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Abstract—The main idea of this article is the use of eigenval-
ues of matrices to determine the size of time step in modeling
of solidification. As far as numerical simulations are concerned
it is very important to obtain solutions which are stable and
physically correct. It is acquired by fulfilling many assumptions
and conditions when building a numerical model and carrying
out computer simulations. One of the conditions is a proper
selection of time step. The size of time step has a great impact
on the stability of used schemes of time integration (e.g. explicit
scheme), or on a proper image of physical phenomena occurring
during the simulation (e.g. implicit scheme). The eigenvalues of
matrices in main equations influence the appropriate selection
of size of time step in computer simulations.

Index Terms—eigenvalues, numerical methods,
computer simulation, solidification processing

I. INTRODUCTION

ANUMERICAL modeling of solidification is known
to be a very time consuming task. The constantly

increasing demand for efficient and precise computational
solvers becomes the factor that decides about usability of
a given solidification simulation software. In many cases
practitioners require multiple scenarios to be tested, e.g. for
different input parameters, before they make a final decision
about the setup of a given technological process. At the
same time increasing size of computer memory makes it
possible to consider problems with increasing size, which
in turn results in increased precision of simulations. There
are several possible ways to tackle this kind of problems. For
instance, one can use parallel computers or accelerated ar-
chitectures such as GGPUs or FPGAs. This solution however
requires another level of expertise in both, parallel hardware
and software, which very often is not easily available. In pa-
pers [1], [2] we proposed another method, which relies on the
application of the technique called mixed time partitioning.
Our approach exploits the fact that physical processes inside
a mould are of different nature than those in a solidifying
casting. As a result different time steps can be used to run
computations within both sub-domains. Because processes
that are modeled in the casting subdomain are more dynamic
they require very fine-grained time step. On the other hand
a heat transfer within the mould sub-domain is less intense,
and thus coarse-grained step is sufficient to guarantee desired
precision of computations. Obviously, increasing length of
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a single time step results in decreased computational load,
which in turn greatly improves performance of our approach.
In this paper we put emphasis on determination of stability
criteria for the selected integration method. Mathematical
apparatus of the chosen stability analysis method is applied
for the homogeneous form of the semidiscretized equation of
solidification, as the stability is independent of the inhomo-
geneous part. The analysis of numerical stability of mixed
time integration methods for the dynamics of structures and
for heat conduction problem was adopted to the solidification
problem with temperature-dependent material properties.

II. SOLIDIFICATION IN TERMS OF THE FINITE ELEMENT
METHOD

The finite element method facilitates the modeling of many
complex problems. Its wide application for founding comes
from the fact that it permits an easy adaptation of many
existing solutions and technics of modeling of solidification.

As it comes to computer calculations there is a need to use
discrete models, which means problems must be formulated
by introducing time-space mesh. These methods convert
given physical equations into matrix equations (algebraic
equations). These equations usually contain many thousands
of unknowns, that is why the efficiency of method applied
to solve them is crucial.

After essential transformations we obtain an ordinary
differential equation containing only the time derivative [3]

M(T )Ṫ + K(T )T = b(T ), (1)

where M is the capacity matrix, K is the conductivity matrix,
T is temperature vector and b is right-hand side vector
values of which are calculated using boundary conditions.
The global form of these matrices is obtained by adding up
components through all the finite elements. The components
are defined for a single finite element as

M =
∑
e

∫
Ω

c∗NTN dΩ, (2)

K =
∑
e

∫
Ω

λ∇TN · ∇N dΩ, (3)

b =
∑
e

∫
Γ

NT
ΓqTn dΓ , (4)

where N is a shape vector in the area Ω, NΓ is a shape
vector on the edge Γ, n is an ordinary vector towards the
edge Γ, and q is vector of nodal fluxes.
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The system of ordinary differential equations (1) con-
taining time derivative was obtained as a result of space
integration and it may only be solved in approximation.
In order to receive an approximate solution it is needed to
use the division of time interval (0, tmax) into subintervals
(tk, tk+1) with the length of ∆tk = tk+1 − tk, and time
integration is performed by the use of single or multisteps
methods [4]. One of the single step schemes which can be
used is the scheme Θ of the form

Tn+1 = Tn + (−(Mn+Θ)−1Kn+ΘTn

+(Mn+Θ)−1bn)(1−Θ)∆t

+(−(Mn+Θ)−1Kn+ΘTn+1

+(Mn+Θ)−1bn+1)Θ∆t.

(5)

Due to a possible dependence of materials properties from
the temperature, namely M, K and b from unknown, for
Θ 6= 0 it is a system of nonlinear equations. To solve the
system, iterative methods must be used.

The front Euler scheme

MnTn+1 = MnTn −∆tKnTn + ∆tbn, (6)

is obtained for one extreme value Θ = 0 and the backward
Euler scheme(

Mn+1 + ∆tKn+1
)
Tn+1 = Mn+1Tn + ∆tbn+1, (7)

is obtained for the other extreme value Θ = 0. And if the
values of matrices coefficients M i K in the equation (7) are
evaluated on the level of previous time step then a modified
backward Euler scheme is obtained [4].

(Mn + ∆tKn) Tn+1 = MnTn + ∆tbn+1. (8)

III. BASIC EQUATIONS

In the experimental part explicit capacitive formulation of
solidification is used

∇ · (λ∇T ) = c∗(T )
∂T

∂t
. (9)

The equation (9) is solved by mixed time partitioning
method considering:

1) semi-discretization,
2) initial-value problem which consists of given functions

T = T(t) satisfying the equation (9) and being the part
of initial conditions T(t = 0) = T0 for t ∈ 〈0, T 〉,
T > 0,

3) one step scheme Θ of time integration.
The finite elements mesh consists of two groups: A - con-
nected with a mould and B - connected with a casting. Each
of these can be integrated with the use of different schemes
of time integration. Finite elements lying by the dividing line
have no common nodes. This fact simplifies finding of the
maximum admissible time step and the stability analysis. If
this division is assumed then it may be written as

MA =
8∑
e=6

Me, KA =
8∑
e=6

Ke, bA =
8∑
e=6

be,

MB =
5∑
e=1

Me, KB =
5∑
e=1

Ke, bB =
5∑
e=1

be.

(10)

All vectors are also divided into parts according to finite
elements mesh division T = (TATB)T , Ṫ = (ṪAṪB)T ,

the upper index T represents transportation. As above, vector
Ṫ may be written in this scheme

Ṫ = vA + vB ,
vA = M−1(bA −KAT),
vB = M−1(bB −KBT).

(11)

In the area connected with a mould the integration is
carried out with a bigger time step (m∆t) whereas in the
area connected with a casting with a smaller time step (∆t).
This allows to build a system of equations on the basis of
(1) and solving it separately for the sub-domain B elements,
that is to carry out calculations for it more often than for the
whole mesh.

IV. GENERAL OUTLINE OF NUMERICAL METHOD
STABILITY

Numerical method is stable when a little error in any
solution stage moves further with a decreasing value. An
error appearing on time level n may be defined as εn, on
time level n + 1 as εn+1, whereas values of this error may
be determined with equation [1]

εn+1 = gεn, (12)

where g is amplification factor connected with integral
operator T (∆t,∆) that is time integration scheme. The
amplificatory factor refers to a method error connected with
this scheme. That is why for stability of the method one
conditions must be fulfilled: the value of an error on time
level n+1 must not be bigger than value of an error on time
level n. That may be written in this formula

|εn+1| ≤ |εn|, (13)

and using the definition of amplification factor (12)

|gεn| ≤ |εn|. (14)

It follows that numerical stability may be achieved if condi-
tion

|g| ≤ 1. (15)

is fulfilled. This condition is limited to issues leading to finite
solutions.

For the system N of ordinary differential first-order equa-
tions an error vector is defined as εn. Each coordinate
of this vector is an error connected with an appropriate
dependent variable of the system. For each time step an error
is multiplied by amplification matrix G in order to obtain an
error vector for a new time step.

εn+1 = Gεn. (16)

Amplification matrix is connected to an integral operator
which couples solutions in consecutive time steps. It means
that if an error εn appeared in a solution Tn on time level
n then after some necessary transformations is obtained

Tn+1 + εn+1 = T (Tn + εn). (17)

Assuming that an error vector has a small amplitude, the
equation (17) may be expanded into the Taylor series, taking
into account only its two first terms. After some transfor-
mations an expression joining together two time levels is
obtained

εn+1 =

{
∂

∂T
(T T)

}n
εn, (18)
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This expression also defines the amplification matrix in
the equation (16). The operator on the right-hand side of
this equation is a linear matrix operator. Using the given
integration scheme it is possible to determine a amplification
matrix for it.
Thanks to the knowledge of a amplification matrix referring
to a given time integration scheme of the system of ordinary
differential equations, an error vector on a new time level
connects with an error vector in a previous step. If in a
strengthen equation (16) a matrix G is diagonal then the
amplitudes of each of the error eigenvectors εi connected to
each other by appropriate eigenvalues gi of matrix strengthen
may be written as

εn+1
i = giε

n
i . (19)

Stability condition must be used separately for amplitudes
of each error eigenvectors

|εn+1
i | ≤ |εni |, (20)

for all i, that is
|gi| ≤ 1. (21)

Stability criterion defined in a given way is limited to a
demand that each eigenvalue gi of a matrix strengthen G
was smaller or equal to a unit. In the paper this condition is
used for the stability analysis of the mixed time partitioning
method of solidification issues.

V. RELATIONSHIP BETWEEN THE EIGENVALUES OF THE
MATRICES AND THE SIZE OF TIME STEP

It is essential to find the criterion to determine the size of
time step for the explicit scheme. Θ = 0 is accepted and the
equation (33) is reduced to the form

Tn+1 = (I−∆tM−1K)Tn. (22)

The equation (22) is called the equation of evolution, because
it gives the possibility to obtain the value of searched size
T at the time level n + 1 from appropriate values of nodal
quantities at the time level n.

In the evolution equation the capacity matrix M can be full
or diagonal. It depends from the form of such a matrix in the
evolution equation, conducting the analysis of the numerical
stability is connected with executing some operations on
matrices. In case of the capacity matrix is diagonal matrix,
the calculation of the inverse matrix, namely M−1, is very
simple and then finding its eigenvalues, necessary to deter-
mine the critical value of time step, is not difficult. However
in case of full capacity matrix which is symmetric and
positively definite, in order to determine the inverse matrix to
the matrix M use the distribution M = LLT or homothetic
transformation which keep the eigenvalues of full matrix,
for which the inversion process and searching eigenvalue,
which decides about the maximum, acceptable value of time
step, is less complicated. The evolution equation (22) after
converting can be written as follows

Tn+1 = GTn, (23)

where amplification matrix G datum is given as

G = I−∆tM−1K. (24)

The algorithm is explicit if the size Tn+1 can be received
from the equation (33), without solving the system of alge-
braic equations and if the updates of searched size can be
repeated m–times according to the formula [5]

Tn+m = GmTn. (25)

A sufficient condition of numerical stability is to find the
maximum eigenvalues of amplification matrix

Gx = λx, (26)

where G is the matrix of N degree, and N is the number of
nodes of sub-domain of the mesh for the elements connected
with casting region or mould. The analysis of numerical
stability is conducted separately for each sub-domain on the
basis of finite elements inside the sub-domain.

Using the theory of eigenvalues and eigenvectors and the
operations on matrices it is known that the size GmTn → 0,
if m → ∞ for any Tn ∈ RN , if |λi| < 1 for i = 1 . . . N ,
moreover, the size GmTn is limited, if m→∞, if |λi| ≤ 1
for i = 1 . . . N , if there are linearly independent eigenvectors
xi for each |λi| = 1, which is satisfied because of symmetry
of matrices G.

After substituting G from the equation (24) to the equation
(26), multiplying this equation by M and doing transforma-
tions the formula for generalized problem of eigenvalues is
received

Kx =
1− λ
∆t

Mx, (27)

where (1− λ)/∆t is an eigenvalue of couple of matrices K
and M. From the equation (27) it is known that if λ is equal
to the unity then Kx = 0 only if x = 0.
There is true notation

λi = 1−∆tµi. (28)

As |λi| ≤ 1, the size of time step, which can be used to solve
the system of equations (33), to be numerical stable and is
limited by the inequality

∆t ≤ 2

µi
, (29)

The most restrictive limitation of the size of time step, which
assures about the stability is the case in which µi is the
maximum eigenvalue µmax of the matrix of equation (37).
Taking into account the way of assembly of capacity and
conductivity matrices, the equation (37) may be written for
a definite element e of the given area

K(e)x(e) = µ(e)M(e)x(e), (30)

whereas the limitation of a size of time step may be written
as follows

∆t ≤ 2

µ
(e)
i

. (31)

In order to find a maximum acceptable size of time step for
the casting and mould regions it is necessary to determine,
for all the elements, their biggest eigenvalues and create
from them double inequality (details in section VII). This
inequality is limited from the bottom by the smallest and
from the top by the biggest of them

µ
(e)
min ≤ µ ≤ µ

(e)
max, (32)

where e = 1 . . . ne, and ne is the number of elements in the
considered region.
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VI. CRITERION OF DESIGNATING CRITICAL TIME STEP

In order to determine the criterion of stability of numerical
method, operations converting this equation into general
problem of the eigenvalues are conducted. The analysis of
stability is carried out to determine the maximum size of time
step, which exceeding may be cause of unsteady solutions.

The one step scheme of time integration of the equation
obtained after space discretization is presented by the for-
mula

(M + Θ∆tK)Tn+1 = (M− (1−Θ)∆tK)Tn. (33)

The right-hand side vector is not taken into consideration
because the homogenous equation is only essential for the
numerical stability. If the homogenous expression is stable
so the inhomogenous one is also stable [4].

The generalized problem of the eigenvalues is connected
with the homogenous form of the equations for casting region
B, connected with sub-cycle and mould A, associated with
total cycle [2], [1], it can be written in the universal form

Axi = λiBxi, i = 1, ..., N, (34)

where N is a grade of the matrix A i B expressed by the
formulas

A = M− (1−Θ(e))∆tK, (35)
B = M + Θ(e)∆tK, (36)

for

Θ(e) = ΘA dla e ∈ A,
Θ(e) = ΘB dla e ∈ B.

After substituting the equations (35), (36) into the formula
(34) and doing the transformations the expression is received

Kxi = µiMxi, (37)

in which µi is the eigenvalue of couple matrices of M i K
form

µi =
1− λi

(1−Θ + Θλi)∆t
. (38)

Using previous formulas the condition was developed
which is enough for the stability of single step method Θ
used in the prime row equation (9).
The homogenous equation (9) is obtained in result of space
discretization, after transformation, it can be written as
follows

Ṫ + BT = 0, (39)

where B = M−1K. Naturally, such inversion of the matrix
M would cause its asymmetry, that is why such explicit
inversion is not used, but for such a purpose e.g. Cholesky
decomposition is used.

The one step method Θ is used in a scalar equation, which
comes from the modal decomposition of system of equations
(39), gives

Tn+1 = λTn, (40)

where the eigenvalue λ is expressed by the formula

λ =
1− (1−Θ)µ∆t

1 + Θµ∆t
. (41)

As far as the equation (41) and the inequality |λ| ≤ 1 are
concerned, the stability of the method is obtained if the
following condition is satisfied

2 + (2Θ− 1)µ∆t ≥ 0. (42)

It arises from (42) that for Θ ≥ 1/2 the condition of
the inequality is always satisfied, so the method is stable.
Moreover, for Θ < 1/2 the stability of the method depends
on the size of quotient µ∆t, because of that for the explicit
scheme (Θ = 0) the size of maximum and accessible time
step is strictly connected with the maximum eigenvalue in a
given area (the casting, the mould).

VII. RESTRICTIONS IMPOSED ON THE EIGENVALUES

The solution of N system of equations (9) consists of par-
ticular integral and complementary function of the solution
of the homogeneous equation [6], [7], [5]

MṪ + KT = 0. (43)

Substitute T = e−λtv into the equation (43), and receive
equal system of equations

λMv = Kv. (44)

Because of the semi-discretization the equation (44) is satis-
fied for λ = λi and v = vi.

The mass matrix M is diagonal and it helps to reduce
the analysis of stability. If this matrix is the full symmetric
matrix, the analysis of stability of the equation is conducted
in a different way, however, the effect of both operations is
the same as the criterion limiting the size of time step in the
explicit scheme of the integration.

If the matrix M is positively definite, Cholesky decompo-
sition can be executed, namely M = LLT , where L is lower
triangular and nonsingular matrix. Using such distribution in
the equation (44) and multiplying both sides of the equation
by L−1, it is obtained that

λiL
Tvi = L−1K(L−1)TLTvi, (45)

where LTvi is the eigenvector, and λi is the eigenvalue of
the symmetric matrix P = L−1K(L−1)T . The matrix P has
the set of linearly independent eigenvalues vi.

If the matrix V is composed of vi, which are the columns
of such a matrix and LTV is orthogonal, it can be written
that

VTLLTV = VTMV = I. (46)

Moreover, on the basis of the equation (44) and the Cholesky
decomposition process it can be written that

λi = λiv
T
i Mvi = vTi Kvi. (47)

Substituting T = Vx into the equation (43) and left-
multiplying both sides by VT it is obtained that

VTMVẋ + VTKVx = 0, (48)

and then
Iẋ + Λx = 0, (49)

where Λ = diag(λi). Such distribution is known as modal
decomposition and allows to write the system of equations
in the scalar form.

ẋi + λixi = 0. (50)
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The problem of the stability is connected with some
restrictions of the eigenvalues. For the problems described
by the prime row equations, from the equation (44) the
eigenvalues and the eigenvectors can be designated. However,
the restrictions imposed on the eigenvalues in the equation
(47) can be derived from Rayleigh quotient

λ =
vTKv

vTMv
. (51)

Taking into consideration the way of matrix assembler K
i M

λ =

∑
i

(vTi K
(e)
i vi)∑

i

(vTi M
(e)
i vi)

, (52)

where e is an element, and vi is appropriate component of the
eigenvector, Rayleigh quotient for an element can be written
as follows

λ
(e)
i =

vTi K
(e)
i vi

vTi M
(e)
i vi

. (53)

Inserting (53) into (52) and doing certain transformations
it is obtained that

λ =

∑
i

αiλ
(e)
i∑

i

αi
, (54)

where αi = vTi M
(e)
i vi > 0, because the capacity matrix

is positively definite. It is resulted from the equation (54)
that λ is determined as the weighted average from λ

(e)
i with

positively weight, so the restrictions resulting from Rayleigh
quotient can be written as follows

λ
(e)
min ≤ λ ≤ λ

(e)
max. (55)

Estimation of the extreme values is received from the
formulas

λ
(e)
min ≤

min{vTi K
(e)
i vi}

max{vTi M
(e)
i vi}

, (56)

λ(e)
max ≤

max{vTi K
(e)
i vi}

min{vTi M
(e)
i vi}

. (57)

VIII. CONCLUSION

The eigenvalues remain with close relation to the stability
of numerical method and hence with the size of the time step.
For explicit schemes of time integration such a step cannot
exceed a certain critical value. For implicit schemes of time
integration the size of the time step cannot be unlimited
because excessing certain limit can result in omission of
important physical phenomena. The use of the analysis of
the relation between the eigenvalues and the size of time
step allows to designate the maximum permissible size of the
time step and to conduct the computer simulations correctly.
The problem of the eigenvalues of the matrices is a very
extensive issue and the works have very deep scientific and
practical justification.
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