
 

  
Abstract—Many strategies for adapting inertia weight of the 

particle swarm optimization (PSO) have been proposed. The 
inertia weight of PSO plays a crucial role in the ability of 
exploration and exploitation. In this paper, we propose a 
sine-based chaotic map and use it to chaotically adapt inertia 
weight in PSO. We call this method as SBCAW-PSO. Ten 
unimodal and multimodal benchmark functions are used to 
evaluate the SBCAW-PSO. The experimental results show that 
using the sine-based chaotic map can effectively adapt inertia 
weight of PSO to improve the search results. 
 

Index Terms—Chaos, inertia weight, particle swarm 
optimization (PSO), sine-based chaotic map 
 

I. INTRODUCTION 
ARTICLE swarm optimization (PSO) is a popular 
population-based algorithm [1]. Many real-world 

applications have been effectively solved by PSO, for 
examples, EMG (electromyogram) signal classification [2], 
Image Filter [3], decoupling control for temperature of 
reheating furnace [4], harmonic filters [5], Ultrawideband 
(UWB) Antenna Synthesis [6], flow shop scheduling [7], 
learning to play games [8] and so on. 

In PSOs, there are many variants of the PSO are proposed 
and most of them depend on the inertia weight for adjust their 
search ability with exploration and exploitation. The inertia 
weight is able to balance the global and local search. A large 
inertia weight facilitates a global search while a small inertia 
weight facilitates a local search [9]. 

In the original PSO, no inertia weight is embedded in PSO. 
The fixed inertia weight PSO [10] (here we called it as 
“FW-PSO”) is first introduced into the original particle 
swarm optimizer by Shi and Eberhart. They performed 
different chosen inertia weight to illustrate the impact of this 
parameter on the performance of PSO. However, the fixed 
inertia weight PSO is not very effective for tracking 
nonlinear dynamic systems most real-world applications. 
Therefore, we proposed a novel chaotic inertia weight PSO 
for tracking nonlinear dynamic systems. It tends to automatic 
control the global and local search ability according to the 
chaotic value. The method have been tested and compared 
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with the FW-PSO on unimodal and multimodal benchmark 
functions.  

II. METHODS 

A. Particle swarm optimizations 
The PSO was inspired by the social behaviors of a bird 

flock or fish school. The PSO first generates a population of 
random solutions called particles. Each particle has its own 
velocity and position. Following that, it searches for optimal 
solution by updating generations based on the update 
equations for the velocities and the positions of particles. 
Before updating the velocities and the positions, all particles 
are evaluated by an objective function. After that, these 
particles are compared with the previous positions to gain the 
personal best positions, and compared with each other to gain 
the global best position. In each generation, the current 
velocities will be updated according to the previous positions, 
the personal best positions and the global best position. Each 
particle then moves to a new position according to its current 
velocity and its previous position. The personal and global 
best positions particle is always be improved by generation to 
generation, and thus lead other particles accelerates in the 
direction to move. 

(a) Original PSO 
The original PSO was proposed by Eberhart and Kennedy 

[1]. Let N is dimensions for an optimization problem for 
search space. Four characteristics are described as follows: 

The position of the ith particle is represented as Xi = (xi1, 
xi2, ... , xiN). The personal best position of the ith particle is 
represented as pbesti = (pil, pi2, ... , piN). The global best 
position found from all the particles is represented as gbest = 
(gl, g2, ... , gN). The velocity of the ith is represented as Vi = (vil, 
vi2, ... , viN). The value of velocity Vi is restricted to the range 
of [− Vmax, Vmax] to prevent particles from moving out of the 
search space. 

In original PSO, each particle in the swarm is iteratively 
updated according to the aforementioned characteristics. 
Assume the objective function of an optimization problem is 
defined as objective(Xi) and it is minimized. 

The personal best position of each particle is found by 
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where g is the current generation; X is the position of the 
particle. 
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The global best position is found by  
))1(min()1( +∀=+ gpbestggbest  (2)

where min( iX∀ ) represents the function for get the minimum 
Xi. 
 

The equation for the new velocity of every particle is 
defined as  
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where g is the current generation; c1 and c2 denote the 
acceleration coefficients; r1 and r2 are the uniform random 
values in the range (0, 1). 
 

The current position of each particle is updated using 

)1()()1( ++=+ gVgXgX iii  (4)

(b) Fixed inertia weight PSO (FW-PSO) 
The original PSO introduces a parameter called inertia 

weight (w) to the updating equation of the velocity [10]. The 
influence for using fixed inertia weight has been estimated 
for the performance of PSO. The fixed inertia weight was 
considered to be chosen a good area on the range [0.9, 1.2] 
[10]. In this study, we use the abbreviation of “FW-PSO” to 
represent the fixed inertia weight in this paper. The new 
updating equation of the velocity is given as follows: 
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where g is the current generation; w is inertia weight; c1 and 
c2 are the acceleration coefficients; r1 and r2 are the uniform 
random values in the range (0, 1); V is the velocity of the 
particle; X is the position of the particle. 
 

(c) The sine-based chaotic adaptive inertia weight PSO 
(SBCAW-PSO) 

In this paper, we proposed a chaotic map. The chaotic map 
use sine function to get the chaotic behaviours. The chaotic 
map is shown in eq. (6). 
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where n is the current number of iteration; sin is the sine 
trigonometric function; π is a mathematical constant with the 
ratio of a circle's circumference to its diameter 
(approximately equal to 3.14159); N is the total iterations; d 
is division number of the total iterations. 

We use the sine-based chaotic map to update the inertia 
weight value of the PSO. The inertia weight is changed by 
generation updating and is calculated as 
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where w is inertia weight; g is the current generation; G is the 
total iterations; d is division number of the total generation, 
here we set d = 2 or d = 4. 

B. Benchmark functions 
Ten benchmark functions [11-14] including unimodal and 

multimodal problems was used for evaluating the FW-PSO 
and SBCAW-PSO. Table 1 lists the 10 benchmark functions 
and their modality, global optimum, search space and initial 
ranges. These functions are divided into three parts, i.e., 
unimodal functions, multimodal functions with many local 
optimums, and multimodal functions with a few local 
optimums. They are described as follows. 

(a) Unimodal functions 
Unimodal functions are rather easy to optimize. However, 

when the problem dimensions are high, the optimization will 
become difficult. In this study, f1 and f2 are unimodal 
functions, they are listed below. 
1) Hyperellipsoid 
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2) Rosenbrock variant function 
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C. Multimodal functions with many local optimums 
Functions f3 ~ f7 are multimodal functions with many local 

optimums. They look to be the most difficult category of 
problems for many optimization methods. These functions 
are listed as follows. 
1)  Ackley’s function 
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TABLE I 
MODALITY, GLOBAL OPTIMUM, SEARCH SPACE AND INITIAL RANGES OF 

THE 10 TEST FUNCTIONS 

Modality Function
 f 

Global 
optimum Search space Initial range 

un
im

od
al

 

f1 0 [-1.0, 1.0]N [-1.0, 1.0]N 

f2 0 [-2.048, 2.048]N [-2.048, 2.048]N

M
ul

tim
od

al
 

 w
ith

 m
an

y 
lo

ca
l o

pt
im

um
s f3 0 [-32.768, 32.768]N [-32.768, 16.0]N

f4 0 [-10.0, 10.0]N [-10.0, 10.0]N 

f5 0 [-10.0, 10.0]N [-10.0, 10.0]N 

f6 0 [-5.12, 5.12]N [-5.12, 5.12]N 

f7 0 [-0.5, 0.5]N [-0.5, 0.5]N 

M
ul

tim
od

al
  

w
ith

 a
 fe

w
 

 lo
ca

l o
pt
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f8 0 [-5.0, 15.0]N [-5.0, 15.0]N 

f9 0 [-5.0, 5.0]N [-5.0, 5.0]N 

f10 0 [-2.0, 2.0]N [-2.0, 2.0]N 

N is the size of dimensions. 
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4) Rastrigin’s function 
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5) Rastrigin’s function 
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D. Multimodal functions with a few local optimums 
Functions f8 ~ f10 are as well multimodal functions, but 

they only comprise a few local optimums. They are listed as 
follows. 
 
1) Rastrigin’s function 
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2) Rastrigin’s function 
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3) Rastrigin’s function 
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III. RESULTS 
The experiments compared the SBCAW-PSO with the 

FW-PSO on the 10 benchmark functions with 10 dimensions, 
i.e., N is set to 10. The two PSOs were implemented using 
JAVA. The experiments were executed on Pentium 4 CPU 
3.4 GHz with 1GB of RAM on Microsoft Windows XP SP3 

professional operating system. On the boundary process of 
PSOs, we use bound terminal, i.e., when the particles are over 
shot, the positions of the particles will be reset to the 
maximum limit of the search range. 

A. Parameter Settings 
Five main parameters were set for the two methods, i,e., 

the number of iterations (30000), the particle swarm size (10), 
the inertia weight w (based on different adaptive approaches), 
and the constriction factors c1 and c2 (2 and 2). Each method 
was run 30 times and their mean values, standard deviation, 
and average running time for the results were calculated. 

B. Experimental results 
Table 2 presents the mean, standard deviation, and average 

running time of 30 runs for the FW-PSO and SBCAW-PSO 
on the 10 benchmark functions with 10 dimensions. The best 
results are shown in bold fonts. 

In this unimodal functions for f1, SBCAW-PSO performed 
the best mean, variation, and standard deviation when d is set 
to 4. The SBCAW-PSO performed the shortest run time and 
the better mean, standard deviation, and average running time 
than FA-PSO when d is set to 2. In this unimodal functions 
for f2, SBCAW-PSO performed the best mean, variation, 
standard deviation, and average running time when d is set to 
4. In this multimodal functions with many local optimums, 
SBCAW-PSO performed the best mean, variation, and 
standard deviation for f4, f5 and f6 except the mean in f5 when 
d is set to 2. The SBCAW-PSO performed the best mean, 
variation, and standard deviation for f3 and f7 when d is set to 
4. In this multimodal functions with a few local optimums, 
SBCAW-PSO performed the best mean, variation, and 
standard deviation for all functions f8, f9, and f10. Although 
the FA-PSO performed shortest run time, the mean, variation, 
and standard deviation are the worst. From the above results, 
we get the SBCAW-PSO performed better results than 
FW-PSO on the 10 benchmark functions for unimodal and 
multimodal problems with many local optimums and with a 
few local optimums. 

In this paper, the sine-based chaotic map can be seen as an 
algorithmic component that provides an improved 
performance. It changes inertia weight according to the 
chaotic adaption by iterations and therefore there are more 
opportunities to find out optimal solution. 

IV. CONCLUSION 
In this paper, we propose SBCAW-PSO that uses a novel 

sine-based chaotic map to adapt the inertia weight of PSO. 
Ten unimodal and multimodal benchmark functions are used 
to evaluate the SBCAW-PSO. The experimental results show 
that using the sine-based chaotic map can effectively adapt 
inertia weight of PSO to improve the search results.  
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TABLE II 
SEARCH RESULT COMPARISONS FOR THE MEAN, VARIATION, STANDARD DEVIATION, AND AVERAGE RUN TIME OF 30 RUNS FOR THE FW-PSO AND SBCAW-PSO 

ON THE 10 TEST FUNCTIONS WITH 10 DIMENSIONS 

Modality Function 
 f Results FW-PSO SBCAW-PSO 

(d=2) 
SBCAW-PSO 

(d=4) 

un
im

od
al

 f1 

Mean 1.24E-001 1.26E-002 9.96E-003 
Var. 6.69E-003 1.63E-004 1.28E-004 

Std. dev. 8.18E-002 1.28E-002 1.13E-002 
Avg. run time (ms) 966 830 944 

f2 

Mean 2.00E+000 0 0 
Var. 4.27E-001 0 0 

Std. dev. 6.53E-001 0 0 
Avg. run time (ms) 1251 231 190 

M
ul

tim
od

al
 

 w
ith

 m
an

y 
lo

ca
l o

pt
im

um
s 

f3 

Mean 6.78E+001 4.60E-002 4.08E-002 
Var. 1.33E+005 1.27E-002 6.27E-003 

Std. dev. 3.65E+002 1.13E-001 7.92E-002 
Avg. run time (ms) 1020 924 1031 

f4 

Mean 3.20E+000 1.75E+000 1.83E+000 
Var. 1.06E+000 7.67E-002 2.32E-001 

Std. dev. 1.03E+000 2.77E-001 4.81E-001 
Avg. run time (ms) 1534 1425 1547 

f5 

Mean 3.93E+001 5.53E+000 4.98E+000 
Var. 7.56E+002 3.09E+000 3.73E+000 

Std. dev. 2.75E+001 1.76E+000 1.93E+000 
Avg. run time (ms) 1136 1060 1164 

f6 

Mean 1.24E-005 4.58E-026 1.41E-023 
Var. 3.44E-010 5.92E-050 5.93E-045 

Std. dev. 1.85E-005 2.43E-025 7.70E-023 
Avg. run time (ms) 962 565 712 

f7 

Mean 2.12E-001 7.69E-010 2.16E-010 
Var. 3.97E-003 2.91E-018 4.84E-019 

Std. dev. 6.30E-002 1.71E-009 6.96E-010 
Avg. run time (ms) 999 1258 1418 

M
ul

tim
od

al
  

w
ith

 a
 fe

w
 lo

ca
l o

pt
im

um
s f8 

Mean 1.28E-003 3.32E-018 1.05E-019 
Var. 7.03E-007 1.85E-034 1.17E-037 

Std. dev. 8.38E-004 1.36E-017 3.42E-019 
Avg. run time (ms) 1330 1502 1684 

f9 

Mean 7.60E+000 1.51E-001 9.09E-003 
Var. 7.39E-001 5.30E-001 1.79E-004 

Std. dev. 8.59E-001 7.28E-001 1.34E-002 
Avg. run time (ms) 30380 31477 31725 

f10 

Mean 4.12E+000 1.82E-006 2.60E-007 
Var. 4.05E+002 6.38E-011 8.27E-013 

Std. dev. 2.01E+001 7.99E-006 9.10E-007 
Avg. run time (ms) 1077 1215 1357 
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