTE

DEVIATION .

K e(R2) e(ML) e(LS) e(LAD)
10 1.009 0.964 0.964 1.514

Normal 100 1.045 0.998 0.998 1.567
1000 1.047 1.000 1.000 1.571
10 1.003 0.961 1.378 1.380

Mixed 100 1.041 0.998 1.430 1.432
Normal 1000 1.044 1.000 1.434 1.436

10 1.036 0.984 1.967 1.214
t3 100 1.052 0.999 1.998 1.233

1000 1.053 1.000 2.000 1.234
10 1.387 0.585 1.755 2.913

χ2(6) 100 1.904 0.803 2.410 4.001
1000 2.154 0.909 2.726 4.525
10 1.601 0.973 inf 1.201

Cauchy 100 1.644 1.000 inf 1.233
1000 1.645 1.000 inf 1.234

R2 for all error distributions and is much more efficient
than it when the error follows the Cauchy or chi-squared
distribution. It also suggests that typically one could choose
K = 10 in practice and efficiency is much gained, as shown
in simulations.

III. N UMERICAL IMPLEMENTATION

A. Extended interior algorithm

Minimization in (II.4) involves a complicate nonlinear
optimization problem. We use the interior point algorithm
(see Jiang, X., et. al. (2012) to solve the problem. Matlab
codes are available upon request for the proposed methods.

Consider the equivalent problem of (II.4):

min
θ

K
∑

k=1

ωk

n
∑

i=1

ρτk(yi − lik(θ)), (III.6)

wherelik(θ) = f(xi,β) + bτk , andθ = (bτ1 , . . . , bτK ,β
′)′.

Following Osborne and Watson (1971), we solve the problem
(III.6) using the following algorithm:

(1) Given the current value,θ(j), of θ, calculate t to
minimize

K
∑

k=1

ωk

n
∑

i=1

ρτk{yi − lik(θ
(j))−∇lik(θ(j))t}, (III.7)

where∇lik(θ(j)) = (dlik(θ)/dθ
′)|θ=θ(j) . Let the mini-

mum bes(j), and let the minimizer bet = t(j).
(2) Calculateλ to minimize

K
∑

k=1

ωk

n
∑

i=1

ρτk{yi − lik(θ
(j) + λt(j))}. (III.8)

Let the minimum bēs(j+1) with λ = λ(j).
(3) Setθ(j+1) = θ(j) + λ(j)t(j). Update the current value

of θ by θ(j+1), and repeat the above procedure until the
new iterate fails to improve the objective function by a
specified tolerance such as10−4.

In the above method, the problem (III.8) can be easily
solved by line search in the resulting directiont = t(j), but
one has to solve a succession of linearized weighted quantile
regression problems in (III.7). Lety∗ik = yi − lik(θ

(j)) and
x′ik = ∇lik(θ(j)). Then the problem (III.7) becomes

min
t

K
∑

k=1

ωk

n
∑

i=1

ρτk(y
∗

ik − x′ikt), (III.9)

whose dual problem can be shown as

max{ỹ′d |d = (d1
′, . . . , dK

′)′,

dk ∈ [ωk(τk − 1), ωkτk]
n,X′d = 0}, (III.10)

where ỹ = (y∗1
′ . . . , y∗K

′)′, X = (X ′

1, . . . , X
′

n)
′, Xk =

(x1k, . . . , xnk)
′, andy∗k = (y1k, . . . , ynk)

′. The interior point
method can be used to solve the dual problem (III.10), the
algorithm details are listed as follows:

1. For any initial feasible pointd, e.g.,d = 0, following
Meketon (1986), setDk = diag(min{ωkτk − dik, dik −
ωk(τk − 1)}), D = diag(D1, . . . , DK), s = D2(I −
X(X ′D2X)−1X ′D2)ỹ, andt = (X ′D2X)−1X ′D2ỹ.

2. Set d∗k = dk + (η/γk)sk, where γk =
maxi(max{sik/(ωkτk − dik),−sik/(dik − ωk(τk −
1))}), and η ∈ (0, 1) is the constant chosen to
ensure feasibility. As suggested by Koenker and Park,
η = 0.97.

3. Setd = d∗. UpdatingD, s, and the newd∗ continues
the iteration.

After solving (III.10) using the above interior point algo-
rithm, we arrive at the next loop which uses the current value
θ = θ(j+1) for the primal problem in (III.9). This leads to the
updated dual problem (III.10) withy∗ik = yi − fik(θ

(j+1))
andx′ik = ∇fik(θ(j+1)). The currentd should be adjusted to
ensure that it is feasible for the new value ofX . Similar to
Koenker and Park (1996), we project the currentd onto the
null space of the newX, i.e. d̂ = (I −X(X′X)−1X′)d and
then shrinking it to insure thatdk lies in [ωk(τk−1), ωkτk]

n,
so the adjustedd becomes

dk =
(

max
i

{

max
( d̂ik
ωk(τk − 1)

,
d̂ik
ωkτk

)

+ δ
})−1

d̂k

for some tolerance parameterδ > 0.

B. Simulations

In this section, we report on simulations to investigate
the advantages of the WCQR estimation. An exponential
regression model was used:

y = 1 + b exp(c′x) + ε,

whereb andc = (c1, c2, c3)
′ are parameters,ε is the error.

The true values of parameters were set asb = 1.5, andc =
(−0.6,−0.8,−0.7)′.

We draw from the working model400 samples of sizes
200 and 400. In each simulation, the components ofx
were jointly normal distributed with the pairwise correlation
coefficient0.5 and standard normal as marginals. We con-
sidered three sets of errors:N(0, 1), t(4), andχ2(4). All of
them were centralized and scaled so that the medians of the
absolute errors were ones. As before, we usedK = 10 and
equally spacedτk on (0, 1).

We compared four estimation methods: theL1, CQR,
WCQR estimation, and the oracle MLE (maximum likeli-
hood estimation) of known error distribution. In each simu-
lation the “root of mean squared errors (RMSE)” for different
coefficient estimators were calculated, and their average over
simulations is reported in Tables II-IV, whereΣ denotes the
sum of RMSE for all components inβ. Therefore, better
estimators should have smallerΣ values. As expected, the
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TABLE II
RMSE(MULTIPLIED BY 103) FOR DIFFERENTQR ESTIMATORS UNDER

THE NORMAL ERROR.

n = 400

Estimates b̂ ĉ1 ĉ2 ĉ3 Σ
L1 145 47 33 29 255

CQR 125 39 28 25 217
WCQR 124 38 28 24 214
OML 121 37 28 24 210

TABLE III
RMSE(MULTIPLIED BY 103) FOR DIFFERENTQR ESTIMATORS UNDER

THE STUDENT T ERROR.

n = 400

Estimates b̂ ĉ1 ĉ2 ĉ3 Σ
L1 144 42 34 31 250

CQR 127 37 30 28 222
WCQR 126 37 30 27 221
OML 126 37 29 27 219

oracle MLE performs the best, the WCQR performs better
than the CQR andL1, and theL1 is the worst. In terms
of overall performance (the value ofΣ), WCQR estimators
uniformly dominate theL1 and CQR estimators and are
comparable to the oracle MLE under all kind of errors
we considered. This is in accordance with our previous
theoretical results.

IV. A REAL EXAMPLE

We study the daily S&P 500 Composite index from
January 3, 2000 to July 27, 2011. This index represents
the bulk of the daily value in the US equity market. The
return seriesyt is defined as the difference of the log-
price. We are interested in the asymmetry of the conditional
mean and conditional variance. The double-threshold ARCH
(DTARCH) model [see Li and Li (1996), Hui, Y.V. and Jiang,
J. (2005), Jiang, J., et.al. (2013)] can be used to describe this
kind of asymmetry.

The proposed estimation approaches are applied to the data
set with 2908 observations. We set the threshold parameter
r = 0 and the delay parameterd = 1 in DTARCH models,
which is consistent with observations in the stock market.
Theorefore, We consider the following DTARCH model for
the return seriesyt:

yt =

{

α
(1)
1 yt−1 + εt, if yt−1 ≤ 0,

α
(2)
1 yt−1 + εt, if yt−1 > 0,

whereεt = htut, with

ht =

{

β
(1)
0 + β

(1)
1 |εt−1|, if yt−1 ≤ 0,

β
(2)
0 + β

(2)
1 |εt−1|, if yt−1 > 0.

For comparison, we apply the WCQR estimate with equal
weightsωk, labeled as “CQR estimate”, and the QR estimates

TABLE IV
RMSE(MULTIPLIED BY 103) FOR DIFFERENTQR ESTIMATORS UNDER

CHI-SQURE ERROR.

n = 400

Estimates b̂ ĉ1 ĉ2 ĉ3 Σ
L1 147 42 34 30 254

CQR 112 33 27 24 196
WCQR 86 26 21 19 151
OML 62 22 16 15 115

TABLE V
ESTIMATES OF PARAMETERS WITH ESTIMATED STANDARD ERRORS IN

PARENTHESES(MULTIPLIED BY 102).

Method QR(K = 1, τK = 0.75) CQR WCQR
α
(1)
1 -11.30 (2.13) -11.60 (3.03) -11.02 (2.09)

α
(2)
1 -4.86 (2.57) -4.64 (2.96) -5.08 (2.39)

β
(1)
0 0.50 (0.06) 0.50 (0.03) 0.51 (0.03)

β
(1)
1 19.04 (4.81) 19.20 (2.42) 19.31 (2.42)

β
(2)
0 0.51 ( 0.06) 0.51 (0.03) 0.51 (0.03)

β
(2)
1 6.39 (5.33) 6.36 (2.67) 6.42 (2.67)

(i.e. K = 1) at τK = 0.5 and 0.75 to fit the model. We
calculate the estimated parameters and their standard errors.
The results are reported in Tables V. ForτK = 0.5, it
corresponds to theL1-estimate. Since the result fromL1-
estimation is poor, we omit it there.

It is observed that all the estimation approaches identify
positive beta’s values. This is desired because the volatility
coefficients,β’s, are nonnegative. Negativeα(1)

1 and α(2)
1

indicate that the future mean return will be forecasted as
positive (negative) if the current return is negative (positive).
This is expected in an efficient market. On the other hand,
negative returns in this model have about3 times the effect
of positive returns on future conditional scales. This indicates
that the volatility is significantly higher when prices are
falling. That is, volatility tends to be higher in bear mar-
kets, an asymmetric volatility effect described by Nelson’s
EGARCH model (Nelson (1991)).

Among the three estimation methods, the WCQR estimator
is the best for all estimators because it has the smallest
standard deviation.
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