
Using CUDA Architecture for the Computer
Simulation of the Casting Solidification Process

Grzegorz Michalski, and Norbert Sczygiol

Abstract—This paper presents a simulation of the casting
solidification process performed on graphics processors compat-
ible with nVidia CUDA architecture. The new approach shown
in this paper allows the process of matrix building to be divided
into two independent phases. The first is independent from the
nodal temperature values computed in successive time–steps.
The second is performed on the basis of nodal temperature
values, but does not require a description of the finite element
mesh. This phase is performed in each time step of the
simulation of the casting solidification process. The separation
of these two phases permits an effective implementation of
the simulation software of the casting solidification process on
the nVidia CUDA architecture or any other multi-/manycore
architecture. In this paper the authors present the results of
a computer simulation conducted on a GPU and CPU. The
results of the computer simulations presented in this article
were obtained with the use of authorial software (CPU-based
and GPU-based).

Index Terms—casting, computations on many and multi-core
processors, computer simulation, parallel processing, solidifica-
tion processing.

I. INTRODUCTION

IN recent years the dynamic development of multicore
processors has had a direct impact on the availability of

advanced high performance solutions for engineers. A few
years ago, computers with a high-end graphics card were
intended primarily for computer game players and computer
graphics designers. Nowadays, the situation has dramatically
changed. Graphic processors (GPUs – Graphics Processing
Unit) are increasingly being used in high performance com-
putations. A single GPU has a theoretical computational
power several times higher than the fastest general purpose
processors available today. Fig. 1 shows the increase in
the theoretical computational power of graphic processors
and general purpose processors in recent years. Computa-
tions using a GPU working as a computing accelerator do
not require any additional equipment, such as specialized
workstations, and can be made on an ordinary personal
computer equipped with a graphic card that supports CUDA
or OpenCL. As graphic processors, in accordance with their
original purpose, have been designed to efficiently perform
mathematical operations on two-dimensional matrices, they
should be capable of performing numerical simulations. The
application of modern multi– and many–core architectures,
such as graphic processors, for computational purposes al-
lows huge systems of equations, which may consist of many

Manuscript received December 20, 2013; revised January 08, 2014.
Grzegorz Michalski is with the Czestochowa University of Technology,

Dabrowskiego 69, PL-42201, Czestochowa, Poland. (corresponding author:
Grzegorz Michalski; phone: (+48 34) 3250589; fax: (+48 34) 3250589;
email:grzegorz.michalski@icis.pcz.pl).

Norbert Sczygiol is with the Czestochowa University of
Technology, Dabrowskiego 69, PL-42201, Czestochowa, Poland.
(email:norbert.sczygiol@icis.pcz.pl)

Fig. 1: An increase in theoretical computational power of the
GPU and CPU in the recent years

millions of variables, to be solved very fast. The algorithms
used for solving such systems of equations are based pri-
marily on standard arithmetic operations on matrices and
vectors. Such algorithms permit efficient parallelization and
implementation for many–cores architecture like graphic
processors. [1].

In this article, the authors present a computer simulation of
the casting solidification process (enthalpy formulation), one
that belongs to a group of unsteady processes. For processes
of this type, a system of equations is built from scratch in
each time step. The matrix of the coefficients of this system
of equations and a vector of right sides are built on the basis
of several factors: a description of the finite elements mesh,
the boundary conditions, the material properties and the
results obtained from previous time steps. These operations
require a large amount of data in each time step of the
simulation to be processed. Repeatedly sending huge data
sets to the memory of the graphic card may create a real
problem. The specific character of this data (mainly the finite
element mesh) makes it difficult to efficiently parallelize
the matrix building process. This difficulty derives from the
lack of regularity of the data that are to be processed. This
problem can be clearly seen in the case of GPUs and SIMT
architecture (Single Instruction Multiple Thread), where the
conditional execution of certain parts of the program code has
a strong negative impact on the efficiency of computations.
An additional problem is the need to synchronize the write
operations performed during the construction of the system
of equations [2], [3], [4].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



Fig. 2: Process of building the global coefficient matrix

II. BUILDING THE SYSTEM OF EQUATIONS ON GRAPHIC
PROCESSORS

While performing simulations of unsteady processes the
system of equations has to be built many times (for each
time step). Owing to the specific nature of the graphic
processors architecture, this can constitute a real problem
and can significantly decrease the efficiency of computations.
This relates to the slow data transfer from the global memory
of the graphic devices (device memory) to the system mem-
ory (host memory), synchronize mechanism and conditional
instructions.

As the data transfer from the system memory to the global
memory of the graphic devices should be reduced to a
minimum, a good solution is to transfer the description of
the finite element mesh to the graphic device global memory
and build the system of equations using the graphic processor
[4], [5], [6]. However, it should be remembered that the finite
element meshes that are used nowadays often consist of a few
million nodes. Transferring such a large amount of data is
a very time–consuming process and, moreover this data can
reduce the limited resources of the device.

The parallelization operation of the matrix building pro-
cess on the basis of the finite element mesh is very compli-
cated. This process requires a lot of conditional instructions
and synchronize blocks, which causes a significant decrease
in the performance of computations made on the graphic
processor (nVidia GT200 in this case).

The values of elements in i–row of the coefficient matrix
depend on the finite elements, which include the node
connected with the node with index i. A single node in the
finite element mesh can belong to several finite elements. No
direct method exists to identify these finite elements solely
on the basis of the node index. These indices can only be
read from the finite element mesh. Fig. 2 shows the process
of building the global coefficient matrix. Non–zero elements
of the global coefficients matrix are determined as the sum
of several values which depend on those finite elements

which include the pair of nodes with indexes corresponding
to the indexes of the row and column of those elements.
Constructing the global matrix of coefficient in this way
definitely makes the parallelization process more difficult.

The approach presented in this paper uses a modified way
of building the system of equations which divides this pro-
cess into two separate phases. The first requires information
from the finite element mesh. This phase is performed only
once at the beginning of the computer simulation. An appro-
priate transformation of the matrix obtained from the Finite
Element Method makes this part of the matrix independent
from the nodal temperatures and enthalpy values, determined
in subsequent time steps. The second phase is performed in
each time step and is dependent on the nodal temperature
values and enthalpy from previous steps.

A. Two–step building of the system of linear equation

The system of equations resulting from the transformation
of a differential equation, which describes the process of
solidification, into the numerical model using the Finite
Element Method can be finally written in matrix formulation
(1) [7], [8], [9].

MHn+1 + ∆tKnTn+1 = MHn + ∆tbn+1 (1)

The elements of (1), which are built on the basis of
the finite element mesh description are: matrix M (2) and
conductivity matrix K (3) [10].

Me =

∫
Ωe

NTNdΩ (2)

Ke(T ) =

∫
Ωe

λ(T )∇TN · ∇NdΩ (3)

Matrix M is independent from the nodal temperature and
enthalpy values in subsequent time steps. This matrix may be
determined at the beginning of the simulation, before the first
time step is executed. This matrix can be used in the same
form in the subsequent time steps. Matrix M is a diagonal
matrix, and it is preferable to store it in the form of a simple
vector, as this helps to save priceless graphic device memory.

In contrast, conductivity matrix K is a temperature func-
tion. The element which causes this dependency is thermal
conductivity coefficient λ. The value of the thermal conduc-
tivity coefficient is determined during the building of the
matrix of coefficients for each finite element. If thermal
conductivity coefficient λ is not dependent on the spatial
coordinates, it can be taken out before the integral. After
completing these steps, equation (3) assumes the form (4).

Ke = λ(T )

∫
Ωe

∇TN · ∇NdΩ (4)

After integration, conductivity matrix K (for triangular
elements) takes the form (5), where Ke is a local coefficient
matrix for the finite element, A the surface area of the finite
element, Cij are coefficients which depend on the spatial
coordinates of the nodes belonging to the finite element.

The value of thermal conductivity coefficient λ for the
finite element is calculated as the average value of the
thermal conductivity coefficients determined for the nodes
belonging to that finite element. After building the local

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



Ke =
λ(T )

4A

 C2
21 + C2

31 C21C22 + C31C32 C21C23 + C31C33

C21C22 + C31C32 C2
22 + C2

32 C22C23 + C32C33

C21C23 + C31C33 C22C23 + C32C33 C2
23 + C2

33

 (5)

Ke =
1

4A

 λ1(C2
21 + C2

31) λ1(C21C22 + C31C32) λ1(C21C23 + C31C33)
λ2(C21C22 + C31C32) λ2(C2

22 + C2
32) λ2(C22C23 + C32C33)

λ3(C21C23 + C31C33) λ3(C22C23 + C32C33) λ3(C2
23 + C2

33)

 (6)

coefficient matrices, they are assembled into a global matrix
of coefficients K, which contains elements that are the sum
of the products (their factors are different thermal conduc-
tivity coefficient λ). These are average values calculated for
each finite element that includes the corresponding nodes.
Such a situation makes it impossible to separate this part of
the matrix, which is temperature–dependent, from that part
which is built on the basis of information contained in the
finite element mesh.

In order to find a solution to this problem the authors
have developed an alternative approach to the building of
the system of linear equations. This approach allows the two
parts of conductivity matrix K to be separated. It involves
the introduction into the local matrices, values of the thermal
conductivity coefficient λ determined for the nodes and not
for the finite elements as in the original approach. After this
change is introduced into the equation (5) it takes the form
(6).

This approach permits the removal of thermal conductivity
coefficient λ before the parenthesis in each element of global
matrix K. After these steps the solidification equation in
matrix formulation (1) takes the form described in equation
(7).

MHn+1 + ∆tλnK∗Tn+1 = MHn + ∆tbn+1 (7)

where λ is the diagonal matrix of the thermal conductiv-
ity coefficient for each node of the finite element mesh,
determined on the basis of nodal temperatures from the
appropriate time–step, K∗ is a matrix of coefficients built on
the basis of the finite element mesh description. Matrix K∗ is
built only once at the beginning of the computer simulation.

This approach allows the process of building the global
coefficient matrix to be divided into two phases. The first
phase is independent from the nodal temperatures values,
and thus simultaneously independent from the time steps.
Phase one is performed only once before the first time step
of the simulation is performed. In this stage, matrix K∗ is
built on the basis of information from the finite element
mesh. Additionally, matrix B (calculated on the basis of
the boundary conditions), diagonal matrix M and the vector
(calculated on the basis of the boundary conditions) with
values necessary to build the vector right sides in each time
step are created in this stage.

After this step, the information stored in the mesh of
finite elements (coordinates of the nodes, finite element
descriptions, edges and areas) is no longer required for the
process of computer simulation. The second phase of the
matrix building process consists of determining conductivity
coefficient λ for each node. As a result of this step diagonal
matrix λ is created. This matrix is multiplied by matrix
K∗. As a result of the implementation of these operations

the non–zero elements of matrix K∗ are multiplied by λ
values determined for the node whose index corresponds
to the number of the row of the matrix. Since conductivity
coefficient matrix λ is temperature dependent, this operation
must be performed in each subsequent time–step.

This approach simplifies the process of building the global
matrix of coefficients on graphic processors by allowing
matrix K∗ to be built on a general purpose processor.

B. Impact of the two–step building of the system of linear
equation on the simulation results

The modifications to the numerical model produce slight
differences in the temperatures in the nodes. However, these
are just minor differences that do not affect the simulation
of the casting solidification process. These differences result
from the different way in which the value of the coefficient
of thermal conductivity sensor is determined for the node,
and not for the finite elements. This leads to a speed up in
somputations performed in a sequential way (on the CPU ).

III. EXPERIMENTAL NUMERICAL VERIFICATION

Simulations of the solidification process were carried out
for the region shown in Fig. (3). Calculations were performed
with the use of 6 finite element meshes, whose sizes ranged
from several thousand to several hundred thousand nodes.

Times of simulations performed with the GPUs were
compared to the results obtained with the authorial CPU–
based sequential software. This software uses the approach
to building the system of equations which was presented in
previous section. The authors used a Boost Math library for
matrix and vector calculations in the sequential implementa-
tion. It should also be noted that all matrices are stored as
sparse matrices using Compressed Sparse Row format.

The computer simulation on the graphics processor was
performed an nVidia GT200. The GPU–based casting solid-
ification simulation software was run on the graphic devices:

Fig. 3: The shape of the casting and casting mold used in
the simulation

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



(a) after 200 time–steps(CPU) (b) after 200 time–steps(GPU)

(c) after 6000 time–steps(CPU) (d) after 6000 time–steps(GPU)

Fig. 4: Distribution of the solid phase

Fig. 5: Speed up obtained with the use of GPU-based
simulation software

1) nVidia TESLA C1060 (4 GiB GDDR),
2) GeForce GTX 260 (896 GiB GDDR).

Both the above are equipped with an nVidia GT 200 pro-
cessor with 240 CUDA cores which has a peak performance
of about 1 Tflops in single float operations. The authors used
CUDA version 3.2 in the graphic processor implementations.

The casting material is aluminum alloy with the addition
of copper and the mold is assumed to be made from steel.
The material properties are listed in Table I. The initial
temperature of pouring was equal to 960 K and this value was
the value of the initial condition temperature for the region of
the cast in the performed calculations. The initial temperature

TABLE I: Physical properties of cast material (Al-2%Cu),
and mold

Quantity Unit symbol Value

Thermal Conductivity of solid phase W
m·K 262

Thermal Conductivity of liquid phase W
m·K 104

Density of solid phase kg
m3 2824

Density of liquid phase kg
m3 2498

Specific heat of solid phase J
kg·K 1077

Specific heat of liquid phase J
kg·K 1275

Solidus temperature K 853

Liquidus temperature K 926

Melting temperature of pure metal K 933

Latent heat of solidification J
kg·K 390 000

Thermal conductivity of mold W
m·K 40

Density of mold kg
m3 7500

Specifiv heat of mold J
kg·K 620

of the mold was set at 560 K. Newton’s boundary condition
is assumed on all the surfaces of the mold, assuming heat
exchange with the environment with a coefficient equal to
100 W

m2·K . The ambient temperature has a value of 300 K
in all boundary conditions. The heat exchange between the
casting and the mold is obtained from a type IV boundary
condition, which assumes the heat exchange through the in-
sulation layer of the conductivity coefficient of the separating
layer to be 800 W

m2·K .
Fig. 5 shows that speed up depended on the size of the task

(number of nodes in the finite element mesh). In small tasks
the speed up is minor. This can be explained by the time

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014



taken to copy the data from the system memory to GPU
memory and to copy the results into the system memory
from the graphic device memory (first and last time–step).
No differences were noted in the process of the computer
simulation implemented on a general purpose processor and
graphics processor. The simulation results (temperature and
part of the solid phase) show that there is a slight difference
between the results obtained with the GPU–based and CPU–
based software. These differences are minor and do not
exceed 0.1% and have no effect on the simulation process.
This is illustrated in Fig. 4 which shows a part of the solid
phase after 200 and 6 000 time–steps of computer simulation
of the casting solidification process realized on CPU (Fig.
(4a) and Fig. (4c)) and GPU (Fig. (4b) and Fig. (4d)).
Comparing these figures it can be seen that the simulation
process in both cases is the same.

IV. CONCLUSION

In this article, the authors present a new method of
parallelization for the computer simulation of the casting
solidification process and its implementation on graphics
processors compatible with CUDA architecture. The pro-
posed method divides the process of building the system
of equations into the two phases. This solution improves
the efficiency with which the available system resources are
used. The great advantage of the developed solution is that
it is easily adapted to the different architectures of multicore
processors.

The speed up observed during the computer simulation
of the casting solidification process confirms that the use
of graphic processors in engineering simulations brings sig-
nificant benefits. It was also noted that with an increase in
the number of unknowns in the system of equations, the time
needed to solve such a system increases linearly. At the same
time, as the size of the task increases so does the speed up
observed in the computations with the graphic processor.

Having regard to the the above results it can be stated that
using graphic processors in engineering simulations seems to
be a viable solutionas this approach can significantly reduce
the time needed for research.

REFERENCES

[1] R. Strzodka, M. Dogger, and A. Kolb, “Scientific computation for
simulations on programmable graphics hardware,” Simulation Model-
ing Practice and Theory, vol. 13, pp. 667–680, 2005.

[2] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics pro-
cessors using cuda,” Journal of Parallel and Distributed Computing,
vol. 68, no. 10, pp. 1370–1380, 2008.

[3] nVidia, CUDA C Best Practices Guide v3.2, 20 August 2010.
[4] P. Pospı́chal, J. Schwarz, and J. Jaroš, “Parallel genetic algorithm solv-

ing 0/1 knapsack problem running on the GPU,” in 16th International
Conference on Soft Computing MENDEL 2010. Brno University of
Technology, 2010, pp. 64–70.

[5] C. Lee, X. Wei1, J. W. Kysar, and J. Hone, “Measurement of the Elastic
Properties and Intrinsic Strength of Monolayer Graphene,” Science,
vol. 321, pp. 385–388, 2008.

[6] nVidia, Optimization. OpenCL Best Practices Guide, 27 May 2010.
[7] N. Sczygiol, Numerical modelling of thermo–mechanical phenomena

in a solidifying casting and mold. Wydawnictwo Politechniki
Czestochowskiej, Czestochowa 2000. (in Polish).

[8] N. Sczygiol and G. Szwarc, “Application of enthalpy formulations
for numerical simulation of castings solidification,” Computer Assisted
Mechanics and Engineering Sciences, vol. 8, no. 1, pp. 99–120, 2001.

[9] O. Zienkiewicz, The finite element method, Volume I, the Basis, 5th
ed. Oxford: Butterworth–Heinemann, 2003.

[10] N. Sczygiol, G. Szwarc, and R. Wyrzykowski, “Numerical mod-
elling of equiaxed structure formation during solidification of a two–
component alloy,” in 2nd European Conference on Computational
Mechanics, Krakow, 2001, pp. 820–821.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2014 Vol II, 
IMECS 2014, March 12 - 14, 2014, Hong Kong

ISBN: 978-988-19253-3-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2014




