
Framework Enabling End-Users
to Maintain Web Applications
Masayuki Nii, Member, IAENG, Kenji Tei, and Fuyuki Ishikawa

Abstract—INTER-Mediator is a framework for developing
web applications and it can be applied to the IT systems of
small organizations that do not have large budgets. Web pages
based on INTER-Mediator can be synchronized with a database
simply by using declarative descriptions, and no imperative
code is required as far as their binding to a database goes.
Although software engineers should do the initial development,
end-users and web designers can be involved in later parts
of the development, especially in the maintenance phase be-
cause certain modifications can be handled within declarative
descriptions. In this paper, we show that this framework enables
end-users without specialized programming skills to perform
maintenance on web applications. We explain the mechanism
of binding and template processing and examine how easy it is
for web designers to learn how to use INTER-Mediator. If non-
programmers like end-users, designers, etc., can participate in
the system development process, the total cost can be reduced,
and small- and medium-sized organizations will have more
opportunities to introduce web-based business systems.

Index Terms—web, framework, database, declarative, con-
text.

I. INTRODUCTION

BUSINESS applications should use databases to store
data effectively. They also require web interfaces to en-

able access from various devices. Frameworks following the
model view controller (MVC) architecture are widely used
in web-based development [1], and programmers should take
part in development because all functions are implemented
in imperative descriptions. MVC is a flexible architecture
for implementing complex business logic. However, if an
application is fully built using imperative descriptions, any
modifications to it have to be done at the source code level.
This means end-users can’t make modifications themselves,
and they have to consign the whole process of development
to software engineers. As a result, end-users with a limited
budget might give up maintaining their software after the
initial development.

We propose a web-application framework called INTER-
Mediator [2] to enable end-users in business to maintain their
software. If end-users and web designers can take up some
of the development tasks, it becomes possible to cut costs. To
involve non-programmers, INTER-Mediator uses declarative
descriptions to create web pages connected to databases. We
suppose that software engineers would handle the design of
the database schema and develop it from scratch. On the

Manuscript received December 30, 2014.
M. Nii is a Ph.D. Student at the Graduate School of Information Systems,

the University of Electro-Communications, Chofu, Tokyo, Japan. e-mail:
nii@msyk.net

Dr. Tei is an Assistant Professor at National Institute of Informatics,
Chiyoda-ku, Tokyo, Japan. e-mail: tei@nii.ac.jp

Dr. Ishikawa is an Associate Professor at National Institute of Infor-
matics and a Visiting Associate Professor at the University of Electro-
Communications. e-mail: f-ishikawa@nii.ac.jp

other hand, end-users whoa are non-programmers can take
part in the maintenance process.

A declarative description is relatively easier for end-users
to understand than an imperative one. Six barriers to learning
have been identified as affecting imperative programming
[3]. Designing is the biggest barrier, and it means that the
imperative programming requires the programmer to build
the right algorithm. For example, if a list of queried records is
to be shown, a program that repeats for every queried record
should be described. Otherwise, if the declarative description
has the possibility to do the job, a sophisticated enough
framework could produce the same algorithm automatically.
Declarative descriptions eliminate the need for writing any
kind of repeating program with a programming language,
thereby lowering the design barrier and making the task
easier for end-users to understand.

We envision using INTER-Mediator in small- and
medium-sized companies, or in sections of a larger enterprise
as a way of reducing total costs. We further assume that
the staff at these companies would use Microsoft Excel to
create documents and send them to their colleagues by email.
This state of affairs would cause confusion sooner or later,
because they wouldn’t be able to easily identify which file is
the latest among the files scattered amongst mail boxes, file
servers, and local folders. INTER-Mediator is an effective
replacement for the helter-skelter of Excel tasks.

INTER-Mediator has sufficient features for developing a
variety of business systems, and it has been launched on the
Japanese market and used in schedule management systems
for hospitals, print order systems for on-demand printing,
and communication systems among construction companies.
A hosting service company in Japan has also developed a
converter from a FileMaker database to web pages based on
INTER-Mediator.

The remainder of this paper explains how INTER-
Mediator can help end-users to perform maintenance. Section
2 summarizes how to create web pages with this framework.
The suitability of the framework to making system modifi-
cations is discussed in section 3. The binding and repeating
mechanism is explained in section 4. Section 5 described an
experiment we conducted to see if INTER-Mediator is easy
to learn and use. Related work is discussed in section 6.
Section 7 is a conclusion.

II. INTER-MEDIATOR AT A GLANCE

INTER-Mediator is a web application framework for
building web pages that are bound to databases with declar-
ative descriptions. The first release was at the start of
2010, and it’s distributed with an MIT License from GitHub
[4]. The supported database engines are PDO (PHP Data
Object)-supported relational databases such as MySQL and

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

PostgeSQL, and FileMaker Server. The web server requires
PHP Ver.5.2 or over. The supported web browsers are based
on HTML5, and the minimum version of Internet Explorer
is Ver.81. The function set of web application from the end-
user’s view point consists of 31 items [5]. INTER-Mediator
supports almost all of them (the one regarding sessions is
not supported yet because the alternative is available) and
the use of declarative descriptions covers 25 items in them.

A. Development Example

To explain how to use INTER-Mediator and how it works,
we present a sample application2 and its sources in this
section. The sample application is a simple asset management
system that records assets and updates their lending logs. The
schema for the sample has three entities: “asset,” “lent” and
“staff.”

Figure 1 is the asset list page. The assets are stored in
multiple records, and the table on the page has multiple
rows associated with each record. As shown in the figure,
INTER-Mediator not only shows the data in the database, but
also generates elements for each queried record and repeats
records.

Figure 1. Asset List of the Sample Application

Figure 2 is the detailed page for each asset. It can contain
any kind of form element. If the user edits the string of
the text field and moves from one element to another by
pressing the tab key, the edited string is sent to the database
and the relevant field is updated. Moreover, this page has a
one-to-many relationship with the “asset” and “lent” tables.
Of course, all lent log items are for the asset shown on the
page.

Figure 2. Details of the Asset

The “Return Today” button can set the returned date of
the last item in the log to today, and a JavaScript program is
required for it. Otherwise, showing the data in the database

1Ver.9 or above are required for full support.
2All sources and schema definitions are distributed within the repository.

and updating with editing by the user (i.e. binding), repeating
records within the table, showing associated records with
their relationship, making buttons to add and delete a record,
and the master/detail style user interface can be accomplished
with declarative descriptions.

B. What Do We Need in Order to Create a Web Page?
Developing a web application with INTER-Mediator re-

quires a “Database,” “Page File” and “Definition File.” The
“Database” should be set up with a valid schema. The “Page
File” is described in HTML, and it’s a template of the web
page. Many web frameworks use page templates because
they separate the presentation layer from a logical layer
[6]. The Definition File includes information to access the
database in a declarative description. The Definition File is
described using PHP’s array expressions. Although PHP is an
imperative description, the Definition File only requires pre-
defined key’s strings and their values. Moreover, no control
descriptions such as repeating and conditions are required.
Thus, the Definition File is mostly declarative. Moreover, a
Definition File Editor that works on web browsers has been
developed. As a result, developers can create a file without
having to use an imperative style.

1) Definition File: Listing 1 shows part of the defini-
tion file named asset_context.php in PHP language. The
Definition File should contain one IM_Entry function and
its parameters, which are described in arrays and have
information to work in a web application. The first array that
starts from the second line is the “Context” of the database
accesses. For example, the “view” key shows accesses to the
“asset” table, and the “sort” key sets the “purchase” field for
sorting records. The Context is identical to the input from
and output to the database.

Listing 1. Example of Definition File (asset_context.php)
IM_Entry(array(

array(//The Context for Asset List
'name'=>'asset', //Referencing name from Page File
'view'=>'asset', //The entity name in database
'key'=>'asset_id', //The primary key field
'repeat-control'=>'insert delete', //Adding Insert/

Delete buttons
'navi-control'=>'master-hide', //Master/Detail UI
'records'=>5, //Show every 5 records
'paging'=>true, //Pagination activate
'sort'=>array(//Sorting fields and directions

array('field'=>'purchase', 'direction'=>'ASC'),),),
array(//The Context for Details of Asset

'name' => 'assetdetail', //Referencing name
'view'=>'asset', //The entity name for querying to

database
'table' => 'asset', //The entity name for updating to

database
'navi-control' => 'detail-top', //Master/Detail UI

[...omitted...]
),),
NULL,
array(/* Connection Information, omitted */)

);

2) Page File: The Page File for the example is Listing 2,
and the following explanations refer to the circled numbers
in the source. The Page File is a page template described as a
pure HTML5 source. A number of popular web frameworks
have their own template language including special tags, and
sometimes they prevent users from looking at their details.
INTER-Mediator’s Page File conforms to HTML5, and there
is nothing to prevent it from being shown on browsers.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Listing 2. Example of Page File
<html>
<head>

1⃝<script src="asset_contexts.php"></script>
</head>
<body onload="INTERMediator.construct()"> 3⃝
<div id="IM_NAVIGATOR"></div> 4⃝
<table> #Asset List with using ’asset’ context.
<thead>[... omitted ...]</thead>
<tbody>

<tr>
<td> 5⃝</td>
2⃝<td data-im="asset@category"></td>
<td data-im="asset@name"></td>
<td data-im="asset@manifacture"></td>
<td data-im="asset@productinfo"></td>
<td data-im="asset@purchase"></td>
<td data-im="asset@discard"></td>
<td></td>

</tr>
</tbody>

</table>
<table> #Asset Details with using ’assetdetail’ context.
<tbody><tr>

[... omitted ...]
<th>Purchased</th>
<td> 6⃝<input type="text"

data-im="assetdetail@purchase"/></td>
[... omitted ...]

</tr></tbody>
</table>
</body>
</html>

The sample has two pages, but these pages are contained in
only one HTML file, meaning they are essentially a single-
page application. 1⃝ The element tagged with SCRIPT to
load the Definition File (Listing 1) should be described in
the HEAD part. textcircled2 Some elements have a “data-im”
attribute like “asset@name.” This value indicates that the ele-
ment binds with the “category” field from the “asset” context.
3⃝ The JavaScript statement “INTERMediator.construct()”

starts to generate the page. This statement is imperative, but
it can be the same code regardless of any applications.

4⃝ is a DIV element with an “id” attribute having the
value “IM_NAVIGATOR.” This element replaces pagination
controls such as “Prev” and “Next” buttons. The “true” value
associated with the key “paging” in Listing 1 is required to
make these replacements. The asset list of Figure 1 has a
“Delete” button on each line and an “Insert” button in the
pagination control. The value associated with the “repeat-
control” key lets the framework add these buttons.

The “navi-control” key in a Context directs the page to
the Master/Detail style page. The Master by “asset” Context
area automatically generates buttons to navigate the detail
page, and 5⃝ is the space for them. 6⃝The Detail area by
“assetdetail” Context generates the button to back the Master
list.

C. INTER-Mediator is Simple

For the sake of comparison, we tried to develop the
same application of the section II-A’s example by using
the PHP-based MVC framework “CodeIgniter [7].” Table I
compares the metrics of INTER-Mediator and CodeIgniter.
Every file was formatted using the same IDE tool, and
comments weren’t counted. CSS files are commonly used
in both frameworks and weren’t included in the metrics. The
table shows that INTER-Mediator enables users to develop
using fewer files and shorter lines than CodeIgniter permits.

Their parts for displaying the data from the database mostly
have the same metrics. Whereas INTER-Mediator does not
need code for updating the database, CodeIgniter requires
users to write php-based imperative code for Controller and
Model.

TABLE I
COMPARISON USING METRICS FOR THE SAME FEATURED APPLICATION

INTER-Mediator CodeIgniter
Page File (HTML file)

• 1 file, 109 lines
• (JavaScript is 14 lines)

Definition File (PHP file)
• 1 file, 72 lines

PHP files mainly described in HTML
for View

• 2 files, a total of 130 lines
• (No JavaScript codes)

PHP files for Controller and Model
• 2 files, a total of 216 lines

Edited configuration files
• 2 files, a total of 6 lines

Total: 2 files, 181 lines Total: 6 files, 352 lines

D. Development Style

The Page File in INTER-Mediator is a kind of prototype
web page, and it’s relevant to Mockup Driven Development
(MDD) [8], a practice of agile development [9]. MDD means
that a mockup of the HTML-based user interface is created
before the implementation. The mockup helps to clarify
the user’s requirements [10]. The HTML mockup does not
require specialized skills to create, so it can be made by end-
users. INTER-Mediator’s development style thus conforms to
Mockup Driven Development.

III. SYSTEM MODIFICATIONS IN INTER-MEDIATOR

Although INTER-Mediator enables development with
declarative descriptions, engineers should handle some of the
tasks in the development process such as building the schema
with domain analysis, improving the UIs with JavaScript
code and adding server-side programs. As far as Page Files
and Definition Files go, end-users can modify them since
they are described in a declarative way. Some aspects of the
maintenance task are just modifying the developed files. This
means end-users can perform certain maintenance tasks on
the INTER-Mediator-based application if they can be done
within declarative descriptions. In this section, we discuss
the range of modifications that can be made by end-users.

A. Categorizing System Modifications

Table II categorizes the modification tasks that can be
made to web applications that are connected to a database. In
INTER-Mediator-based development, 1⃝～ 3⃝ are generally
done in a declarative way. In contrast, 4⃝～ 6⃝ should be
done by engineers.

B. Modifications to Page Elements
1⃝ in Table II usually consists of minor modifications

such as editing HTML code in a Page File. This kind
of modification can be done declaratively in most other
frameworks.

Suppose that end-users want to select the “Category” from
a pop-up menu. To accomplish this, the Page File is changed

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

TABLE II
RANGE OF WEB SYSTEM MODIFICATIONS

Occasions Examples
1⃝ Page Elements • Order of elements, Disapper them

• Add a field already in database
• Change the color of characters

2⃝ Request to • Modify the query criteria
Database • Modify the sort condition

• Add the button to create and delete
3⃝ Response to • Change the decimal place from 2 to 3

Single Field • Add constant strings before/after the data
• Calculated property

4⃝ UI Customize • Button with a special procedure
• Update any elements

5⃝ Database • Send mail after create record
Response • Aggregation unsupported by database

6⃝ Modify • Create a new view
Schema • Create a table or a field

* Create • Create from scratch
New Page • After copying an existing page, apply 1⃝- 6⃝

as in Listing 3, and the pop-up menu will be replaced with
a text field. If only HTML codes are placed on it, the initial
selection is not relevant to the real data of the “category”
field. INTER-Mediator can bind the SELECT element to the
field, and initially set a value corresponding to the field data.
The field data will be updated after the user selects an item.

Listing 3. Modification to the Page File(1)
/******* Before ******/
<input data-im="assetdetail@category" />
/******* After ******/
<select data-im="assetdetail@category">
<option value="Indivisual">Indivisual</option>
<option value="Shared">Shared</option>

</select>

Minor modifications can be done within the HTML tem-
plate for any web application framework. If the modification
requires more to it than simply changing the HTML descrip-
tions, one should seek out the relevant code associated with
the modification, even if the modification is a small one.
The relevant code could be scattered among the controllers
or the views. For example, if another field needs to be added
to the page, it might require not only an HTML page to be
added but also imperative modifications of the controller and
model. Thus, we need to understand the whole code of the
application. In contrast, INTER-Mediator can handle these
modifications within the Page File.

C. Modification of Request to Databases

An example of 2⃝ in Table II is to narrow down the query
results to the ones showing non-discarded assets instead
of everything. To do this, a new “asseteffect” Context is
prepared, as shown in Listing 4. It is duplicated from the
already existing “asset” Context (Listing 1), and the value
associated with the key “name” is modified. Moreover, a
value associated with the key “query” is added, and the query
condition means the “discard” field is less than “1990-1-1.”
This field should be blank if the asset isn’t discarded, and
this condition is equivalent to “the field is blank.”

Other frameworks require one to make modifications to
the SQL statement and/or imperative codes of the model or
controller. In contrast, INTER-Mediator allows one to modify
requests to the database in a declarative way.

Listing 4. Modification to the Definition File(1)
array(

'name' => 'asseteffect',
'view' => 'asset',
'sort' => array(

array('field' => 'purchase',
'direction' => 'ASC'),

),
'query' => array(

array('field' => 'discard',
'operator' => '<',
'value' => '1990-1-1'),

),
),

D. Modification of Responses

Table II has two types of modification to responses, which
are 3⃝ for a single field and 5⃝ for a single record or multiple
records. 5⃝ requires an imperative description.

1) Formatting Field Value: An example of 3⃝ is format-
ting dates. MySQL returns the date as an ISO8601 style
string like “2014-07-31.” The aim of the modification is to
present a date with a more natural style, e.g., “2014/7/31.”
Listing 5 shows the results of the modification. The array
associated with the key “formatter” is inserted in the right
place of the Definition File. The array has two elements: the
first one means that the “purchase” field of the “asset” table
should be converted into a “%y/%m/%d” style string with
the MySQLDateTime class. Reverse conversion for updating
field data is also supported.

Listing 5. Modification to the Definition File(2)
array(

[... omitted ...]
'formatter' => array(

array('field' => 'asset@purchase',
'converter-class' => 'MySQLDateTime',
'parameter' => '%y/%m/%d'),

array('field' => 'asset@discard',
'converter-class' => 'MySQLDateTime'),

),

If we want to do the same thing in other frameworks,
we have to modify the imperative code. INTER-Mediator
has a bi-directional conversion feature for date, number, and
HTML strings. As for number formatting, it supports decimal
digits and the thousands separator.

2) Calculated Property: Another example of 3⃝ is calcu-
lated property which is a read-only field in a record and
has a value of calculated from other fields of the same
record and/or other records. Listing 6 shows the definition
of calculated properties. The array associated with the key
“calculation” has an array with “field” and “expression”
keys. After added these descriptions, for example, the ele-
ment “<div data-im="assetdatail@avglength"></div>” can
be placed in the Page File, and it shows the value from the
expression which is the average of other field values.

In other frameworks, usually additional properties should
be defined using imperative descriptions. In contrast, INTER-
Mediator can define them in declarative descriptions. More-
over not only defining a new property, it can assign the
calculated value to attributes of an element.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Listing 6. Modification to the Definition File(3)
array(
'name' => 'assetdetail',

[...omitted...]
'calculation' => array(// Added definitions

array("field" => "avglength",
// "avglength" can be used like a field

"expression" => "average(lent@datelength)"),
) // Calculate the average of "datalength" fields

// in the "lent" context
),
array(
'name' => 'lent',

[...omitted...]
'calculation' => array(// Added definitions

array("field" => "datelength",
// "datelength" can be used like a field

"expression" => "if(backdate = '', '',
date(backdate) - date(lentdate))"),

) // Calculate the difference between 2 date
// fields, "if" and "date" are functions.

),

E. Maintenance by End-Users

The above discussion shows that INTER-Mediator handles
modifications 1⃝- 3⃝ in a declarative way, whereas other
frameworks require the imperative way. INTER-Mediator can
thus help end-users in performing maintenance tasks.

IV. BINDING AND PAGE GENERATION

INTER-Mediator generates a web page from the Page File
as a template. This process is run on the client-side. In regard
to the template processing, how it binds the node to the
database and how it repeatedly generates nodes from a record
set are important considerations.

A. Binding for Automatic Updating

A template process is used to show the data from the field
of the table in the database on an element of the Page File.
The value of the “data-im” attribute in an element specifies
the table and the field of the database. When the framework
generates the web page, it refers to the “data-im” attributes
and places the data from the field into the value or the
attribute of the element. At the same time, the framework
stores the key field value to identify which record is the
origin of the data.

If the user edits the data in the binding elements, the
framework can identify the record by using the pre-stored key
field value. Before updating the database, the current value
is queried and checked to see if it’s the same as the previous
value. This means the optimistic lock mechanism works
internally. After that the framework updates the database with
the edited value in the element.

The binding works on the foundation of the client-cached
model objects that is the proxy of the queried data, and
it’s called the “Context Model.” This contains the key field
value, field data, and bound nodes. If the user changes the
value in a bound node, the framework notifies to the model
object and updates other bound nodes with the updated value.
This synchronization works not only in one client but also in
multiple clients with the WebSocket technology by Pusher
[11].

B. Repeating and Relationship

1) Repeating for Record Set: Usually, multiple records are
returned as the result of a query, and they should be presented
in repeating elements such as in a table. The upper part of
Figure 3 illustrates how the INTER-Mediator generates the
rows of a table for displaying queried records.

Table (TBODY-Enclosure)

Row (TR-Repeater)

Table (TBODY-Enclosure)

Row (TR-Repeater)

indivisualChromenote ...17

MacBook Air indivisual16 ...

name

...

category

indivisualVAIO type A[2]

asset_id ...

15

VAIO type A[2] ...indivisual15

Table (TBODY-Enclosure)

Row (TR-Repeater)

...

2014-12-12

15 2014-12-25

15 Jon Doe

...

asset_id

...

lentdate staff

Jane Doe

Row (TR-Repeater)

Row (TR-Repeater)

...16 indivisualMacBook Air

17 indivisual ...Chromenote

Table (TBODY-Enclosure)

Row (TR-Repeater)

...15 indivisualVAIO type A[2]

Row (TR-Repeater)

Row (TR-Repeater)

...indivisual16 MacBook Air

17 indivisual ...Chromenote

Table (TBODY-Enclosure)

Row (TR-Repeater)
...15 Jon Doe2014-12-12

Row (TR-Repeater)
15 2014-12-25 Jane Doe ...

The result of query
from “asset” table

The Enclosure/Repeater in the Page File

Template
Processing

Template
Processing

The Enclosure/Repeater
in the cell of the table

The result of query with
condition “asset_id=15”
from “lent” table

Figure 3. Template Process Involving Relationship

When INTER-Mediator generates a web page, it first
traverses the nodes from the top BODY tag’s element and
seeks elements having the “data-im” attribute (1⃝ of Listing
7). After that, it identifies the TR tagged node (2⃝) nearest
the parent, and it’s called the “Repeater.” The parent of the
Repeater (3⃝) is the TBODY tagged element, and it’s called
the “Enclosure.”

Listing 7. Part of Page File with Recursive Enclosure/Repeater Pairs
<table>

3⃝<tbody> ⇐ Outer Enclosure
2⃝<tr> ⇐ Outer Repeater
<th>Manufacturer</th>
<td> 1⃝<input type="text"

data-im="assetdetail@manifacture"/></td>
[...ommited...]

<td colspan="4">
<table><thead><tr>....</tr></thead>

4⃝<tbody> ⇐ Inner Enclosure
5⃝<tr> ⇐ Inner Repeater

<td data-im="lent@lentdate"></td>
<td data-im="lent@backdate"></td>

[...ommited...]
</tr> ⇐ End of Inner Repeater
</tbody> ⇐ End of Inner Enclosure

</table>
</td>

</tr> ⇐ End of Outer Repeater
</tbody> ⇐ End of Outer Enclosure

</table>

After the Enclosure/Repeater pair is identified, the frame-
work gathers elements having the “data-im” attribute under
the Repeater, decides the Context name from the “data-
im” attributes, accesses the database by referring to the
specifications of the Context, and obtains the queried records.
The framework removes the Repeater and stores it in a
variable before the merging process. After that, it merges one

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

record into a copy of the stored Repeater with matching the
“data-im” attribute value and the field name in the record, and
the merged Repeater is set to the child node of the Enclosure.
This merging process is repeated for each record in queried
ones.

As shown in Listing 7, the TBODY/TR tagged elements
don’t have any additional information. In this case, the
framework automatically detects the Enclosure/Repeater pair,
and the developer doesn’t have to identify which ones form
the pair. Other pairs like UL/LI, OL/LI, SELECT/OPTION
and a special class of DIV/SPAN are recognizable as Enclo-
sure/Repeater pairs.

2) Relationship: INTER-Mediator supports hierarchical
Enclosure/Repeater pairs. If the framework detects another
Enclosure/Repeater (4⃝ 5⃝ of Listing 7) within a Repeater
(2⃝), these called “inner” and “outer” Enclosure/Repeater
pairs. After the outer Repeater processed for one record, the
same process of gathering, accessing and merging for the
inner Enclosure/Repeater runs. This process runs recursively.

The arrow from the upper part to the lower part of Figure
3 means any cell of the table has another TABLE tagged
element. Suppose the inner table contains elements having
a “data-im” attribute, inner Enclosure/Repeater generates
bound elements for records as shown in the lower part
of Figure 3. When the framework queries the database to
see if there are inner Enclosure/Repeater pairs, it adds the
relationship information in the Definition File to the query
condition, and the associated records of the parent record
appear in the inner table.

As described above, the simplest Page File simply involves
adding “data-im” attributes for binding; it doesn’t require a
special description for repeating and relationship in a Page
File. INTER-Mediator can generate a page corresponding to
the structured data in the database by using simple declarative
descriptions.

C. Algorithm of Page Generation

INTER-Mediator can generate a web page from the Page
File with using queried data from the database. The algorithm
of the page generating process is described in Algorithm 1.
There are 4 procedures, and the underlined statements are
calling any of these procedures. Other capitalized words in
statements are variables. The PageConstruct procedure would
be called just after loaded the Page File. The algorithm
is implemented by using JavaScript. The contents of the
Page File is treated as the DOM objects, on the other hand,
commonly-used frameworks treat the template as strings.

The term “linked node” means the HTML element which
has the valid “data-im” attribute. The “context model” is a
local cache of the queried data and already explained at IV-A.
The dotted expression like “ContextModel.repeaters” means
an object and its property. The property referencing with []
means the variable variables, i.e. the value of variable turns
into the property name. The ← assigns the right value to
the left variable. The ⇐ adds the right object to the left
collection. The ⇏ removes the right object from the left
collection.

The SeekEnclosure and ExpandRepeaters procedures re-
cursively call each other. This realizes hierarchical Enclo-
sure/Repeater pairs to bind to the associated records that are

Algorithm 1 Page Generation
procedure PAGECONSTRUCT

SeekEnclosure(node of body tag, NULL)
end procedure

procedure SEEKENCLOSURE(Node, Record)
if Node is an enclosure then

ExpandEnclosure(node, record)
else

for each ChildNode in child nodes of Node do
SeekEnclosure(ChildNode, Record)

end for
end if

end procedure

procedure EXPANDENCLOSURE(EnclosureNode, Record)
Repeaters ← copy of repeaters in EnclosureNode
EnclosureNode ⇏ Repeaters
LinkedNodes ← collect linked nodes in Repeaters
ContextDef ← decide context from LinkedNodes
if ContextDef == NULL /* in case of can’t decide context */ then

for each Repeater in Repeaters do
EnclosureNode ⇐ Repeater
SeekEnclosure(Repeater, Record)

end for
else

ContextModel ← generate context model for ContextDef
ContextModel.repeaters ← Repeaters
if Record != NULL then

ContextDef.additionalCondition
⇐ Record.keyValue and ContextDef.relationship

end if
RecordSet ← query result using ContextDef
ExpandRepeaters(ContextModel, EnclosureNode, RecordSet)

end if
end procedure

procedure EXPANDREPEATERS(
ContextModel, EnclosureNode, RecordSet)

if count of RecordSet == 0 then
EnclosureNode ⇐ node for no record

else
for each Record in RecordSet do

KeyFieldValue
← concatenate Record.keyField and Record.keyValue

Repeaters ← copy of ContextModel.repeaters
LinkedNodes ← array of linked nodes in Repeaters
for each LinkedNode in LinkedNodes do

LinkedNode.id ← unique numbered string
TargetField ← target field of LinkedNode
TargetValue ← Record.[TargetField]
LinkedNode ⇐ TargeValue

(e.g. set to the value attribute)
ContextModel.store.[KeyFieldValue].[TargetField]

← TargetValue
ContextModel.binding.[KeyFieldValue].[TargetField]

⇐ LinkedNode.id
end for
for each Repeater in Repeaters do

EnclosureNode ⇐ Repeater
Repeater.id ← unique numbered string
ContextModel.binding,[KeyFieldValue].repeaters

⇐ Repeater.id
SeekEnclosure(Repeater, Record)

end for
end for

end if
end procedure

queried in regards of the context definition. In other words,
the single Page File can show the data from multiple tables
simultaneously, and they can associate with each other based
on the relationship if the context definition contains it.

V. EXPERIMENTAL EVALUATION

INTER-Mediator aims to let web applications be main-
tained with declarative descriptions. The question is thus
“can end-users easily learn INTER-Mediator?” To answer
it, we ran an experiment in which participants studied how
to conduct development with INTER-Mediator.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

0%#20%#40%#60%#80%#100%#

S2#
S12#
S7#
S3#
S5#
S1#
S10#
S11#
S9#
S6#
S4#
S8#

Scores� Subjects�

S2#

S3#

S10#

Programming#Experiences#of#subjects�

JavaScript#+#PHP�

JavaScript�

None�

(NoneG>)�

Figure 4. Score of Examination for each Subject

0" 15" 30" 45" 60" 75" 90" 105" 120" 135" 150" 165" 180"

S2"
S12"
S7"
S3"
S5"
S1"
S10"
S11"
S9"
S6"
S4"
S8"

The$$AmountofTime$(minutes)�Subjects�

The"Time"for"the"examina9on"(minutes)"

The"Time"for"the"study"(minutes)"

Figure 5. The Amount of Time for each Subject

A. Procedure of the Experiment
The experiment consisted of a study session followed by

an examination. The study session was self-paced online
learning about INTER-Mediator. Subjects were encouraged
to read the web pages to learn how to create web pages
connected to databases. There were ten web pages described
in Japanese (a total of 25,000 Japanese characters). The
content focused on the declarative descriptions; that is, some
of the features requiring imperative descriptions weren’t
included. The time spent reading every page was measured.

Twelve subjects participated in the experiment, and at the
time, they were working as a web designer, a coder, and
web design professionals. They weren’t end-users in straight-
forward sense, but like most end-users, they weren’t skilled
at writing imperative languages of computer programming.
These web workers nonetheless had skill in HTML/CSS, and
this is why the examination could focus on INTER-Mediator
specific matters.

After they had finished studying, they took an online
examination. It had eight questions. Five questions with 45
blanks were about INTER-Mediator related issues, and non
of them were multiple choice. The time from the start to
the end of answering was measured for each question. The
examination was not easy for novices, and it was not similar
to the study pages. Scores were scattered from very low to
very high.

B. Experiment Results
Figure 4 shows the examination scores of each subject,

and Figure 5 shows the amount of time for the study and the
examination. The lower scoring 4 subjects (Group A; S9, S6,
S4 and S8) scored under 15% and completed the examination
within 15 minutes. The other subjects (Group B) with high
scores spent 100 to 170 minutes in total studying the pages
and taking the examination. Group A apparently abandoned
their attempt to lean and answer. Group B’s participants suc-
ceeding in learning, but their level of understanding varied.
These results indicate that although some web workers would
likely fail to learn INTER-Mediator, a 2 hour session would
be sufficiently long for most to gain an understanding of the
framework.

We asked them how often they used JavaScript and PHP in
the survey after the examination. As far as JavaScript went,
their responses included descriptions of short programs to
accomplish their design work. Some participants had expe-
rience with PHP code, but their experience was only with

modifications within the CMS application. In Group B, those
with programming experience tended to get higher scores.
Generally speaking, motivated designers tend to acquire
skills beyond their speciality, and such skills often include
programming. Moreover Group A had 2 participants who
could program, and it’s not always true that the programming
skill helps to learn INTER-Mediator.

The survey after the examination shows that having knowl-
edge about databases improved scores. One participant in
Group A said he had no knowledge about databases, a
middle score participant in Group B had the experience
with Microsoft Access, and high scored participants dis-
cussed about relationship. INTER-Mediator is based on both
web and database technologies. Obviously, the knowledge
about HTML helps to understand, but the knowledge of the
database is also important.

VI. RELATED WORK

INTER-Mediator is not the only frameworks to use declar-
ative descriptions. WebML [12] is a web site modeling
language, and a model based development system using
WebML has been proposed [13], [14]. WebML can specify
the data structures used throughout the site, and it is system-
atic. So it requires the modeling skill with the language. In
contrast, INTER-Mediator handles the HTML page directly,
and it’s easier to understand for end-users. Hilda [15], [16]
supports declarative language and can separate the logic
and presentation. It is a suitable architecture for developing
web applications, but requires the same skills of software
engineers. INTER-Mediator is more suitable than it as far as
an end-user tool goes because of its HTML and key-value
style descriptions.

Some frameworks aimed at simple development enable
end-user development [17]. One example is XFormsDB
[18]; it uses standardized XForms and XQuery. By contrast,
INTER-Mediator uses HTML template; it’s a simpler and
more direct way to create a web page.

Several web application frameworks have template archi-
tectures to extend HTML. ColdFusion [19] is a popular one.
Generally speaking, a web page connected to a database can
be easily created with a small amount of HTML, but updating
it requires tricky development. Moreover, some products
don’t have sufficient extensibility. ColdFusion has mostly
imperative HTML extensions and improved backend pro-
cessing. INTER-Mediator, on the other hand, doesn’t extend

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

the HTML standard, and it updates databases automatically
through the binding feature.

Over half of INTER-Mediator is in JavaScript, and it
creates web pages from HTML templates and the data from
a database on the client side. Nowadays, JavaScript-based
frameworks, for example, AngularJS [20] and Knockout [21],
are evolving into “front-end frameworks.” They are basically
client-side frameworks, works with HTML descriptions and
little imperative code. INTER-Mediator has both server and
client components, and most of its features can be used
in declarative descriptions. INTER-Mediator has the Enclo-
sure/Repeater feature and can handle it recursively in just
one HTML page. In contrast, other frameworks require users
to define another HTML page template for the inside of
repeating elements [22], [23].

Some developers have integrated INTER-Mediator with
other PHP frameworks [24], [25], [26], including CakePHP
[27], CodeIgniter and Yii [28]. They are using INTER-
Mediator as a View layer because it can describe page
templates simply in HTML. The controller and model are
composed of PHP frameworks.

VII. CONCLUSIONS

INTER-Mediator enables a database-driven web applica-
tion to be maintained with declarative descriptions. The user
should make an HTML5 description and access information
can be edited by using a special editor application. The
descriptions are not imperative, so end-users and designers
can modify them. As a result, end-users and designers can
be involved in the development of the web application,
especially in the maintenance phase. The foundation for
building a database-driven web page with just a declarative
description is the binding and Enclosure/Repeater mech-
anism. Our experiment indicated that that end-users and
designers could learn the knowledge needed to create and
modify web applications with INTER-Mediator in a short
period of time.

IT is beneficial in a competitive world [29]. However,
current IT systems are extremely costly because most parts of
the development have to be handled by software engineers.
By involving end-users, the cost balance of IT can be
changed, and small organizations with limited budgets can
have more opportunities to develop their own IT systems.

REFERENCES

[1] A. Leff and J. T. Rayfield, “Web-Application Development Using
the Model/View/Controller Design Pattern,” in Proceedings of the
5th IEEE International Conference on Enterprise Distributed Object
Computing, ser. EDOC ’01, 2001, pp. 118–.

[2] M. Nii. INTER-Mediator. [Online]. Available: http://inter-
mediator.org/

[3] A. J. Ko, B. A. Myers, and H. H. Aung, “Six Learning Barriers in
End-User Programming Systems,” in Proceedings of the 2004 IEEE
Symposium on Visual Languages - Human Centric Computing, ser.
VLHCC ’04, 2004, pp. 199–206.

[4] M. Nii and contributors. GitHub Repository for INTER-Mediator.
[Online]. Available: https://github.com/msyk/INTER-Mediator

[5] J. Rode and M. B. Rosson, “Programming at runtime: Requirements
and paradigms for nonprogrammer web application development,”
in Proceedings of the 2003 IEEE Symposium on Human Centric
Computing Languages and Environments, ser. HCC ’03, 2003, pp.
23–30.

[6] T. J. Parr, “Enforcing strict model-view separation in template en-
gines,” in Proceedings of the 13th international conference on World
Wide Web, ser. WWW ’04, 2004, pp. 224–233.

[7] CodeIgniter Project. Codeigniter. British Columbia Institute of
Technology. [Online]. Available: http://www.codeigniter.com/

[8] E. Benson, “Mockup driven web development,” in Proceedings of the
22Nd International Conference on World Wide Web Companion, ser.
WWW ’13 Companion, 2013, pp. 337–342.

[9] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano,
“On the effectiveness of screen mockups in requirements engineering:
Results from an internal replication,” in Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’10, 2010, pp. 17:1–17:10.

[10] J. M. Rivero, J. Grigera, G. Rossi, E. Robles Luna, F. Montero, and
M. Gaedke, “Mockup-driven development: Providing agile support for
model-driven web engineering,” Inf. Softw. Technol., vol. 56, no. 6, pp.
670–687, Jun. 2014.

[11] Pusher Ltd. Pusher. Pusher Ltd. [Online]. Available: http://pusher.com/
[12] S. Ceri, P. Fraternali, and A. Bongio, “Web modeling language

(webml): A modeling language for designing web sites,” in Pro-
ceedings of the 9th International World Wide Web Conference on
Computer Networks : The International Journal of Computer and
Telecommunications Netowrking, 2000, pp. 137–157.

[13] M. Brambilla, S. Ceri, S. Comai, M. Dario, P. Fraternali, and
I. Manolescu, “Declarative specification of web applications exploiting
web services and workflows,” in Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, ser.
SIGMOD ’04, 2004, pp. 909–910.

[14] S. Ceri, F. Daniel, M. Matera, and F. M. Facca, “Model-driven
development of context-aware web applications,” ACM Trans. Internet
Technol., vol. 7, no. 1, Feb. 2007.

[15] F. Yang, J. Shanmugasundaram, M. Riedewald, and J. Gehrke, “Hilda:
A high-level language for data-drivenweb applications,” in Proceed-
ings of the 22Nd International Conference on Data Engineering, ser.
ICDE ’06, 2006, pp. 32–.

[16] F. Yang, N. Gupta, N. Gerner, X. Qi, A. Demers, J. Gehrke, and
J. Shanmugasundaram, “A unified platform for data driven web ap-
plications with automatic client-server partitioning,” in Proceedings of
the 16th International Conference on World Wide Web, ser. WWW
’07, 2007, pp. 341–350.

[17] M. Laine, D. Shestakov, E. Litvinova, and P. Vuorimaa, “Toward
Unified Web Application Development,” IT Professional, vol. 13,
no. 5, pp. 30–36, Sep. 2011.

[18] M. Laine, D. Shestakov, and P. Vuorimaa, “XFormsDB: an extensible
web application framework built upon declarative W3C standards,”
SIGAPP Appl. Comput. Rev., vol. 12, no. 3, pp. 37–50, Sep. 2012.

[19] Adobe Systems, Inc. Adobe ColdFusion 11 Family. [Online].
Available: http://www.adobe.com/products/coldfusion-family.html

[20] Google Inc. and community. AngularJS. [Online]. Available:
http://angularjs.org/

[21] S. Sanderson. Knockout. [Online]. Available: http://knockoutjs.com/
[22] Hairgami_Master, jpmorin, and answerers. How can I make recursive

templates in AngularJS when using nested objects? [Online]. Avail-
able: http://stackoverflow.com/questions/15661289/how-can-i-make-
recursive-templates-in-angularjs-when-using-nested-objects

[23] Benny, nemesv, and answerers. Recursive template
with knockout js. Stackoverflow. [Online]. Avail-
able: http://stackoverflow.com/questions/15525216/recursive-template-
with-knockout-js

[24] A. Matsuo. IMCake. [Online]. Available: https://github.com/matsuo/
IMCake

[25] K. Ito. Use INTER-Mediator from CodeIgniter (Japanese). [Online].
Available: http://agilmente.com/blog/2013/07/22/

[26] ——. Use INTER-Mediator in Yii (Japanese). [Online]. Available:
http://agilmente.com/blog/2013/12/25/

[27] Cake Software Foundation, Inc. CakePHP. [Online]. Available:
http://cakephp.org/

[28] Founded by Qiang Xue. Yii Framework. [Online]. Available:
http://www.yiiframework.com/

[29] A. McAfee and E. Brynjolfsson, “Investing in the IT That Makes a
Competitive Difference,” Harvard Business Review, jul 2008.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

