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Abstract—In this work, a process algebraic framework
known as PAFSV is applied to the formal specication and
analysis of IEEE 1800TM SystemVerilog design. The formal
semantics of PAFSV is defined by means of deduction rules
that associate a time transition system with a PAFSV process.
In addition, a set of properties of PAFSV is defined for
a notion of bisimilarity; and PAFSV may be regarded as
the formal language of a significant subset of IEEE 1800TM
SystemVerilog. The main aim of this paper is to demonstrate
that PAFSV is effective and useful for the formal specification
and analysis of IEEE 1800TM SystemVerilog design. To achieve
the aim of this approach, we apply PAFSV to model and
analyse classical circuits such as the Null Convention Logic
(NCL) circuit.

Index Terms—SystemVerilog, formal semantics, formal lan-
guage, Null Convention Logic (NCL)

I. INTRODUCTION

Process Algebra Framework for System Verilog
(PAFSV) [1], [2] is the formalisation of a reasonable subset
of IEEE 1800TM SystemVerilog based on the classical
process algebras Algebra of Communicating Processes
(ACP) [3]. The semantics of PAFSV has been defined
by means of deduction rules in a Structured Operational
Semantics (SOS) [4] style that associates a Time Transition
System (TTS) [5] with a PAFSV process. In addition,
a set of properties of PAFSV is defined for a notion of
bisimilarity.

The introduction of PAFSV initiated an attempt to extend
the knowledge and experience collected in the field of pro-
cess algebras to SystemVerilog designs. PAFSV is aimed
at giving formal specifications of SystemVerilog designs
and to perform formal analysis of SystemVerilog processes.
Furthermore, PAFSV is a single formalism that can be used
for specifying concurrent systems, nite state systems and
real-time systems (as in SystemVerilog). Desired properties
of these systems specified in PAFSV can be verified with
existing formal verification tools by translating them into
different formats that are the input languages of formal
verification tools. Hence, PAFSV can be purportedly used
for formal verification of SystemVerilog designs. In order to
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show that PAFSV is useful for the formal specification
and analysis of SystemVerilog designs, in this paper, we
apply PAFSV to model and analyse classical circuits like
Null Convention Logic (NCL) circuits [6]–[8] via the formal
verification tool PAT [9].

This paper is organised as follows. Section II briefly
presents the formal syntax and formal semantics of our
process algebraic framework PAFSV. Further, in Sec-
tion III, the effectiveness and applicability of PAFSV is
demonstrated by applying PAFSV to model and analyse
common Null Convention Logic Circuits (NCL). Finally, the
concluding remarks are made in Section IV.

II. PAFSV

We briefly present the process algebraic framework
PAFSV in this paper. For more details, we refer to [1],
[2].

A. Goals of PAFSV

PAFSV has a formal and compositional semantics based
on a time transition system for formal specification and
analysis of SystemVerilog designs. The intention of our
process algebraic framework PAFSV is as follows:

• to give a formal semantics to a significant subset of
SystemVerilog using the operational approach of [4];

• to serve as a mathematical basis for improvement of
design strategies of SystemVerilog and possibilities to
analyse SystemVerilog designs;

• to initiate an attempt to extend the knowledge and expe-
rience of the field of process algebras to SystemVerilog
designs;

• to be used as the formal language for a significant subset
of SystemVerilog.

B. Formal syntax

Process terms are the core elements of the PAFSV. The
set of process terms P in PAFSV is defined according to
the following grammar for the process terms p ∈ P:

p ::= deadlock | skip | x := e
| delay(n) | any p | if(b) p else p
| p; p | wait(b) p | while(b) p
| assign w := e | @(η1(l1),...,ηn(ln)) p
| p⊛ p | p ∥ p | repeat p
| assert(b) p | p disrupt p

Here, x and w are variables taken from the set Var which
consists of all variables; and n ∈ R≥0. b and e denote a
Boolean expression and an expression over variables from
Var, respectively. Moreover, η1, . . . , ηn represent Boolean
functions with corresponding parameters l1, . . . , ln ∈ Var.
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In PAFSV, we allow the use of common arithmetic
operators (e.g. +,−), relational operators (e.g. =,≥) and
logical operators (e.g. ∧,∨) as in mathematics to construct
expressions over variables from Var.

The operators are listed in descending order of their
binding strength as follows:
{if( ) else , wait( ) , while( ) , assert( ) }, ; ,
disrupt , { ⊛ , ∥ }.

The operators inside the braces have equal binding strength.
In addition, operators of equal binding strength associate to
the right, and parentheses may be used to group expressions.
For example, p; q ; r means p; (q ; r), where p, q, r ∈ P

Apart from process terms: deadlock, skip, any ,
disrupt , and ⊛ , all other syntax elements in PAFSV

are the formalisation of the corresponding language elements
(based on classical process algebra tenets) in SystemVerilog.

Process terms deadlock and skip; and operator ⊛ are
mainly introduced for calculation and axiomatisation pur-
poses. The any operator was originally introduced in Hybrid
Chi [11]. It is used to give an arbitrary delay behaviour to a
process term. We can make use of this operator to simplify
our deduction rules in a remarkable way.

The disrupt is inspired by the analogy of the disrupt
operator in HyPA [12]. This can be used to model event
controls in PAFSV in a very efficient way.

C. Atomic process terms

The atomic process terms of PAFSV are process term
constructors that cannot be split into smaller process terms.
They are:

1) The deadlock process term deadlock is introduced as
a constant, which represents no behaviour. This means
that it cannot perform any actions or delays.

2) The skip process term skip can only perform the
internal action τ to termination, which is not externally
visible.

3) The procedural assignment process term x := e assigns
the value of expression e to variable x (in an atomic
way).

4) The continuous assignment process term assign w := e
continuously watches for changes of the variables that
occur on the expression e. Whenever there is a change,
the value of e is re-evaluated and then propagated
immediately to w.

5) The delay process term delay(n) denotes a process
term that first delays for n time units, and then termi-
nates by means of the internal action τ .

D. Operators

Atomic process terms can be combined using the following
operators. The operators are:

1) By means of the application of the any operator to
process term p ∈ P (i.e. any p), delaying behaviour
of arbitrary duration can be specified. The resulting
behaviour is such that arbitrary delays are allowed. As
a consequence, any delay behaviour of p is neglected.
The action behaviour of p remains unchanged. This
operator can even be used to add arbitrary behaviour
to an undelayable process term.

2) The if else process term if(b) p else q first evaluates
the boolean expression b. If b evaluates to true, then p
is executed, otherwise q ∈ P is executed.

3) The sequential composition of process terms p and q
(i.e. p; q) behaves as process term p until p terminates,
and then continues to behave as process term q.

4) The wait process term wait(b) p can perform whatever
p can perform under the condition that the boolean
expression b evaluates to true . Otherwise, it is blocked
until b becomes true .

5) The while process term while(b) p can perform what-
ever p can do under the condition that the boolean
expression b evaluates to true and then followed by the
original iteration process term (i.e. while(b) p). In case
b evaluates to false , the while process term while(b) p
terminates by means of the internal action τ .

6) The event process term @(η1(l1),...,ηn(ln)) p can per-
form whatever p can perform under the condition
that any of the boolean functions η1(l1), . . . , ηn(ln)
returns to true . If there is no such a function, p
will be triggered by η1(l1), . . . , ηn(ln). Intuitively,
functions η1, . . . , ηn are used to model event changes
as event controls levelchange, posedge and negedge in
SystemVerilog.

7) The alternative composition of process terms p and q
(i.e. p⊛ q) allows a non-deterministic choice between
different actions of the process term either p or q.
With respect to time behaviour, the participants in the
alternative composition have to synchronise.

8) The parallel composition of process terms p and q (i.e.
p ∥ q) executes p and q concurrently in an interleaved
fashion. For the time behaviour, the participants in the
parallel composition have to synchronise.

9) The repeat process term repeat p represents the infinite
repetition of process term p. Note that the idea behind
the repeat statement in SystemVerilog is slightly differ-
ent from repeat p in PAFSV. The repeat statement
specifies the number of times a loop to be repeated.
The same goal can be achieved by using the repeat
process term in combination with the if else process
term in PAFSV.

10) The assert process term assert(b) p checks immedi-
ately the property b (expressed as a boolean expres-
sion). If b holds, p is executed.

11) The disrupt process term p disrupt q intends to give
priority of the execution of process term p over process
term q.

E. Formal semantics

A PAFSV process is a tuple ⟨p, σ⟩, where p ∈ P and
σ ∈ Σ which denotes the set of all states. In PAFSV, a
state is a partial function which maps variables to values.
The formal semantics of PAFSV is defined by constructing
the Timed Transition System (TTS) [5] for each process term
and each possible valuation of variables (i.e. a state). In such
a TTS, three different kinds of transition relations are dened,
namely:

1) one associated with termination transition;
2) one associated with action transition (for discrete ac-

tion);
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TABLE I: Boolean truth tables with NULL value Boolean functions:
(a)AND, (b) OR and (C) NOT.

(a) AND

T F N
T T F N
F F F N
N N N N

(b) OR

T F N
T T T N
F T F N
N N N N

(c) NOT

T F
F T
N N

Null Wavefront Null Wavefront Null Wavefront

Data wavefront Data wavefront

N DD N

Fig. 1: Wavefronts in a data flow.

3) one associated with time transition (delay behavior).

III. MODELLING AND ANALYSIS OF NULL CONVENTION
LOGIC (NCL) CIRCUITS IN PAFSV

In this section, we apply PAFSV to specify and analyse
common Null Convention Circuits (NCL)

A. Null Convention Logic

Boolean functions determine the output values only based
on the input value and as the speed of different sig-
nal paths varies, a chaos of intermediate result transitions
may be delivered ahead of valid stable transitions. It is
hard to express the boundaries of instantiation and res-
olution by traditional time-dependent and symbolic-value-
dependent Boolean logic. Null Conventional Logic (NCL)
[6]–[8] is a deviation from conventional Boolean system
where the value of the signal itself is used to show its
arrival/presence/validity. Thus each variable in the expression
has two values, DATA (indicating the value as well as
validity) and NULL (indicating the absence of data).

There are two conceptual flows for signals in an NCL
implementation: the flow of valid data items called the data-
wavefront and the flow of NULL items (to clear all states)
called the null-wavefront. Details are shown in Figure 1.
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Fig. 2: Presentation (validation) boundaries for input variables.
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Fig. 3: Presentation diagram for a basic 2-of-3 NCL gate.

TABLE II: Dual-rail encoding.

Encoding
Logic Value D0 D1

Data1 0 1
Data0 1 0
NULL 0 0
Invalid 1 1

One set of input values will lead to one set of output
values. The final generation of output can be easily detected
by using a completion detection circuit. To read a new set of
input values, we need to flush out all the previously generated
outputs by making all the inputs NULL. For example, Figure
2 shows a connection of NCL gates (1-11) forming a multi-
level logic implementation. Here A, B, C, D and E are the
logical boundaries for the representation of a signal. The
final set of generated outputs (at the boundary E) can be
valid only when all the outputs of boundary D are valid, and
so on. Following the chain, one can conclude that all the
output elements can be generated only when all the inputs
have arrived [14].

1) Threshold gate: Basic elements of NCL circuits are
threshold gates, referred as Thmn gate. It has n input termi-
nals with m thresholds, where 1 ≤ m ≤ n. A sample NCL
gate is shown in Figure 3. The gate has three inputs and has
a threshold of two (the number written inside the gate). It
is therefore named 2-of-3 NCL gate. To make the output of
the gate to logic, at least two out of three input lines must
be at logic. For instance, if a, b and c are the inputs to the
gate then the logical equation represented by the gate can be
written as Output= a · b+ b · c+ c · a. To reset the output to
logic, all the inputs must however go to logic irrespective of
the threshold. Until all the inputs are reset, the gate holds the
previous state. Note that an N-of-N NCL gate is equivalent to
an N input C-element [7]. These threshold gates can be used
to express a burst of inputs required to produce an output.

2) Representing Data values in NCL: 2NCL is a kind of
NCL logic that obtains only one data value, which indicates
that the signal path can transit between DATA and NULL
without intermediate values. Multiple mutually exclusive
values are normally expressed by multiple signal paths. In
a binary system, a dual-rail signal D, which is transmitted
by two mutually exclusive wires (D0 and D1), is applied to
express True and False. As seen in Table II, Boolean logic 0
and 1 are equivalent to the Data0 (D0=1, D1=01) and Data1
(D0=0, D0=1) respectively. NULL state comes only when
the inputs receive the empty set; and the state D0=1, D1=1
is not permitted.

3) An AND gate: Consider the Boolean AND operation
represented by the equation Z=A·B, where Z, A and B can be
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Fig. 4: Schematic view of an AND gate.
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9
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Fig. 5: A simulation run of an AND gate represented as a transition graph
(simulated by PAT).

either logical 1 or logical 0. 2NCL combinational expressions
present logical 1 and 0 by dual-rail signal Z and have to
be described by two individual equations. The equations are
given below:

Z1 = A1B1
Z0 = A1A0 + B1B0 + A1B0 + B1A0 + A0B0

Note that Z1 can be mapped to TH22 gate and Z0 can be
expressed using TH34w22 gate [9], where w22 means two
inputs have the weight of 2. The NCL diagram for the AND-
gate is shown in Figure 4.

The description for the gate is given below. For brevity,
we do not include the corresponding SystemVerilog
representation for all examples in this section.

if(A1 ∧B1) (Z1 := TRUE ; Z0 := FALSE) else skip⊛
if(A1 ∧B0) (Z0 := TRUE ; Z1 := FALSE) else skip⊛
if(A0 ∧B1) (Z0 := TRUE ; Z1 := FALSE) else skip⊛
if(A0 ∧B0) (Z0 := TRUE ; Z1 := FALSE) else skip

We propose a two-level translation process in this paper.
NCL is mapped to PASFV, and then PASFV specification
is translated to CSP# process expressions [15] and verified
using PAT tool [9]. A similar process is used in [16], where
NCL is translated to DISP (a flavor of CSP [17] and DI
algebra [18]) and then verified using tool chain di2pn [19]

and petrify [20]; or in [21], where NCL is translated
to DISP and then mapped to CSP# and verified using PAT.
In this paper we just provide a general outline of NCL to
PASFV and PASFV to CSP# mapping, and do not provide
formal translations.

The CSP# expression for the AND-gate is:
varA0; varA1; varB0; varB1; varZ0; varZ1;

Init()
= ((tau{A0 = false;A1 = true; } → Skip)[]

(tau{A0 = true;A1 = false; } → Skip));
((tau{B0 = false;B1 = true; } → Skip)[]
(tau{B0 = true;B1 = false; } → Skip));

Adesc()
= if(A1 == true && B1 == true)

{or{Z0 = false;Z1 = true; } → Skip}
else if((A1 == true && B0 == true)

||(A0 == true && B1 == true)
||(A0 == true && B0 == true))

{or{Z0 = true;Z1 = false; } → Skip}
else {Skip};

AND()
= Init() ; Adesc() ;

Assertion-based verification is a methodology that has been
dormant for many years and is now widely applied in
hardware design. Besides plenty modeling features, a number
of useful assertions are supported in PAT. Assertions assist
to capture the design intent. They monitor behaviors during
simulation, detect and report errors. By means of assertions,
verification can start in earlier design stage, bugs can be
detected and resolved easily. Design engineers can incorpo-
rate their intent into programs to minimize integration issues.
Given P() as a process, the basic assertions used are described
below:

• #assert P() deadlockfree: performs Depth-
First-Search or Breath-First-Search algorithm to detect
the state with no further move except for successfully
terminated states.

• #assert P() divergencefree: checks if there
is a process performing transitions forever without ex-
ecuting useful events.

• #assert P() deterministic: asks if there are
no two out-going transitions pointing to different states
but with the same events.

• #assert P() nonterminating: Depth-First-
Search or Breath-First-Search algorithm is applied
to detect the state with no further move, including
successfully terminated states.

All the examples are verified with the above assertions.
The output of the PAT tool has showed the validity of the
assertions. In Figure 5 we show the simulation runs for the
AND operator.

The NCL schematic, PAFSV descriptions and CSP#
expressions along with verification results for some more
constructs are shown below.

4) An OR gate: The NCL schematic is shown in Figure 6.
In Figure 7 we show the simulation run for the OR operator.

The PAFSV description:
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Fig. 6: Schematic view of an OR gate.
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[else] [else] [else]
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terminate or or or

[if] [if] [if]

Fig. 7: A simulation run of an OR gate represented as a transition graph
(simulated by PAT).

if(A0 ∧B0) (Z0 := TRUE ; Z1 := FALSE) else skip⊛
if(A1 ∧B0) (Z1 := TRUE ; Z0 := FALSE) else skip⊛
if(A1 ∧B1) (Z1 := TRUE ; Z0 := FALSE) else skip⊛
if(A0 ∧B1) (Z1 := TRUE ; Z0 := FALSE) else skip

The CSP# expressions for the OR-gate is:
varA0; varA1; varB0; varB1; varZ0; varZ1;

Init()
= ((tau{A0 = false;A1 = true; } → Skip)[]

(tau{A0 = true;A1 = false; } → Skip));
((tau{B0 = false;B1 = true; } → Skip)[]
(tau{B0 = true;B1 = false; } → Skip));

Odesc()
= if(A0 == true && B0 == true)

{or{Z0 = true;Z1 = false; } → Skip}
else if((A1 == true && B0 == true)

||(A0 == true && B1 == true)
||(A1 == true && B1 == true))

{or{Z0 = false;Z1 = true; } → Skip}
else {Skip};

OR()
= Init() ; Odesc() ;

12

22

X0

Y0

X1

Y1

C1

C0

Z0

Z1

24

34

Fig. 8: Schematic view of an half adder.

5) A half adder: The NCL schematic is shown in Figure
8. In Figure 9 we show the simulation run for the half adder.
PAFSV description:
if((X1 ∧ Y 1) ∨ (X0 ∧ Y 0)) (Z1 := FALSE ; Z0 :=
TRUE) else skip⊛
if((X0 ∧ Y 1) ∨ (X1 ∧ Y 0)) (Z1 := TRUE ; Z0 :=
FALSE) else skip⊛
if(X1 ∧ Y 1) (C1 := TRUE ; C0 := false) else skip⊛
if(X0 ∨ Y 0) (Z0 := FALSE ; Z1 := true) else skip

The CSP# expressions for the half adder is:
varX0; varX1; varY 0; varY 1; varZ0; varZ1; varC0; varC1;

Init()
= ((tau{X0 = false;X1 = true; } → Skip)[]

(tau{X0 = true;X1 = false; } → Skip));
((tau{Y 0 = false;Y 1 = true; } → Skip)[]
(tau{Y 0 = true;Y 1 = false; } → Skip));

Hgate()
= if((X1 == true && Y 1 == true)

||(X0 == true && Y 0 == true))
{s{Z0 = true;Z1 = false; } → Skip}

else if((X1 == true && Y 0 == true)
||(X0 == true && Y 1 == true))

{s{Z0 = false;Z1 = true; } → Skip}
else {Skip};

Hcarry()
= if(X1 == true && Y 1 == true)

{c{C0 = false;C1 = true; } → Skip}
else if((X1 == true && Y 0 == true)

||(X0 == true && Y 1 == true)
||(X0 == true && Y 0 == true))

{c{C0 = true;C1 = false; } → Skip}
else {Skip};

HalfAdder()
= Init() ; (Hcarry()||Hgate()) ;

IV. CONCLUSION

In this paper, the formal syntax and semantics of PAFSV
have been briefly described. The applicability of PAFSV
for modeling and analysis of SystemVerilog design has been
illustrated through several feasible examples on NCL circuits.
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[else][if][else][else][if]

[if] s[if][else][if] c [else][if] [if] [if] [if][else]s
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[else] s [if] [if] [else]c

[if][else]

else

Fig. 9: A simulation run of a half adder represented as a transition graph (simulated by PAT).

Although our experience of using PAFSV is fruitful and
positive, some industrial case studies are needed in order to
validate and further develop our approach on using PAFSV
for specification and verification of SystemVerilog design.
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