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Abstract—There is a well known duality concept in
propositional logic (cf. e.g. [3, 14]) essentially relat-
ing CNF formulas to tautologically equivalent DNF
formulas. In this paper we propose and discuss an-
other duality principle in propositional logic based on
a set theoretic duality interchanging clauses and liter-
als, thus working for arbitrary normal form formulas.
This concept is closely related to a set theoretic ap-
proach to hypergraph duality which is discussed in
advance.
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1 Introduction

There is a well known notion of duality in propositional
logic (cf. e.g. [3, 14]). Given a well formulated expres-
sion F over a set V of atoms such that it contains only
the Boolean operators ∧,∨,¬. Then the dual expres-
sion F d essentially is obtained by exchanging ∧ and ∨
and by replacing each atom x by its negation ¬x. For
a precise inductive definition of this concept of dual-
ity cf. [14]. Specifically if F is a formula in conjunc-
tive normal form (CNF), then its dual F d is a tauto-
logically equivalent formula in disjunctive normal form
(DNF). A similar concept exists for Boolean functions
(also called truth functions [10]). Given a Boolean func-
tion f : {0, 1}n → {0, 1}, then its dual fd is defined
pointwise by fd(x) = f(x), x ∈ {0, 1}n. An often studied
problem in this context is DUALIZATION of Boolean
functions (or, closely related, hypergraphs, see below)
[4, 5, 7, 8, 9]. Here one is given the prime CNF of a
(monotone or positive) Boolean function f and is asked
for the prime CNF of its dual fd. As mentioned, there is
a closely related duality concept for hypergraphs resting
on its transversal hypergraph. By definition a transversal
(or cover) of a hypergraph H = (V,E) is a subset of the
vertex set t ⊆ V such that ∀e ∈ E : t∩ e 6= ∅. A minimal
transversal properly contains no other transversal of H.
Given H then the transversal or dual hypergraph Hd has
the same vertex set and the set of all minimal transver-
sals as edge set. The problem of computing the dual of
a hypergraph is equivalent to the problem of computing
the (monotone) dual of a (monotone) Boolean function
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[7, 8]. In this paper we propose a duality concept for hy-
pergraphs called diagonalized duality. Essentially it ex-
changes the roles of vertices and hyperedges (thus mod-
ifying the classical duality notion [2] exchanging rather
the index sets of the vertex and the hyperedge sets). In
a second step this notion of diagonalized duality is also
transfered to propositional logic. More precisely, it will
be defined for (arbitrary) normal form propositional for-
mulas resulting in exchanging the roles of appropriately
defined notions of clauses and variables, resp. literals.

2 Diagonalized Duality of Hypergraphs

Compared to the duality principle based on the transver-
sal hypergraph there is a more classical notion of hy-
pergraph duality. This essentially exchanges the roles
of its vertex and (hyper)edge sets. Let I be a (finite)
index set and let E := (ei)i∈I be a collection of sets
with V :=

⋃
i∈I ei. Then H = (V,E) defines a hyper-

graph with vertex set V and collection of (hyper)edges
E. Since the edges are distinguished by its indices it is
possible that ei = ej , i 6= j. In this case we also call H a
hypergraph over I which is indicated by H = (V,E : I).
The following notion of duality is well settled (cf. e.g. [2]):

Definition 1 Let H = (V,E : I) be a hypergraph over
fixed index set I. The (set theoretical) dual hypergraph
H∗ of H is defined as follows: For each x ∈ V let x∗ :=
{i ∈ I : x ∈ ei} be the dual (hyper)edge corresponding to
x. Then set H∗ = (V ∗, E∗), where V ∗ :=

⋃
x∈V x∗ and

E∗ := {x∗ : x ∈ V }.

This duality actually exchanges the roles of the index
and the vertex sets since we have V ∗ = I and E∗ =
(x∗)x∈V . Hence H∗ is a hypergraph over V , namely H∗ =
(I, E∗ : V ). From this expression immediately follows
syntactically H∗∗ := (H∗)∗ = (V,E∗∗ : I). An inspection
of the incidence matrices of H and H∗∗ then tells us that
the duality is consistent in the following sense:

Lemma 1 H∗∗ = H.2

In the sequel we are interested in a set theoretic duality
“living” on the vertex and edge sets itself rather than on
the index sets. Let us consider a restricted class of hy-
pergraphs, namely those in which each edge occurs only
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once. Then instead of speaking about a collection of edges
whose members are refered to by an index set, the edges
now constitute a (finite) set. Thus from now on, a hyper-
graph is a pair H = (V,E) where V = V (H) is a finite
set, the vertex set and E = E(H) is a family of subsets
of V the (hyper)edge set such that for each x ∈ V there
is an edge containing it. An edge with |e| = 1 is called
a loop, and if we have |e| ≥ 2 for all edges of a hyper-
graph then it is called loopless. For a vertex x of H, let
Ex = {e ∈ E : x ∈ e} be the set of all edges containing
x. Then ωH(x) := |Ex| denotes the degree of the vertex
x in H, we simply write ω(x) when there is no danger of
confusion.

LetH denote the set of all (finite, not necessarily loopless)
hypergraphs H = (V,E) with E ⊆ 2V \{∅} such that V =⋃

e∈E e, where 2V denotes the power set of V . Recall that
a hypergraph isomorphy H1

∼= H2 is a bijection V (H1) →
V (H2) which in both directions preserves the structure
of hyperedges.

Remark 1 It is not hard to verify that H1
∼= H2 implies

H∗
1
∼= H∗

2 . Moreover, the reverse implication can be con-
cluded then directly via Lemma 1. So, we always have
H1

∼= H2 if and only if H∗
1
∼= H∗

2 .

Recall that a hypergraph is called Sperner if no hyperedge
is contained in another hyperedge [2]. A hypergraph H =
(V,E) ∈ H is called linear [2] if for all e, e′ ∈ E it holds
that |e ∩ e′| ≤ 1 whenever e 6= e′. Let Hlin ⊆ H denote
the class of all linear hypergraphs.

We define H(n) ⊆ H as the collection of those hyper-
graphs having a vertex set of cardinality n ∈ N, where
N denotes the set of all positive integers, and set [n] :=
{1, 2, . . . , n}. Let H = (V,E) ∈ H(n) be fixed. For each
x ∈ V considering the set Ex := {e ∈ E : x ∈ e} yields an
equivalence relation on V , namley x ∼H y : ⇔ Ex = Ey.
Let [x]H denote the equivalence class containing x and let
ṼH := V/ ∼H denote the corresponding quotient space.
Define Hk(n) = {H = (V,E) ∈ H(n) : |ṼH | = k}, for
positive integer k ≤ n, i.e., the collection of all hyper-
graphs admitting a quotient space as above of cardinality
k. For example, as is not hard to see the class H1(n) con-
sists of all hypergraphs of the form H = (V, {e = V }), i.e.,
those hypergraphs consisting of only one edge containing
all n vertices, for appropriate n ∈ N. Clearly, for each
H ∈ H(n) there is a unique k ∈ [n] such that H ∈ Hk(n)
and as disjoint union we have H(n) =

⋃
k∈[n]Hk(n).

Definition 2 For fixed number n of vertices, we call
Hn(n) the n-diagonal class (of hypergraphs), and the col-
lection Hdiag :=

⋃
n∈NHn(n) ⊆ H is called the diagonal

class.

This class obviously contains all hypergraphs H consist-
ing of loops only, i.e., E(H) = {{x} : x ∈ V (H)}. For

the set theoretical dual of a member in H the same holds
true.

Lemma 2 If H ∈ H then H∗ ∈ Hdiag.

Proof. Let H = (V,E) ∈ H with m := |E|, then by
definition H∗ = ([m], E∗ : V ). Since for every x∗ ∈ E∗

we have x∗ = {i ∈ [m] : x ∈ ei}, and as basis for the
equivalence relation on V ∗ = [m] we consider the sets
E∗

i := {x∗ ∈ E∗ : i ∈ x∗}, for i ∈ [m], one immediately
verifies that x ∈ ei ⇔ x∗ ∈ E∗

i . Moreover, since H ∈ H
there are no i, j ∈ [m] such that i 6= j and ei = ej . This
in turn means that the same holds true for the sets E∗

i ,
i ∈ [m], implying H∗ ∈ Hdiag. 2

Let H≥2 be the collection of all hypergraphs such that
each vertex has degree at least two, similar for the linear
class, then we have the following observations.

Theorem 1 Hlin,≥2 ⊆ Hdiag, but Hlin,≥2 6= Hdiag, so
Hlin,≥2 is a proper subclass. Moreover if H ∈ Hdiag then
G ∈ Hdiag for all G ∈ H with G ∼= H.

Proof. Let H = (V,E) ∈ Hlin,≥2 such that |V | =: n,

for positive integer n, and suppose |ṼH | = k < n. Hence
there are x, y ∈ V such that Ex = Ey and x 6= y. Since
ω(v) ≥ 2 for every vertex v of H it is guaranteed that
|Ex| = |Ey| ≥ 2. Thus we have e, e′ ∈ E, e 6= e′, such that
x, y ∈ e∩ e′ contradicting the linearity of H. For proving
the second claim regarding properness of the inclusion,
consider H = (V,E) ∈ H≥2 with V = {a, b, x, y} and
E = {e1, e2, e3, e4}, where e1 = {a, x, y}, e2 = {b, x, y},
e3 = {a, x}, e4 = {a, b}; thus H is not linear. But H ∈
Hdiag holds, as can be verified easily. Finally, let G, H ∈
H be in the same isomorphism class and H ∈ Hdiag.
Since x ∈ e ∈ E(H) ⇔ ϕ(x) ∈ ϕ(e) ∈ E(G), for an
appropriate isomorphism ϕ : V (H) → V (G), we see that
E(H)x = E(H)y if and only if E(G)ϕ(x) = E(G)ϕ(y) for
arbitrary x, y ∈ V (H). Thus the last statement is verified
where we set ϕ(e) := {ϕ(x) : x ∈ e}. 2

On the other hand notice that H ∈ Hdiag obviously needs
not to possess the Sperner property, i.e., e ⊆ e′ ⇒ e = e′,
as the example in the preceding proof indicates. A basic
notion for our new duality concept is the following.

Definition 3 For H = (V,E) ∈ H, the (unique) hyper-
graph H̃ := (ṼH , ẼH) is called the diagonalization of H,
where ẼH := {ẽ : e ∈ E} and ẽ := {[x]H : x ∈ e}.

For providing an example we start with H = (V,E)
with V = {a, b, c, d} and E = {e1, e2, e3, e4} where
e1 = {a, b, c}, e2 = {a, b}, e3 = {c, d}, e4 = {d}. Fol-
lowing the construction rules as stated above we obtain
H̃ = (ṼH , ẼH) with ṼH = {[a]H , [c]H , [d]H}. More-
over, ẼH = {ẽ1, ẽ2, ẽ3, ẽ4}, where ẽ1 = {[a]H , [c]H},

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I, 
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015



ẽ2 = {[a]H}, ẽ3 = {[c]H , [d]H}, ẽ4 = {[d]H}. Further
observe that despite of H 6∈ Hdiag, namely H ∈ H3(4),
we have H̃ ∈ H3(3) thus H̃ ∈ Hdiag which is a fact in
general.

Lemma 3 For H ∈ H, we have |ẼH | = |E|, moreover
(i) H̃ ∈ Hdiag,
(ii) H ∈ Hdiag if and only if H ∼= H̃,
(iii) if H ∈ Hlin,≥2 then H̃ ∈ Hlin,≥2, and
(iv) H ∼= G implies H̃ ∼= G̃.

Proof. Let H = (V,E) ∈ H be arbitrarily chosen. For
the first assertion, suppose there are e, e′ ∈ E such that
e 6= e′ but ẽ = ẽ′. Consider a vertex c ∈ e with c 6∈ e′

implying e′ 6∈ Ec. Since for x ∈ e′ we have e′ ∈ Ex it
follows that c 6∼H x for all x ∈ e′. Therefore [c]H 6∈
ẽ′ yielding a contradiction and implying e ⊆ e′. The
reverse implication can be shown analogously, thus each
e induces a unique ẽ (where often holds |ẽ| ≤ |e|). So,
we always have |ẼH | = |E| which now is an immediate
consequence of the fact that E, as a set, contains distinct
edges only. For verifying assertion (i), let n := |V | then
there is a fixed k := |ṼH | ∈ [n] such that H ∈ Hk(n)
and by construction we obtain H̃ ∈ Hi(k) for i ∈ [k].
To verify i = k it suffices to prove that [x]H ∼H̃ [y]H if
and only if x ∼H y establishing that the class structure
is respected. Indeed, let x, y ∈ V with x 6= y such that
[x]H ∼H̃ [y]H . Because every e ∈ Ex induces a unique
ẽ ∈ E[x]H it follows that E[x]H = E[y]H implies Ex = Ey

thus x ∼H y, the converse implication can be treated
analogously. Hence H̃ indeed is a member of the diagonal
class. Next consider claim (ii) and assume H ∈ Hdiag

meaning H ∈ Hn(n). From the proof above it follows
that H̃ ∈ Hn(n) also. Clearly we have |ṼH | = |V | = n
and x 7→ [x]H = {x} provides a bijection of the vertex
sets of H and H̃. Therefore every e is in bijection to
ẽ yielding H ∼= H̃. Conversely assume H ∼= H̃ for any
H ∈ H, then by part (i) and the second statement of
Theorem 1 we obtain H ∈ Hdiag. Let H ∈ Hlin,≥2 then
H ∈ Hdiag according to the first statement of Theorem 1
therefore H ∼= H̃ due to part (ii) above. Hence, we must
have H̃ ∈ Hlin,≥2 which proves (iii). Finally addressing
(iv) let H = (V,E), G = (W,F ) ∈ H and ϕ : H → G
be an isomorphism. We claim that the induced mapping
ϕ̃ : ṼH → W̃G with ϕ̃([x]H) := [ϕ(x)]G, for every x ∈ V ,
yields an isomorphism between H̃ and G̃. In fact, from
e ∈ E ⇔ ϕ(e) ∈ F we obtain x ∼H y ⇔ Ex = Ey ⇔
Fϕ(x) = Fϕ(y) ⇔ ϕ(x) ∼G ϕ(y). Therefore [x]H ∈ ẽ

⇔ [ϕ(x)]G ∈ ϕ̃(e) according to ∼G. Hence, we obtain
ϕ̃(e) = ϕ̃(ẽ), and we derive ẽ ∈ ẼH ⇔ e ∈ E ⇔ ϕ(e) ∈ F

⇔ ϕ̃(e) = ϕ̃(ẽ) ∈ F̃G. 2

Notice that the reverse implications of statements (iii),
(iv) above do not hold true in general. The property
stated in part (i) of the preceding lemma directly leads
to the following notion.

Definition 4 Let H = (V,E) ∈ H be a hypergraph.
Then H# = (V #, E#) := (ẼH , {E[x]H} : ṼH) is called
the diagonalized dual (hypergraph) of H. Here E[x]H =
{ẽ ∈ ẼH : [x]H ∈ ẽ}.

If H ∈ H is Sperner then H# in general is not. For
instance consider the hypergraph H given by V =
{x1, x2, x3} and E = {e1, e2} where e1 = {x1, x2}, e2 =
{x2, x3}. We see that H ∈ H3(3) and for the edges of H#

we have E[x1]H = {ẽ1}, E[x2]H = {ẽ1, ẽ2}, E[x3]H = {ẽ2}
obviously not possessing the Sperner property over the
vertex set {ẽ1, ẽ2}. It is left to the reader to verify that in
this case H# ∈ Hdiag holds, more precisely H# ∈ H2(2).
Below it is shown that this is a fact in general (cf. Theo-
rem 2).

Lemma 4 For H ∈ H we have: (i) H# ∈ H, and (ii)
H# ∼= H̃∗.

Proof. Let H = (V,E) ∈ H be fixed. Suppose that
there are [x]H 6= [y]H such that E[x]H = E[y]H then
Ex = Ey then x ∼H y then [x]H = [y]H . Hence H# ∈ H
establishing (i). To prove assertion (ii) set |E| =: m,
then H can be regarded as a hypergraph over index set
[m], namely H = (V,E : [m]). By the definition of di-
agonalization and because of |ẼH | = |E| according to
Lemma 3 we have H̃ = (ṼH , ẼH : [m]). Now by Defini-
tion 1 it follows that H̃∗ = ([m], Ẽ∗

H : ṼH) where Ẽ∗
H =

{[x]∗H : [x]H ∈ ṼH} and [x]∗H := {i ∈ [m] : [x]H ∈ ẽi}.
On the other hand we have H# = (ẼH , {E[x]H} : ṼH)
as a hypergraph over the index set ṼH . Identifying
E[x]H := {ẽ ∈ ẼH : [x]H ∈ ẽ} and [x]∗H the claimed
hypergraph isomorphy can be derived, which completes
the proof of (ii). 2

Theorem 2 For H ∈ H we have: (i) H# ∈ Hdiag, and
(ii) if H ∈ Hlin,≥2 then H# ∈ Hlin,≥2.

Proof. Let H = (V,E) ∈ H. For proving assertion
(i), we notice that H̃∗ ∈ Hdiag according to Lemma 2,
because H̃ ∈ H. Therefore H# ∈ Hdiag in view of Lemma
4, (ii), and the second statement in Theorem 1. In order
to verify part (ii), recall that in view of Lemma 3 we have
|ẼH | = |E| meaning that every e ∈ E induces a unique
ẽ ∈ ẼH and vice versa. Now assume that H ∈ Hlin,≥2,
but H# = (V #, E#) 6∈ Hlin,≥2. Recall from Definition
4 that V # = ẼH and E# = {E[x]H : [x]H ∈ ṼH)}. So,
there are x, y ∈ V with [x]H 6= [y]H , and moreover there
are e, e′ ∈ E with e 6= e′ such that the corresponding
ẽ, ẽ′ ∈ E[x]H∩E[y]H . In turn that means [x]H , [y]H ∈ ẽ∩ẽ′

and therefore x, y ∈ e∩ e′ yielding a contradiction to the
linearity of H.2

For hypergraphs of the diagonal class we recover the
usual behavior of dualization in the sense of isomorphy
as stated next.
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Theorem 3 For H ∈ Hdiag we have: (i) H# ∼= H∗, and
(ii) H## := (H#)# ∼= H.

Proof. For H ∈ Hdiag we have H ∼= H̃ according to
Lemma 3, (ii). Using Lemma 4, (ii), we conclude that
H# ∼= H̃∗ ∼= H∗ holds according to Remark 1, hence
assertion (i) is true. For proving (ii), observe that with
Theorem 2, (i), we have H# ∈ Hdiag. Hence we can apply
(i) to obtain (H#)# ∼= (H#)∗. Applying (i) again, this
time to H, yields H## ∼= H∗∗ = H where Lemma 1 has
been used. 2

Theorem 4 Let H ∈ H then H## ∼= H̃.

Proof. Let H ∈ H be arbitrarily fixed and set G :=
H# ∈ Hm(m) for some unique m ∈ N in view of Theorem
2, part (i). Due to Theorem 3, (i), we see G# ∼= G∗.
Relying on relation H# ∼= H̃∗ according to Lemma 4,
part (ii), we finally obtain H## = G# ∼= G∗ = (H#)∗ ∼=
(H̃∗)∗ = H̃. Here for the last equality Lemma 1 has been
used. 2

Clearly, by construction the n-diagonal classesHn(n) (for
n ∈ N) have in H the distinguished property that iterat-
ing twice the diagonalized dualization on one of its mem-
bers recovers exactly this member at least in the sense
of hypergraph isomorphy. Moreover, given a hypergraph
H ∈ H the problem of computing the diagonalized dual
lies in the complexity class P , because it essentially re-
quires a computation of the diagonalization H̃ of H which
obviously can be executed in polynomial time.

3 Diagonalized Duality in Logic

Based on the concept of hypergraph duality introduced
in the last section, in the sequel we define an analogous
duality for propositional normal form formulas (NFF’s).
After having translated the notions to monotone formu-
las (which can be done immediately) the concept also
is generalized to arbitrary NFF’s. First the basic nota-
tion is fixed. Let V = {x1, . . . , xn} (n ∈ N) be a finite
set of atoms also called (propositional) variables and let
x := ¬x denote the negation of atom x. For X ⊆ V we set
X := {x : x ∈ X} and L = V ∪V for the set of literals over
V . The positive literal over x is x itself and x is the neg-
ative literal over x. Let OP := {∧,∨,→,↔,⊕} be the set
of Boolean operators corresponding to AND, OR, IMPLI-
CATION, EQUIVALENCE, XOR. Let � ∈ OP be a fixed
operator, then a finite �-junction c = l1(c)� · · · � l|c|(c)
is called a �-clause (for short clause if no ambiguity can
occur) if l1(c) 6= lj(c), i 6= j. Hence such a clause can
be regarded as a |c|-cardinality set of its literals if the
juncting operator is fixed. Let CL� denote the set of
the �-clauses. Clearly, from the point of view of sets the
objects CL�,� ∈ OP, are essentially the same. Hence,
when we simply write CL, and speak of clauses when a

specific junction is not of importance. Given a clause c we
denote with L(c) the set of its literals and by V (c) the set
of variables over which its literals are defined. In the sense
of a set interpretation of c we actually have that c is iden-
tified with L(c). Let two different operators �,⊗ ∈ OP
be fixed. A finite ⊗-junction C = c1(C) ⊗ · · · ⊗ c|C|(C)
of different clauses ci(C) ∈ CL� is called a ⊗,�-normal
form formula. Let C := C⊗,� denote the set of these for-
mulas. Notice that an NFF can be identified with its set
of clauses CL(C) ≡ C whenever the underlying Boolean
operators are fixed. For the set of literals in C we have
L(C) =

⋃
c∈C L(c) and similarly for the set of variables

we have V (C) =
⋃

c∈C V (c). A clause c is called pos-
itive monotone if L(c) = V (c) and negative monotone
if L(c) = V (c). An NFF C is called positive (negative)
monotone if it contains only positive (negative) mono-
tone clauses. Let C+(−) denote the set of all positive
(negative) monotone formulas. Moreover, let us trans-
fer the notion of linearity to arbitrary NFF formulas (cf.
[18]). An NFF C is called linear if for all c1, c2 ∈ C with
c1 6= c2, we have |V (c1) ∩ V (c2)| ≤ 1. Let Clin ⊆ C⊗,�
denote the class of all linear formulas. In the remain-
der of this section, we restrict the consideration to pos-
itive monotone formulas, simply called monotone, since
negative monotone formulas can be treated analogously.
Observe that a positive monotone formula C contains
no negative literals. Hence, it corresponds to a hyper-
graph HC ∈ H whose vertex set is identified with V (C)
and whose edge set is identified with CL(C). Conversely,
given a hypergraph H = (V,E) ∈ H, we obtain the cor-
responding NFF CH with variable set V (CH) = V and
clause set CL(CH) = E. Then interpret CH ∈ C⊗,�
for any fixed pair of distinct Boolean operators in OP.
Given two formulas C,C ′ ∈ C+ we write C ∼= C ′ if and
only if HC

∼= HC′ in the sense of hypergraph isomor-
phy. For ⊗,� ∈ OP, let C ∈ C+

⊗,� be a monotone NFF.
The monotone diagonalized dual C# of C is the monotone
NFF in C+

�,⊗ defined by C# := CH#
C

. An NFF C is called
a monotone diagonal formula if HC is a member of the
diagonal class of hypergraphs. Let the set of monotone
diagonal (⊗,�)-NFF’s be denoted as D+

�,⊗ ⊂ C+
�,⊗.

Theorem 5 Let C ∈ C+
⊗,� be a monotone formula, then

C# ∈ D+
�,⊗ is a diagonal monotone formula. Moreover,

if C ∈ D+
�,⊗ then C## := (C#)# ∼= C.

Proof. The proof of the first claim can be reduced to
showing that HC# = H#

C is a member of a diagonal class
of hypergraphs. But this in turn is guaranteed in any
case according to Theorem 2, (i). The assertion then
follows by exchanging the involved Boolean operators.
The second claim follows likewise according to Theorem
3, (ii). 2

For example if C is a diagonal monotone formula in CNF
then C# is a diagonal monotone formula in DNF such
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that the clauses of C are its variables and vice versa.
Given an NFF C the problem of computing the monotone
diagonalized dual is in P because this holds for computing
the diagonal dual of the corresponding hypergraph. For
the twicely iterated monotone diagonalized dual in the
general case we have:

Theorem 6 If C ∈ C+
⊗,� then C## ∼= C̃ := CH̃C

∈
C+
⊗,�. Where H̃C is the diagonalization of HC according

to Definition 3.

Proof. Clearly the operators in C are exchanged twicely,
hence, if C is a monotone (⊗,�)-NFF, so is C##. The
rest of the proof immediately follows from Theorem
4 which states for the corresponding hypergraphs that
HC## = H##

C
∼= H̃C . Hence C## ∼= CH̃C

= C̃. 2

In analogy to Hlin,≥2 let C+
lin,≥2 ⊆ C+

�,⊗ denote the collec-
tion of those monotone linear formulas C such that each
variable occurs in at least two distinct clauses, then as a
direct consequence of Theorem 1 we obtain the following

Corollary 1 We have C+
lin,≥2 ⊆ D+

�,⊗ as a proper sub-
class. 2

4 Generalization to arbitrary NFF’s

Clearly, it is possible also to assign a hypergraph to an
arbitrary, i.e., not necessarily monotone normal form for-
mula. Let C ∈ C⊗,� be given (for any fixed pair of Boolen
operators ⊗,� ∈ OP). Then setting (L(C),CL(C)) de-
fines a hypergraph HC ∈ H. Notice that a monotone for-
mula C actually appears as a special case because then
L(C) = V (C).

Definition 5 For ⊗,� ∈ OP, let C ∈ C⊗,� be an NFF.
The diagonalized dual C# of C is the NFF in C�,⊗ de-
fined as C# := CH#

C
. An NFF C is called a diagonal

formula if HC is a member of the diagonal class of hy-
pergraphs. We denote the set of diagonal (⊗,�)-NFF’s
by D�,⊗ ⊂ C�,⊗.

Theorem 7 Let C ∈ C⊗,� be an NFF, then C# ∈ D�,⊗
is a diagonal NFF. Moreover, if C ∈ D�,⊗ then C## :=
(C#)# ∼= C.2

Given an NFF C the problem of computing the diago-
nalized dual is in P because this holds for computing the
diagonalized dual of the corresponding hypergraph. For
the twicely iterated diagonalized dual we have:

Theorem 8 If C ∈ C⊗,� then C## ∼= C̃ := CH̃C
∈

C⊗,�. Where H̃C is the diagonalization of HC according
to Definition 3.2

Finally consider the class of 1-intersecting normal form
formulas. Such a formula C has the defining prop-
erty that ∀ci, cj ∈ CL(C) with ci 6= cj it holds that
|L(ci)∩L(cj)| ≤ 1. Since one has to distinguish between
a variable and its negation as distinct objects clearly a
1-intersecting formula corresponds to a linear hypergraph
HC = (L(C),CL(C)) ∈ Hlin. Recall that C≥2 ⊂ C�,⊗ de-
notes the collection of normal form formulas C such that
each literal occurs at least twice in C. As in the case
of hypergraphs we have that the class of diagonal NFF’s
essentially contains the class of 1-intersecting NFF’s.

Theorem 9 D�,⊗ contains the subset of C≥2 consisting
of 1-intersecting formulas as a proper subclass.

Proof. A 1-intersecting formula C ∈ C≥2 corresponds
to HC ∈ Hlin,≥2. According to Theorem 1 the latter is
a proper subclass of Hdiag implying the assertion of the
theorem. 2

Observe that the last last result indeed generalizes Corol-
lary 1 because 1-intersecting formulas, in general, are
not linear. For example the clauses c1 := {x̄, y, z} and
c2 := {x, y, z̄} satisfy |L(c1)∩L(c2)| = 1 but have identi-
cal variable sets. Reversely, every linear (not necessarily
monotone) formula obviously is 1-intersecting.

5 Conclusions and open Problems

We introduced a new notion of diagonalized duality for
hypergraphs and transfered it more generally to nor-
mal form propositional formulas resting on their rep-
resentability as appropriately defined clause sets. The
classes of diagonal formulas resp. hypergraphs are dis-
tinguished w.r.t. the diagonalized dual because they are
recovered exactly by computing the dual of the dual. On
the other hand it is clear that instances of this type are
most complex in the sense that they yield a maximal
cardinality in the vertex set of its diagonalization. It is
an interesting question to be addressed by future work,
whether the computation of the transversal hypergraphs
can be executed efficiently for the n-diagonal classes of
hypergraphs. It might be hoped also that some questions
of satisfiability theory can be attacked from this point
of view. The propositional satisfiability problem (SAT)
for CNF formulas is an essential combinatorial problem,
namely one of the first problems that have been proven
to be NP-complete [6]. More precisely, it is the natu-
ral NP-complete problem and thus lies at the heart of
computational complexity theory. Moreover SAT plays a
fundamental role in the theory of designing exact algo-
rithms, and it has a wide range of applications because
many problems can be encoded as a SAT problem via
reduction [13, 12] due to the rich expressiveness of the
CNF language. The applicational area is pushed by the
fact that meanwhile several powerful solvers for SAT have
been developed (cf. e.g. [15, 21] and references therein).
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Also from a theoretical point of view one is interested
in classes for which SAT can be solved more efficiently,
namely in polynomial time, or even in linear time [1, 16].
The same holds for prominent variants of SAT, namely
exact satisfiability (XSAT) or Not-All-Equal satisfiability
(NAE SAT). Specifically consider NAE SAT for mono-
tone CNF instances which is NP-hard [11, 19]. Here a
truth assignment is searched setting in every clause one
literal to true and one to false. NAE SAT is equivalent
to hypergraph 2-colourability where a 2-colouring of the
vertex set is searched such that no hyperedge appears to
be monochromatic. The last problem could be studied
for restricted classes Hk(n) for which it might be solv-
able more efficiently. For a study on the complexity of
these problems on linear propositional formula classes we
refer to [17, 18, 20].
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