Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

Identifying System Calls Invoked by Malware
using Branch Trace Facilities

Yuto Otsuki, Eiji Takimoto, Shoichi Saito, Eric W. Cooper, and Koichi Mouri

Abstract—We are developing Alkanet, a system call tracer
for malware analysis. However, recent malware infects other
processes, Others consist of two or more modules or plug-ins.
It is difficult to trace these malware because traditional methods
focus on threads or processes. Getling the system call invoker
by stack tracing is a traditional method to solve this problem.
However, if malware has falsified its stack, this method cannot
identify it correctly. In this paper, we describe a method for
identifying a system call invoker by branch trace facilities. We
consider the effectiveness of branch trace facilities for malware
analysis.

Index Terms—malware analysis, dynamic analysis, branch
tracing, virtual machine monitor.

I. INTRODUCTION

ALWARE has become a major security threat on

computers. There is already a lot of anti-virus soft-
ware. However, new kinds or variants of malware emerge
by the thousands every day. Anti-virus developers have to
enhance their software. To do this, firstly, they need to
analyze malware and understand its behavior.

An analysis result should distinguish the behavior of target
malware from the behavior of other software. System call
tracing, which is to trace system calls invoked by malware,
is one malware analysis method. Alkanet [1], a malware
analyzer we are developing, uses the method. Conventional
system call tracing distinguishes system calls invoked by
malware by means of the running process or thread. This
method is effective if malware runs as a process or thread.
However, recent malware hides its malicious codes in the
memory space of the other processes. In this case, a legiti-
mate thread in the process executes the malicious codes. The
conventional method cannot distinguish a system call invoked
by the malicious codes because the thread which has invoked
the system call is legitimate. Other recent malware consists of
two or more modules and plug-ins. The conventional method
cammot understand which malicious modules invoked the
system calls. Therefore, a system call tracer must trace the
behavior of the above-mentioned malware without confusing
it with the behavior of legitimate software and other malware.

To solve this problem, we have to understand which
executable file or generated code has invoked the system
call. The main technical issue is how to get the control flow
of a thread before the thread invokes a system call. Stack
tracing is an existing solution to get a call hierarchy by
getting return addresses in the thread’s stack. However, if

Manuscript received December 22, 2014; revised Januvary 21, 2015.

Y. Otsuki is with Graduate School of Information Science and Engineer-
ing, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577
Japan e-mail: yotuki@asl.cs.ritsumei.ac.jp.

S. Saito is with Graduate School of Engineering, Nagoya Institute of
Technology.

E. Takimoto, E.W. Cooper and K. Mouri are with College of Information
Science and Engineering, Ritsumeikan University.

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

malware has falsified its stack, this method cannot get the
carrect flow. In addition, stack usage is not uniform. A return
address might not point to the caller in some programming
techniques or optimizations. Therefore, we propose another
solution using the branch trace facilities of recent processors.
Our solution generates a call hierarchy based on information
of actually-occurring branches. This method is effective to
identify the invoker even if malware has falsified the thread’s
stack.

We have implemented our proposed method in our system
call tracer Alkanet. In this paper, we describe a comparison
of our method and existing methods using stack tracing.
We consider the effectiveness of branch trace facilities for
malware analysis.

II. OVERVIEW

In this section, firstly, we describe an overview of Alkanet.
We also describe an overview of our proposed method to
identify an invoker.

A. Alkanet

Alkanet is a system call tracer for malware analysis
using VMM. Malware analyzers implemented in VMM can
analyze with a higher privilege level than malware. So many
anti-debugging technigues would be ineffective for Alkanet.
Alkanet can observe running malware without the malware
interfering. In addition, malware running in user-mode needs
to invoke system calls to affect the environment. Therefore,
Alkanet traces invoked system calls and analyzes malware
behaviors.

Achievement of system call tracing requires hooking every
system call invoked by malware and getting the arguments
and retwrn value. In addition, the tracing requires analysis of
the meaning of the arguments and return value to get detailed
information of system calls invoked.

Malware behavior can be analyzed from the system call
logs. Our system extracts a summary of malware behavior
from further analysis of the system call logs.

Figure 1 presents the overview of Alkanet. Alkanet is
implemented based on BitVisor [2]. BitVisor runs directly on
the hardware and does not require a host operating system,
and instead runs on processors with Intel Virtualization
Technology (ak.a. Intel VT). Intel VT assists virtualization
by VMM. Therefore, BitVisor runs faster than emulators
and VMMs implemented in software only. BitVisor can run
Windows without requirement of modifications. In addition,
BitVisor adopts the parapass-through architecture and does
not emulate specific hardware. BitVisor provides the physical
hardware for a guest operating system. Therefore, malware
cannot detect BitVisor by characteristics of hardware, un-
like emulators and VMMs that emulate specific hardware.

IMECS 2015

PC for malware observation PC for logging

u Vil
ser—
mode SystemGall
I "N D Load 2
Kernel- . .
i Windows =
- 3
(1 -‘a“-‘) Save m
SystemGallAnalyzer 1EEE1394 2
[oyl othe).JI
\ BitVisor
Fig. 1. Overview of Alkanet

Furthermore, Alkanet adopts Windows XP Service Pack 3
32bit edition as its guest operating system. Alkanet executes
malware in this environment. A system call in the environ-
ment usually uses the sysenter and svysexit instruc-
tions. syaenter enters from user-mode to kernel-mode.
sysexit returns from kernel-mode to user-mode. To get
inputs given to system calls and their results, Alkanet hooks
both sysenter and sysexit. Alkanet uses hardware
breakpoints to hook system calls. Alkanet sets breakpoints
on entry point and exit point of system call handler. Alkanet
hooks invoked system calls and records the number of system
calls, their arguments, return values, and so on.

Another machine obtains the system call logs via IEEE
1394 interface. IEEE 1394 has direct read and write access to
the physical memory of connected devices. This direct access
allows the tracing logs to be obtained without the malware
detecting or interfering. Other programs can readily exam-
ine the log and process the analysis results to understand
intentions of malware behavior.

B. Geiting the Invoker

Our method consists of two functions. One function gets
the control flow of a thread. The other is to get information
of passed files and codes in the flow.

The former function gets information of actually-occurring
branches in the VM by the Branch Trace Store (a.k.a. BTS)
which is one of branch trace facilities of Intel processor.
This function generates the call hierarchy similar to stack
tracing by branch records. The latter gets the memory map
of a process by Virtual Address Descriptors (a.k.a. VAD) and
Page Table Entries. This function finds mapped executable
files and generated codes in the memory space of a process.
Alkanet can identify the system call coming from malicious
executable files or generated codes.

To implement these functions to Alkanet in VMM, there
are the following technical issues.

1) Tracing branches occurring in VM.

2) Separating branch records for each thread.

3) Generating a call hierarchy by branch records.

4) Getting the memory map of a process.

III. BTS

Recent Intel processors have branch trace facilities. The
Last Branch Record (ak.a. LBR) saves information of
branches in Model Specific Registers (a.k.a. MSR). BTS

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

STy STrey

Thread Thread
e

Windows

Thread Ohj. Thread Ohj.

PageTable

-
buffer

TID: Bce

e
buffer

\A'I_kqnet TID: 540

Fig. 2. Alkanet with Branch Trace Store (BTS)

stores branch records in a memory-resident buffer. Single
Step on Branches (a.k.a. BTF) throws a debug exception
whenever the processor executes a branch instruction when
setting the TF flag in the EFLAGS. Our proposed method
uses BTS because its number of stored branches is config-
urable. The remainder of this section details BTS.

When BTS is enabled, the processor stores a branch
record in a buffer in the kernel memory space whenever
the processor executes a branch instruction. A branch record
contains a source address, a destination address, and a flag
indicating whether the branch is predicted.

BTS is configurable for each processor by using Debug
Store (DS) mechanism and some MSRs. The DS mechanism
provides a DS save area which contains settings for BTS
buffer such as virtual address or size. [A32 DS AREA MSR
points to the DS save area. IA32 DEBUGCTL MSR has
TR bit (bit 6) and BTS bit (bit 7). The BTS mechanism
starts recording branches in the BTS buffer when both these
bits are set. IA32 DEBUGCTL MSR has some optional
bits. BTS OFF _OS bit (bit 9) and BTS OFF _USR bit (bit
10) are for CPL-qualified branch trace mechanisms. It is a
filtering function based on the current privilege level (a.k.a.
CPL). When BTS_OFF_OS bit is set, processor skips branch
recording if CPL is 0. BTS OFF USR is for skipping the
recording if CPL is greater than 0. When the BTINT hit
{bit 8) is set, processor generates an interrupt when the BTS
buffer is full. BTINT makes it possible to record branches
without limit. On the other hand, when BTINT bit is not set,
the BTS buffer is treated as a circular buffer. In this case, of
course, processor overwrites from the oldest records.

IV. GETTING THE CONTROL FLOW

This section details a practical use of BTS for VMM
to trace processes on VM. It contains solutions for the
issue 1 and 2 described in Subsection II-B. Figure 2 shows
an overview of our implementation. The remainder of this
section gives the details of this figure.

A. Branch tracing on VM

BTS seems useful for getting the control flow of malware.
However, our use of BTS creates a gap between a tracer and
its targets. The tracer runs as VMM. Alkanet and some other
malware analyzers are implemented as VMM to analyze

IMECS 2015

malware stealthily. On the other hand, targets are processes
on the VM.

To trace branches occurring from user programs on VM,
the VMM must set up a BTS buffer and a DS save area for
each processor on the VM., BTS requires virtual addresses
for them. In this case, a guest OS must have PTEs for
these addresses because VM is running while enabling BTS.
As shown in Figure 2, Alkanet modifies Windows’s unused
PTEs to allocate memory regions for BTS data structures.
Windows may use the physical memory allocated for BTS
by Alkanet. Alkanet modifies the MmPfnDatabase, which is
a data structure to manage physical addresses on Windows.
Windows understands the physical memory is unusable.

Alkanet also sets MSRs for BTS on VM.
[A32 DEBUGCTL inside VM can be set using Virtual-
Machine Contrel Structures (a.k.a. VMCS). On the other
hand, Alkanet sets physical 1A32_DS_AREA because
VMCS doesn't have an entry for the MSR. Branches in
kernel-mode are not necessary because our method’s goal is
to get the system call invoker. Alkanet sets BTS OFF OS
bit to record branches occurred in user-mode.

B. Branch fracing for each thread

BTS continues recording branches in the same buffer
even when a context switch has occurred. The BTS buffer
contains records from some processes or threads if BTS is
used simply. To get the control flow of malware, branch
records must be separated for each thread. Therefore, Alkanet
allocates the BTS buffer for each thread. When a context
switch has occurred on Windows, Alkanet switches the
buffers accordingly.

To implement this function, Alkanet must hook context
switches in Windows. Windows has the Processor Control
Region (ak.a. PCR) for each processor. PCR contains a
pointer which points to the object for the current thread.
Alkanet detects changes in the pointer by setting a hardware
breakpoint to it.

Alkanet saves the buffer for the previous thread and
restores the buffer for the next thread, when hooking a
thread switch on Windows. Alkanet manages the saved buffer
for each thread in the VMM memory space. The saved
buffer must be restored when the thread is dispatched again.
Windows assigns a unique thread ID (ak.a. TID) for each
thread regardless of its owner process. Basically, a thread is
identified by its TID. Therefore, Alkanet determines which
saved buffer should be restored, based on TID. Figure 3
shows the case that Windows switches the thread (TID:
0x540) to another (TID: Ox6¢e). Alkanet detects the switch
by changing the pointer inside PCR. The current BTS buffer
in VM is for the thread (TID: 0x540) at this time. Alkanet
copies the BTS buffer to a buffer for the thread. It restores
the BTS buffer from the saved buffer for the thread (TID:
Ox6cec).

The exception is the case which the thread has already
been terminated. It is possible that a dead thread and a
new thread have same TID because Windows often reuse
ownerless TIDs. Alkanet should confirm that the next thread
is identical with the thread which is at the time of having
saved the buffer, even if their thread ID are same. To do this,
Alkanet checks their owner process [Ds and the addresses of
their object,

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

(1) call

(6) call

(1) fron=C,_to=g call _
I(2) From=g, "fo=X call’
1(2) from=X, to=Y call!

1{4) from=Y, to=X ret :

(1) from=C, to=B call
(6) from=B, to=A call

C+B-A

[
2
L
1=
=]
=
L]

<
r

I+
7
los]

{6) from=B, to=A

Fig. 3. Generating the call hierarchy by BTS

V. GENERATING THE CALL HIERARCHY

Section [V gives how to get control flows of user programs
on Windows. Alkanet can identify the invoker by generating
a call hierarchy based on branch records when hooking a
system call. This section details a solution for the issue 3
described in Subsection [1-B.

Figure 3 illustrates our method with an example. The
example shows a control flow when func A has invoked a
system call. The BTS buffer in the example shows branches
by call or ret instructions in the flow, In fact, BTS records
all branches including branches from other instructions. In
addition, the example shows branch records with instructions
but branch instructions are not recorded in the BTS buffer.
In this example, func B is in a memory region occupied by
malware. The other functions are benign.

Alkanet generates a call hierarchy to identify the invoker
when hooking the system call. To do this, Alkanet extracts
branches by call instructions from all branch records in
the BTS buffer. The result is incomplete as a call hierarchy
because it contains calls which have already returned. In
Figure 3, there are already returned ca 1 1s: branch (2) from
func B to func X and branch (3) from func X to func Y.
These «alls are to be removed. They have corresponding
rets, which have already been executed. Alkanet matches
the ret branch to each returned «all in the BTS buffer
Figure 3 contains two pairs of such call and ret. One
of the pairs is branch (3) and branch (4) in a flow between
func X and func Y. Another is branch (2) and branch (5)
in a flow between func B and func X. A call hierarchy can
be generated based on remaining records: branch (1) from
func C to func B and branch (6) from func B to func A. The
hierarchy shows func A has been reached via B from C. It
is equivalent to the result of stack tracing.

Alkanet understands which system calls are invoked by
malware based on a generated call hierarchy. In the case of
Figure 3, func A is called by func B which is injected by
malware. Fune B is the root of branches to grayed functions.
Even if these graved functions themselves are not malicious,
they organize malicious behavior. Thus, Alkanet identifies
the invoker of a system call coming from func A as malware.

VI. GETTING THE MEMORY MAP

Section IV gives gefting a call hierarchy. Func B is
included inside a malicious region in the example of Figure 3.
In fact, to find the malicious region, Alkanet gets a memory

IMECS 2015

map of a process on Windows. This section gives how to get
the memory map and identify malicious codes. This method
is a solution for the issue 4 described in Subsection II-B.

Windows manages a memory map of a process using the
VAD tree [3]. VAD is a data structure which describes a
use of a memory range. A new VAD is created whenever
a process allocates new memory region and maps a file. A
VAD tree for each process is built by liking other VADs
which describes memory space for same process. The process
object has a pointer for the root node of the tree. The tree is
a self-balancing binary tree based on each VAD's range.

A VAD has the information of a memory range. For
example, VAD shows a mapped file in a memory range. It
also shows default attributes of pages in the range. Therefore,
Alkanet can obtain executable files included in the call
hierarchy reaching a system call by retrieving from the VAD
tree. If these files includes malicious files, the system call is
malicious. In addition, functions can be identified using an
export table and symbols of a executable file.

Most malware generates codes dynamically because
packed malware unpacks itself dynamically. The other reason
is malware often injects codes into other processes. In
these cases, malware allocales a memory region by invoking
NtAllocateVirtualMemory system call. Windows creates a
VAD for the region into the VAD tree of the malware process.
Malware modifies the page-protection attributes of the region
to writable and executable by NtProtectVirtualMemory sys-
tem call. Finally, generated codes are written to the region
by malware.

The region has certain characteristics. One is that a file is
not mapped on the region which is confirmed in the VAD
for the region. The region is also writable and dirty. These
attributes are contained by the PTEs which point to the
region. Malware may remove the attributes after generat-
ing codes. In this case, Alkanet can capture this behavior
because malware must invoke the NtProtectVirtualMemory
system call to modify the attributes. Thus, if a call hierarchy
contains addresses matching these characteristics, a system
call originates from generated codes.

VII. EVALUATION

To confirm the effectiveness of our method, we analyzed
a malware sample implemented as DLL using our prototype.
This section gives the result of this evaluation.

A. Evaluation method

We implemented not only our method but also traditional
stack tracing in the original Alkanet. This evaluation confirms
matching the result of the traditional method and a call
hierarchy generated by our method. Concretely speaking, our
prototype tries to match each return address in a stack to
each call branch based on the depth, demonstrating that
our method is effective for identifying a system call invoker.

In this regard, however, our evaluation prototype doesn’t
use BTINT. That is to say that the BTS buffer is treated as a
circular buffer. The older records are lost by overwriting the
newer ones. Therefore, we confirm the effectiveness of our
method within the range of only records in the BTS buffer.

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

B. Log entry

Figure 4 shows part of a log entry, which is described
in Subsection VII-C, only the StackTrace in a log entry of
system call tracing. The first line shows the information of a
thread stack at the time of having hooked a system call. The
following, from the second line, describes return addresses
and stack frames. A number in “[]” is the depth of a stack
frame.

The following information is shown for each return ad-
dress.

a) API: This item shows the name of an API which
contains the return address. The name is obtained from the
export table or symbols of a mapped file. The item also shows
the offset of the head of the APIL *-” is shown in the cases
without file mappings or symbols for the return address.

b) Writable: This item shows whether the page con-
taining the return address is writable or not.

¢) Dirry: This item shows whether the page containing
the return address is dirty or not.

d) VAD: This item shows the information of a VAD
containing the return address. Specifically, the first inside
item shows the range of the VAD. ImageMap is a flag which
shows whether the file is mapped. File shows a path of the
mapped file if ImageMap is 1.

In addition, “From” and “Valid” provide the result of
matching stack tracing and our method. “From” presents a
source address of the call branch corresponding with the
return address. “Valid” presents YES, NO or UNKNOWN
from the matching result. YES is shown if the return address
is equal to the “From” address and the length of the call
instruction. NO is shown in cases in which these values are
not equal. If branch records have been lost by the above-
mentioned reason, our method cannot generate enough call
hierarchy. UNKNOWN is shown in this case.

For example, the return address is 0x7c94d1fcinthe [00]
entry of Figure 4. It was obtained from 0x7ed24 in the
stack. “Writable: 0" shows that a page containing the return
address is not writable. The page is contained in a VAD
which manages a range of from 0x7¢940000 to 0x7¢9de000.
“ImageMap: 17 shows that a file is mapped in the range.
The file is “\WINDOWS\system32ntdll.dll”. The return
address is located in NtDelayExecution API, which is a
stub for NtDelayExecution system call in ntdll.dll. “From”
is 0x7c41d1fa. The return address is equal to the “From”
address and the instruction length. Thus, “Valid: YES” is
shown.

C. Result of a DLL sample

In this evaluation, we made rundll32.exe load a DLL
malware sample into its memory space. The sample is one of
the actual instances of malware recorded in CCC DATAset
2013, which is included in MWS Datasets 2014 [4]. We
confirm that system calls by malware can be extracted in
all logs. Here, we call the sample Conficker.dll based on the
name assigned by anti-virus software.

Figure 4 presents a part of a log in this evaluation. Entries
for stack frames [11] and [10] show that rundll32.exe
loaded Conficker.dll using LoadLibraryW. Entries [05] and
[04] show that the LdrpCalllnitRoutine APT called Con-
ficker.dll. Entries [041—[00] show that Conficker.dll called

IMECS 2015

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,

IMECS 2015, March 18 - 20, 2015, Hong Kong

StackTrace:
SP: 7ed24, StackBase: 86000, StackLimit: 74000

[0@] 7c94dlifc (API: NtDelayExecution+@xc, Writable: @, Dirty: 0,
File: "\WINDOWS\system32\ntdll.d11"}),

VAD: {7c940000--7c9dcod®, ImageMap: 1,
From: 7c¢94dlfa, Valid: YES, SP: 7ed24
7c8023f1 (API: SleepEx+9x51, Writable:
VAD: {7c800000--7c933000, ImageMap: 1,
From: 7c8023eb, Valid: YES, SP: 7ed2&
7c802455 (API: Sleep+@xf, Writable: 0,
VAD: {7c800000--7c933000, ImageMap: 1,
From: 7c80245@0, Valid: YES, BP: 7ed7c
10003898 (API: -, Writable: ©, Dirty: @,

[e1] o,
[e2]

(@3]

VAD: {10000000--10018000, ImageMap: 1, File:

From: 10003892, Valid: YES, BP: 7ed8c

[04] 1000401b (API: -, Writable: @, Dirty: @,

VAD: {10000000--10018000, ImageMap: 1, File: "\Cenficker.dl1l"});

From: 10004016, Valid: YES, BP: 7184
[es]

From: 7c941187, Valid: YES, BP: 7fla4
#5111 %

[10] 7c8@aeec (API: LoadlLibraryW+ox1l, Writable: @, Dirty: 9,
VAD: {7c800000--7c933000, ImageMap: 1, File: "\WINDOWS\system32\kernel3z.dl1"}),

From: -, Valid: UNKNOWN, BP: 7f888
[11] 1001792 (API: -, Writable: @, Dirty: 0,

VAD: {1000000--100b000, ImageMap: 1, File:

From: -, Valid: UNKNOWN, BP: 7f89c
SP1p

Fig. 4. A log entry of Conficker.dll

the Sleep APIL. NtDelayExecution system call was reached
via SleepEx API and NtDelayExecution stub from Sleep.
Thus, the system call originated from Conficker.dll.

Entries {(a) in Figure 4 are “Valid: YES”. The entry means
that each return address and From address in these entries
were matched correctly. On the other hand, “Valid” in entries
{b), which were located in the deeper positions in the stack,
are UNKNOWN because the BTS buffer was limited in this
evaluation. This issue can be solved by expanding the buffer
whenever a BTINT notification is triggered. Therefore, our
method using BTS can obtain the equivalent result to the
stack tracing, and effective for identifying the system call
invoker.

VIII. PERFORMANCE

To evaluate slowing down by BTS, we ran PCMark05
System Test Suite [5] on our implementation. The evalua-
tion PC has Intel Core 2 Quad Q6600 2.4GHz and 4 GB
memory. This evaluation compared the performance of the
four environments as follows.

e) Native: This environment doesn’t contain any VMM
or tracing methods. Windows runs directly on the evaluation
PC.

1) Alkaner {(Normal): This is the original Alkanet,
which does only system call tracing.

g) Alkaner (S§T): This is Alkanet with stack Iracing.

h) Alkanetr (BTS): This is our evaluation prototype
described in Section VII. It matches stack tracing and our
method using BTS whenever hooking system calls.

The overall score of Native, Alkanet (Normal) and Alkanet
(ST) were 5557, 4171 and 3266, respectively. A unit of
the score is PCMarks. The scores of Alkanet (Normal) and
Alkanet (ST) are normalized to 75 and 59 respectively. This
normalization is based on the score of Native as 100.

On the other hand, the overall score of Alkanet (BTS)
was not calculated because it failed Web Page Rendering
test, on which Internet Explorer is executed. We concluded

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

File: "\WINDOWS\system32\kernel3z.dl1"}),

Dirty: @,
File: "\WINDOWS\system32\kernel3z.dl1"}),

7¢94118a (API: LdrpCallInitRoutine+@dx14, Writable: @, Dirty: 0,
VAD: {7c940000--7c9dcov@, ImageMap: 1, File: "\WINDOWS\system32\ntdll.dl1"}),

Dirty: @,

S (1)

"\Conficker.dll "}&

et
—

)
"\WINDOWS\system32\rundl132.exe"}),

e

that the reason for failure was timeouts of inter-process
communication due to slowing down.

Alkanet (BTS) and Native were compared based on the
score for each test. On many tests, the scores of Alkanet
{(BTS) were 10% of the Native's, The exceptions were only
tests related with HDID. The causes of slowing down are the
overhead of BTS and the following.

1) Hooking a context switch and then saving and restoring

the BTS buffer.

2) Generating a call hierarchy and matching it with stack

tracing.

Cause 2) appears to bring large slow down, because
identifying a branch instruction on each source address of
a recorded branch. Our prototype copies branch records
between the BTS buifer and saved buffers to switch them.
This overhead is a large part of Cause 1). To remove the
overhead of memory copies, PTEs for the BTS buffer should
be modified to point to the next buffer again.

Just for reference, we evaluated the performance of vanilla
QEMU in the same way. Its scores for many tests were 10%
of the Native’s. As expected, the exceptions were only HDD
tests. Thus, the performance of our prototype is comparable
with that of QEMU.

IX. RELATED WORKS

kBouncer [6] mitigates Return-Oriented Programming
{a.k.a ROP) attacks by using LBR, which is one of the branch
trace facilities on Intel processor. It detects ROP by checking
a control flow recorded on LBR when hooking APIs. Its
goal is ROP attack detection or mitigation, but not malware
analysis. Our method is proposed as a practical use of BTS
for malware analysis. In addition, kBouncer is implemented
as a driver on Windows. It has no gaps between the tracer and
targets. Our method is implemented in VMM to be stealthy
for malware and in addition to recording branches occurred
on VM.

IMECS 2015

CXPInspector [7] provides a method for hooking inter-
modular calls, such as flows between the main executable
file and DLLs. CXPlInspector is implemented in VMM, and
modifies executable attributes of pages to implement the
hooks. CXPlInspector uses LBR to get information of the
hooked branch. Our method uses BTS to identify the system
call invoker by generating a call hierarchy.

X. DIscUSSIONS

A. Identifying a system call invoker

We confirmed that our method using BTS obtains an
equivalent result to stack tracing. Our method focuses at-
tention on which call and ret instructions are used in
a typical flow between functions. However, in fact, usages
of mstructions are not uniform, as with stack. call and
ret cannot be matched correctly in some programming
techniques or optimizations. We confirmed that our method
couldn’t obtain the expected call hierarchy in some samples.
Concretely speaking, one of the samples uses ROP and the
other sample contains shellcodes.

Our method cannot generate a call hierarchy in the fol-
lowing cases.

1) Callbacks from kernel.

2) Non-local exits.

3) Stack modifications.

4) Use of call instruction excluding function calls.
5) Use of ret instruction excluding function returns.
6) Function calls without a call instruction.

7) Function returns without a ret instruction.

The above-mentioned cases are categorized into two main
types. One of the two categories is the intentional stack mod-
ification. This category includes 1)-3). The other category is
the special usage of instructions. This category includes 4)—
7.

Case 1) often occurs on Windows in particular, Windows
provides several kinds of callbacks: Asynchronous Procedure
Calls (ak.a. APC), User-mode Callbacks and so on. In
this case, Windows makes a process execute arbitrary tasks
by modifying its stack. To return to the context before
the callback, the process uses specific APls or interrupts.
Windows modifies the process’s stack again to restore the
context. Thus, our method cannot match ca11 and ret on
the occasion when a callback has been made or returned.

Flows during any callbacks should be separated from
software’s original flows. To solve this issue, we focus
attention on flows between the kernel and a process in this
case. When a callback has occurred, Windows kernel returns
to specific user APIs such as KiUserApcDispatcher, KiUser-
CallbackDispatcher and so on. Occurrence of callbacks can
be detected by finding these returns from the kernel. On
the other hand, the way of returning from a callback varies
according to the kind of callback. For example, APC returns
by invoking the NtContinue system call. User-mode Callback
has several return methods: NtCallbackReturn system call,
XyCallbackReturn API and executing int 0x2d directly.
Separating callbacks from original flows requires dection of
these flows.

Cases 2)-7) are completed all in the user space, in contrast
with Case 1). In addition, there are various implementations

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

for them. It is difficult to detect these cases completely and
revise a call hierarchy more accurately.

Thus, a call hierarchy should be generated based not only
on call and ret instructions but also the source and
destination addresses. Our original goal is to make it possible
to identify system calls invoked by malware. Our method
does not always have to generate the complete and fine-
grained hierarchy to achieve this goal. We focus attention
in branches beyond the border of memory regions. The
regions are provided by VADs. In addition, if symbols are
provided for mapped executable files, ranges of functions can
be used as more fine-grained regions. Many Windows DLLs
provide symbols. Branches between malware regions and
the other regions are important in particular. Detecting the
branches makes it possible to identify system calls invoked
by malware.

B. Performance

BTS can record all occurring branches. On the other hand,
it has a large impact upon performance, as reported in Section
VII. The amount of recorded data increases explosively in
some cases. For example, the target program contains loops.
Therefore, it is difficult to analyze malware guickly using
BTS.

LBR is better suited for quick analysis than BTS because
kBouncer [6], described in Section 1X, has only a small
percent overhead. LBR can choose whether branches are
recorded based on the type of branch instructions. Proces-
sors since Haswell architecture have the EN CALLSTACK
option for LBR. This option ensures that LBR holds only
records for function calls which have not returmed yet. LBR
with EN_CALLSTACK as an alternative BTS is expected to
improve the speed of our proposed method. In this regard,
however, LBR has a limitation; the number of branch records
is limited by the number of MSRs for LBR. The depth of a
call hierarchy which can be generated is limited to sixteen at
a maximum because recent processors have sixteen MSRs for
LBR. This alternative method has also the issues described
in Subsection X-A. We must consider verifying results of
both this method and stack tracing.

C. Effective usage of BTS

BTS can capture all control flows of malware because
BTS has no limits on the number of branches which can
be recorded by enabling BTINT in particular. BTS is better
suited for more fine-grained analysis by this characteris-
tic. Concretely speaking, BTS is useful for detection and
classification methods based on similarity of control flow.
In addition, BTS helps to understand the internal structure
of malware. It is effective for specific malware which has
a tolerance against static analysis in particular, such as
instances in which the malware is packed complicatedly
or has a specific loader to load itself. BTS is useful for
understanding malware which has new features.

BTS, and also LBR, makes it possible to record branches
in physical machines. Emulators have been used to achieve
the same goal traditionally. This traditional method has a
weak point in malware analysis which is that it is easily
detectable by malware because emulators have a lot of
characteristics which physical machines do not have. BTS

IMECS 2015

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

does not have this weak point because it is in the physical
machine.

BTS can also help to implement capturing all executed
instructions like instruction tracing. Processor execules in-
structions between a branch and the next one sequentially.
The instructions can be obtained from the range determined
by records for these branches. Instruction tracing is imple-
mented by single step execution traditionally. BTS makes it
possible to implement the method by less frequent hooks.
Thus, BTS contributes to improve methods for fine-grained
analysis.

XI. CONCLUSION

In this paper, we describe a method for identifying system
call invokers by using BTS. Our method generates a call
hierarchy from branch records provided by BTS without
depending on the stack. We confirmed that our method could
obtain the result equal to one by stack tracing. Our method
is effective to identify system calls invoked by malware.

In this regard, however, some issues remain for generating
a call hierarchy because call instructions and ret instruc-
tions are not always matched. In addition, unfortunately, BTS
has no aptitude for quick analysis because it has a large
impact upon performance. BTS would be better off being
used for fine-grained analysis, such as taking advantage of
capturing all control flows.

In future work, we will focus attention in flows be-
tween malware regions and other regions to improve call
hierarchy generation. We also consider using LBR with
EN CALLSTACK option.

REFERENCES

[1] Y. Otsuki, E. Takimoto, T. Kashiyama, S. Saito, E. Cooper, and
K. Mouri, “Tracing malicious injected threads using alkanet malware
analyzer,” in JAENG Transactions on Engineering Technologies, ser.
Lecture Notes in Electrical Engineering. Springer Netherlands, 2014,
vol. 247, pp. 283299,

[2] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,
T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono,
8. Chiba, Y. Shinjo, and K. Kato, “BitVisor: a thin hypervisor for
enforcing ifo device security,” in Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virfual execution environ-
ments. ACM, 2009, pp. 121-130,

[3] B. Dolan-Gavitt, “The VAD tree: A process-eye view of physical
memory,” Digital Investigation, vol. 4, pp. 62-64, 2007.

[4] M. Akiyama, M. Kamizono, T. Matsuki, and M. Hatada, “Datasets
for anti-malware research ~mws datasets 2014~ in IPST Technical
Report Computer Security (CSEC), vol. 2014-CSEC-66, no. 19, jun
2014, pp. 1-7, Japanese.

[5] Futuremark Corporation, “Futuremark - Legacy Benchmarks,” http://
www.futuremark.com/benchmarks/legacy, 2014, accessad 2014-08-25.

[6] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent rop
exploit mitigation using indirect branch tracing” in Proceedings of
the 22nd USENIX Conference on Security, ser. SEC'13. USENIX
Association, 2013, pp. 447-462.

[7] C. Willems, R. Hund, and T. Holz, “Hypervisor-based, hardware-
assisted system monitoring,” in Virus Bulletin Conference, 2013,

ISBN: 978-988-19253-2-9 IMECS 2015
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

	camera_Page_1
	camera_Page_2
	camera_Page_3
	camera_Page_4
	camera_Page_5
	camera_Page_6
	camera_Page_7

