Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

A Proposal of Graph-based Blank Element
Selection Algorithm for Java Programming
Learning with Fill-in-Blank Problems

Tana and Nobuo Funabiki

Abstract—To assist Java programming educations, we have
developed a Web-based Java Programming Learning Assistant
System (JPLAS). JPLAS provides fill-in-blank problems for
novice students to learn Java by filling blank elements composed
of reserved words, identifiers, and control symbols. In this pa-
per, we propose a graph-based blank element selection algorithm
to select as many blanks as possible such that any blank has
the grammatically correct unique answer. Our algorithm first
generates a graph by selecting every candidate element in the
code as a vertex, and connecting any pair of vertices by an
edge if they can be blanked together, where the conditions for
simultaneous blanks are defined. Then, it extracts a maximal
set of blank elements by seeking a maximal clique of the graph.
We verify the algorithm through applications to 100 Java codes,
where the answer uniqueness is manually confirmed and the
number of blank elements is almost proportional to the number
of statements in a code.

Index Terms—Java programming education, JPLAS, fill-in-
blank problem, blank element selection, graph, clique, algo-
rithm.

I. INTRODUCTION

As a reliable and portable programming language, Java
has been extensively used in industries even at mission
critical systems in large enterprises and small-sized em-
bedded systems. Thus, the cultivation of Java programming
engineers has been strongly demanded from industries. A lot
of universities and professional schools are actually offering
Java programming courses to deal with the demands. A Java
programming course usually combines grammar instructions
by classroom lectures and programming exercises by com-
puter operations.

To assist Java programming educations, we have developed
a Web-based Java Programming Learning Assistant System
(JPLAS) [1][2]. JPLAS provides the fill-in-blank problem to
support self-studies of students. The fill-in-blank problem
intends for a student to learn the Java grammar and basic
programming. This problem shows a Java code with several
blank elements to a student, where he/she needs to fill the
blanks by typing the correct ones. An element is defined as
the least unit of a code such as a reserved word, an identifier,
and a control symbol. A reserved word is a fixed sequence of
characters that has been defined in Java grammar to represent
the specified function, and should be mastered first by any
student. An identifier is a sequence of characters defined
in the code by the author to represent a variable, a class,
and a method. A control symbol in this paper intends other

The authors are with the Department of Electrical and Communication
Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-
8530, Japan e-mail: funabiki@okayama-u.ac.jp.

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

elements such as ”.” (dot), ”:” (colon), ”;” (semicolon) , ”(,
)" (bracket), ”{, }” (curly bracket).

In our implementation of the fill-in-blank problem, the cor-
rectness of each answer is checked through string matching
with the corresponding correct answer in the server. Here,
the original element for the blank in the code is used as
the unique correct answer, because it is not only simple but
also helps the code reading by a student. Thus, the original
element must be the unique grammatically correct answer for
any blank to avoid confusions by a novice student. However,
the selection of such blank elements is not easy especially
when a teacher needs many blank elements. For example,
if all the elements representing an identifier for a variable
are blanked, a student cannot answer it at all. At least one
element must be remained in this case.

In this paper, we propose a graph-based blank element
selection algorithm to assist generating fill-in-blank problems
in JPLAS. First, our algorithm generates a compatibility
graph by selecting every candidate element in the code as a
vertex, and connecting any pair of vertices by an edge if they
can be blanked together. For this purpose, we define the con-
ditions that a pair of elements can be blanked simultaneously.
Then, it seeks a maximal set of blank elements by extracting
a maximal clique of the compatibility graph [3]. We evaluate
the effectiveness of this algorithm through applying 100 Java
codes, where the answer uniqueness is manually confirmed
and the number of blank elements is almost proportional to
the number of statements in the code.

The rest of this paper is organized as follows: Section II
reviews the functions for fill-in-blank problems in JPLAS.
Sections Il and IV present the blank element selection
algorithm. Section V shows evaluation results. Section VI
introduces some related works. Section VII provides the
conclusion with future works of this paper.

II. REVIEW OF FILL-IN-BLANK PROBLEM FUNCTIONS IN
JPLAS

In this section, we review the currently implemented
functions for fill-in-blank problems in JPLAS.

A. Software Platform

In the JPLAS server, we adopt the Linux for the operating
system, Tomcat for the Web application server, JSP/Serviet
for application programs, and MySQL for the database. The
user can access to JPLAS through a Web browser.

In implementations of fill-in-blank problem functions, we
adopt JFlex [4] and jay [5]. JFlex is a lexical analyzer
generator that transforms a Java code into a sequence of

IMECS 2015

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,

IMECS 2015, March 18 - 20, 2015, Hong Kong

lexical units that represent the least meaningful elements.
It classifies an element into either of a reserved word, an
identifier, a symbol, and an immediate data. For example,
a statement int value = 123 + 456; is divided into
int,value, =, 123, +, 456, and ;. JFlex cannot identify
an identifier as a class, a method, or a variable. Thus, jay
is used together, because it is a syntactic parsing program
based on the LALR method, and can identify an identifier
that is a variable/

B. Definitions of Terms for Fill-in-blank Problem

Here, we define some terms for the fill-in-blank problem.
A problem code represents a Java source code that is used
for a fill-in-blank problem. A question represents a blank to
be filled inside the problem code. A problem consists of one
problem code with several questions or blanks, their correct
answers, and a comment on this problem. An assignment
consists of a title, one or multiple problems, and a comment
on the assignment. Usually, several assignments are given to
students in each course, where JPLAS can support multiple
courses at the same time. Any registered teacher in JPLAS
can generate new problems and assignments using the shared
database.

C. Teacher Functions

The functions for fill-in-blank problems in JPLAS consist
of teacher functions and student functions. In this subsection,
we review teacher functions.

1) Code Registration: First, a teacher selects Java source
codes suitable for fill-in-blank problems and uploads them
in the database of JPLAS. These codes should contain the
elements to be learned by students at the corresponding
classes and be worth for code reading.

2) Code and Element Type Selection: Then, the teacher
selects one problem code and the types of elements to
be blanked among reserved words, identifiers, and control
symbols using the interface in Figure 1.

ﬂm?éy_z&lnbt(ﬁa‘ﬁ Please input Java code for problem. |

class Parent [

woid whois() {
) , Systen.out.print InC#IZ#R. 7): ! Java code for problem I
olass hild extends Parent {
oid whois() {
i s sten.out.print In("#ITF . *);

1
class CastChk |
Public static void main(Strinell ares) {
AP S

2

Child obj1 = ner Childl};
objl.whois():
Systen.out.print(" Child: ~
Systen.out.printin(* Parent:
eks

Parent obj? = objl;
obj2.whais();
System.out.print(" Child: *
Systen.out. printin(* Parent:

+ (obj1 instanceof Child)):
+ (obj1 instanceof Parent});

+ (obj2 instanceof Child)):
+ (obj2 instanceof Parent)):

thid uma
obj3.uhois():
Systen.out. wm(-

(Child)ebj2;

Child: ~ + (uma instanceof Child)):
Pareni: * + (abj3 instenceof Parent});

E)Elementselectlon i | control symbols |

reserved words

reserved words + controls

A variables + control symbols
£ EROH ¢ [@ERS0H P/¥%+E§! o /TR +HERES ¢/ FEE+AERsS o /80 o
' reserved words + variables m

Fig. 1. Code and element type selection.

3) Blank Element Selection: Then, the teacher manually
selects the elements to be blanked using the interface in
Figure 2.

4) Problem Preview: The teacher can check the preview
of the generated problem using the interface in Figure 3.
Here, he/she can add a comment on the problem. Then, the
problem is stored in the database.

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

UTOI—ROTNIIVRYIZANS, ZHRUEU VEEEA T EL.
—1___Please select blanked elements. |
[—

Y —]

Fig. 2. Blank element selection.

class Parent 1 =
woid vhois() {
\ System.out.print InC"# I3/ ")

1
class Child extends Parent {
void whois

, System.out.printIn("#I3 Fiffa) 2_

3
cTass CastChk {
public static vold main(String(] ares _4_

Ji4 w2820k
Child 5_ * new Child();
objl.whais() B_
System.out.print(" Child:
System,out.printin(* Parent:
JIBER
Parent obj2 = objl;
abj2.whois();
Systemoout.print(” Child: * + (_7_ instanceof Child));
System nul printin(* Parent: *

+ (b]2 instanceof Parent));
A F
blank-8 giha objg = (Emm)nmz
% .whois

System out. Drml(Child:
System.out.printIn(” Parent:

“ # {obj1 instanceof Child));
“ + (obj1 instanceof Parent)):

“ # (obj3 instanceof Child)); —
“ + (obj3 instanceof Parent)):

} ! [l
=l comments '
Fig. 3. Problem preview.

5) Assignment Registration: The teacher can register a
new assignment for the course by selecting problems in the
database. Here, he/she needs to describe the title and the
comment for this assignment. Then, the assignment is stored
in the database.

6) Score Reference: A teacher can check the answers from
the students for the assignments in the course to evaluate
their learning situations. For quick evaluations, he/she can
overview the number of solving students and the average
score among the students for each assignment in the course.
For detailed evaluations, he/she can further look at the
correctness of the questions and the number of answer
submissions for each assignment by every student using the
interface in Figure 4.

! Student index]’Wion index) [Number of submissi !
FEES S 752 Fars3 Fara4 RS Farae a7 Faras Farso [FRra 0 @ik Loy

B4
50000003 o o X
50000004 o o
50000002 o o
50000002 o o
(50000000 o o

x

\i
o
=4

g
o
B

)“a‘ﬂ

Q

X

o]

x

olololololo ﬂg‘

ﬂﬂo
ololelelelalxlalololololo
ololo|elx|xo|oelao
ololelclelx]x]oloololo
(SRSl Ie] i) Ie] Ie] X‘:_)“‘:_)“l) OO X

O(X|O|O|O|x|x||x|O]|O[|O]|O]x

(50000001 [o
50000006 [x
20000011 o
20000007 o
20000002 [o
200000110 | o
00421922 [o
09421044 lo
ROE =08

X

Qo

ofo|o

WTWTWTWTW

Q

|Questiun result I

E'ololololelolx

H
3
(il
[5)
B
il

Fig. 4. Assignment answer results by students.

IMECS 2015

7) Database Management: The JPLAS database keeps the
information of the user names and IDs including teachers and
students, the course titles, the problem codes, the problems,
and the assignments. When a new teacher starts using JPLAS,
the system manager should first register him/her in the
database. Then, this teacher can register new courses, and
generate new problems and assignments.

When a teacher uses JPLAS in a course, he/she needs
to register the course information such as the title and
the student list in the database. Then, he/she can generate
assignments for this course and view their student scores.
Also, any student in the student list can access to the
assignments and view his/her scores.

Any problem generated by a teacher is managed in the
database and can be shared among the teachers. Thus, after
this database has become enriched with a variety of problems
and assignments, the load for generating assignments can
be drastically reduced. It becomes only selecting existing
problems or assignments in the database.

D. Student Functions

In this subsection, we review student functions.

1) Assignment Selection: First, a student accesses to the
JPLAS server using a Web browser. He/she can view the
list of the courses where he/she is registered and select one
course. Then, he/she can view the list of the assignments
in this course to be solved, where for each assignment, the
assignment index, the title, the answer submission status, and
the answer button are shown. Then, he/she can select one
assignment to answer the problems.

2) Assignment Answering: Then, the student can view the
direction, the assignment index, the comment, the problem
code with questions, and the answer forms for the questions
in the assignment as shown in Figure 5. He/she can input
the answers into the corresponding forms. Here, we adopt
an open-source editor called CodePress to improve the
readability of the problem code by using the highlighting
function in this editor [6].

wanE

ToRYZARICHSIava®I— FERATLZE.
O—-PRICHZEMER DT, TOICHUTEEZIFHNERAORGT IRAICAT LY
W

—EM HERUEZET. BERS D EEL. REEET LTSN

(c t: processing time calculation program) 2 :

JUEECHN T IRV - WPSWEEHNEITETOIS A

| Problem code on CodePre&]

4 import java.utjl.Date: COBETIFNIE BER
2 -
3 public (1) Sample { FIIEBUTLES L,
a public (2) void msin(Strinzll ares) "
5 H DateZ2 3 ADA A AEERT S
B Date stariDate = mew Date():
7 f RMERBAERST S T 171
. long stertTing = stariDats.setline(); ‘Fmallzm- button
9 f ST s]
Fig. 5. Assignment answering.

3) Automatic Rating: Then, the student clicks either the
“rating” button or the “finalizing” button after filling his/her
answers to the questions in the forms. When the former
button is cricked, the JPLAS server compares the answer
with the correct one for each question. It returns "OK” if they
are matched, and "NG” otherwise. When the latter button is
cricked, the answering by the student is finalized, and his/her

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

final answers, the number of submissions by cricking the
rating button, and the date/time are stored in the database.
A student needs to crick the “finalizing” button when he/she
solves every question correctly or gives up solving some of
them. Here, the number of submissions in the database can
be used to estimate the difficulty of the assignment and the
ability of the student.

4) Score Reference: A student can check his/her score for
each assignment using the interface in Figure 6.

FRESREE :

Assignment index

FlafiA05 o] B

BT

Question index

kS
8

52|53 39%4!.%&55 [FRRS6 32RS7 [F2RU8 FRRA90 FRRT10 1RHAEY

(3]

ololololol x| &

ol o] ol ool x|k

T e W o] =] =~

Ol oo
[&

ol o
C

ol o
]

5 = 0 o
| Assignment title | | Question result |

Fig. 6. Score reference table.

E. Score Ranking Graph

A student can also see his/her ranking among the students
taking the same course, in terms of the total number of
correct answers for all the assignments using the score
ranking graph. It is expected that any student uses this graph
for encouraging his/her study by evaluating the position in
solving assignments among the students.

III. FOUR CATEGORIES FOR BLANK ELEMENT
SELECTION ALGORITHM

In this section, we present the four categories to represent
the constraints in selecting blank elements with unique
answers. These categories are used in the blank element
selection algorithm in the next section.

A. Group Selection Category

In the group selection category, all the elements related
with each other in the problem code are grouped together so
that at least one element in each group is not selected for
the blank. There are five conditions for this category in this

paper.

1: class Samplel{

2 public static void main(String args[]) {

3: int varl = 10;

4 float var2 = sampleMethod(varl);

5 System.out.println ("indata="+varl+"
outdata=" +var2);

6: }

7: static float sampleMethod(int pl) {

8: float var3 = (float) (plx1.08);

9: return var3;

10: }

11: }

(1) Identifier appearing two or more times in code

The multiple elements representing the same identifier
with the same scope in the problem code are grouped
together. A scope represents the range in the code where
a variable, a class, or a method is referred using the same

IMECS 2015

name or identifier [7]. If all of such elements are blanked, a
student cannot answer the original identifier. For example, in
Samplel, varl appears three times with the same scope
at lines 3, 4, and 5, which are grouped together.
(2) Pairing reserved words composed of three or more
elements

The three or more elements representing the pairing
reserved words are grouped together. If all of them are
blanked, the unique correct answers may become too hard
or impossible. Besides, one element of them can be a good
hint to derive the other elements for novice students. They
include the following two cases:

e switch - case - default
e try - catch - finally

(3) Data type for variables in equation

The elements representing the data types of the variables
in one equation are grouped together. For example, in sum
= a + Db, the data types of the three variables, sum, a,
and b, must be the same. If a variable is casted like sum =
(int)a + b, the cast data type int is also included in
the group. Besides, if a method is included in an equation,
like line 5 in Samplel, the data type for this method is also
grouped together. Here, f1oat at lines 4 and 7 are grouped.
(4) Data type for method and its returning variable

The elements representing the data type of a method and
its returning variable are grouped together. For example, in
Samplel, float at lines 7 and 8 are grouped.

(5) Data type for arguments in method

The elements representing the data type of an argument in
a method and its substituting variable are grouped together.
For example, in Samplel, int at lines 3 and 7 are grouped
together through line 4.

The data type in (3)-(5) must be the same if some elements
in these groups are overlapped. Thus, after every group is
found, the groups from (3)-(5) that contain an overlapped
element are merged into one group.

B. Pair Selection Category

In the pair selection category, the elements appearing in
the problem code in pairs are grouped together so that at
least one element in each pair is not selected for the blank
element. There are four conditions for this category in this
paper.

(1) Continuously appearing elements in statement

The two elements appearing continuously in the same
statement in the problem code are paired. If both of them are
blanked, their unique correct answers may not be guaranteed,
or may become too difficult for novice students. Due to the
same reason, the two elements that are connected with a dot
() are also paired. For example, in Samplel, int and
varl at line 3 are paired, and System and out at line 5
are paired.

(2) Variables in equation

The elements representing any pair of the variables in an
equation are paired. If both are blanked, the unique correct
answers become impossible because the reversed order of
them is also grammatically correct. For example, for sum
= a + b,sum = b + ais also feasible. If three or more
variables are included in an equation, any combination of
them is paired here.

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

(3) Pairing reserved words

The two elements representing the paring reserved words
are paired. If both are blanked, the unique correct answers
may not be guaranteed, or too difficult for novice students.
For them, one element of them can be a good hint to derive
another one. They include the following five paring reserved
words:

o if - else

e do - while

o class - extends

« interface - extends

« interface - implements
(4) Pairing control symbols

The two elements representing a pair of control symbols,
”(,)" (bracket) and "{, }” (curly bracket), are paired. It
happens that even if both are blanked at the same time, the
code can be grammatically correct. Besides, novice students
should carefully check them in their codes first. For example,
in Samplel, { at lines 1 and } at line 11 are paired.

C. Prohibition Category

In this category, an element is prohibited from the selection
for the blank element because it does not satisfy the unique-
ness with the high probability. There are three conditions for
this category in this paper.

(1) Identifier appearing only once in code

The element representing the identifier appearing only
once in the problem code is selected into this category. If
it is blanked, a student cannot answer the original identifier.
(2) Operator

The element representing the operator such as the arith-
metic operator: +, —, %, /, the comparative operator: <,
>, <=, >=, ==, !=_ and the logical operator: &, |, ~, !
is selected into this category. If an operator is blanked, a
student cannot answer the original one unless the proper
explanation on the specification related to the operator is
given. For example, in Samplel, « at line 8 is prohibited.
(3) Access modifier

The element representing the access modifier for an
identifier is selected into this category. If it is blanked,
either of public, protected, private can be often
grammatically correct. For example, in Samplel, public
at line 2 is prohibited.

D. Single Selection Category

The remaining elements in the problem code can be
blanked alone.

IV. BLANK ELEMENT SELECTION ALGORITHM

In this section, we propose a blank element selection
algorithm using a graph representation that can be generated
from the category selection of the elements in the previous
section.

A. Algorithm Overview

In this algorithm, the constraint graph is first generated
from the given problem code. In this graph, a vertex rep-
resents a candidate element for blank, and an edge does
the constraint such that the incident elements cannot be

IMECS 2015

blanked simultaneously for unique correct answers. Then,
the compatibility graph is derived by taking the complement
of the constraint graph. Finally, a maximal clique of the com-
patibility graph is sought to obtain a maximal set of blanked
elements with unique answers. This algorithm consists of the
four steps that will be described in the following subsections.

B. Vertex Generation for Constraint Graph

In the constraint graph, each vertex represents a candidate
element for blank. The candidate elements are extracted from
the problem code through the lexical analysis using JFlex
and jay. Each vertex contains the associated information in
Table that is necessary for the category selection.

TABLE I
VERTEX INFORMATION.

item content

symbol | symbol of element

line row index of element

column | column index of element

count number of element appearances

order appearing order of element in code

group statement group index partitioned by { and }
depth number of { from top

Then, the vertices corresponding to the elements that are
classified into the prohibition category in III-C are removed
from the constraint graph.

C. Edge Generation for Constraint Graph

Then, for the constraint graph, an edge is generated
between any pair of two vertices or elements that should
not be blanked at the same time for the unique correct
answers. These pairs are selected from the elements in the
group selection category or the pair selection category in the
previous section.

For each pair of elements in the pair selection category,
an edge is simply generated between the two corresponding
vertices. For each group of elements in the group selection
category, one vertex among the corresponding elements is
randomly selected first, and then, an edge is generated
between this selected vertex and each of the other vertices
in the same group. Thus, at least this selected vertex is not
selected for blank.

D. Example of Constraint Graph

Figure 7 illustrates a part of the constraint graph for
class Samplel.

E. Compatibility Graph Generation

By taking the complement of the constraint graph, the
compatibility graph is generated to represent the pairs of
elements that can be blanked simultaneously.

F. Maximal Clique Extraction of Compatibility Graph

Finally, a maximal clique of the compatibility graph is
extracted by a simple greedy algorithm to find the maximal
number of blanks with unique answers. A cligue of a graph
represents its subgraph such that any pair of two vertices in

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

o] | Samplet|

aj
o]
-

’
’
7
4
’

l—-. N
\\', e Y
< ‘ &

N o

\\ /?‘A"(& K
sampleMethod
i’ (Rt

Fig. 7. Constraint graph for Samplel.

this subgraph is connected by an edge in the original graph.

The procedure for our algorithm is described as follows:

(1) Calculate the degree (number of incident edges) of every
vertex in the compatibility graph.

(2) Select one vertex among the vertices whose degree is
the maximum. If two or more vertices have the same
maximum degree, select one randomly.

(3) If the selected vertex is a control symbol and the
number of selected control symbols exceeds 1/3 of the
number of selected vertices, remove this vertex from the
compatibility graph and go to (5).

(4) Add the selected vertex for the blank, and remove it and
its non-adjacent vertices from the compatibility graph.

(5) If the compatibility graph becomes null, terminate the
procedure.

(6) Go to (2).

Here, (2) is introduced to sustain the number of blanked

control symbols, because a problem code usually has a lot

of control symbols.

V. EVALUATION

In this section, we evaluate the proposed blank element
selection algorithm for fill-in-blank problems.

A. Uniqueness of Correct Answer

Firstly, we verify the uniqueness of grammatically correct
answers to blank elements in the problem code that are
selected by the algorithm. For this verification, we collected
100 Java codes from books and Web sites, where the number
of statements in each code is varied from 6 to 85, and 24
codes have multiple classes or methods. We generated fill-
in-blank problems by applying the algorithm to these codes,
and asked four students in our group to solve them. These
students are currently using Java in their researches and are
familiar to the Java programming.

The results show that for 97 codes among them, all the
blanks selected by the algorithm have unique answers. For
the remaining three codes, two variables can be swapped at
two blanks. The following code Sample?2 shows one such
example. Grammatically, outData2 and outDatal can

IMECS 2015

be filled at _4_ and _5_ respectively, although the reversed
ones are correct. To resolve this problem, we additionally
show the output result of this code as shown in the last three
lines.

1: public _1_ Sample2{

2: public _2_ void main(String[] args) {

3: String _3_ = "abcdefgh";

4: String _4_ = inData.substring (0, 5);
5: String _5_ = inData.substring(3, 5);
6: System._6_.println ("outl="+ outDatal);
7 _7_.out.println ("out2="+ outDatal2);
8: }

9: 8

//o:t;ut result
//outl= abcde
//out2 = de

B. Number of Statements and Number of Blank Elements

Then, we examine the relationship between the number
of statements in a problem code and the number of blank
elements selected by the algorithm. Figure 8 shows them
for the 100 Java codes. This graph indicates that they are
almost proportional to each other except for the first 10
codes. As shown in Table II, these codes have a larger
number of statements composed of only curly brackets due
to multiple classes/methods and/or multiple branches on
conditions. Because we limit the number of control symbols
including curly brackets for blanks, the number of selected
blanks becomes smaller if compared with the number of
statements.

90

80

| # of statements |
70 7

60

50 1N E——
| # of selected blanks |
40 i |
H
30 i) A [

" .

10

o
—
—
—
—
—

il 5 9!13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
Lmmmmmmeent Problem code ID

Fig. 8. Number of statements and number of blanks in 100 codes.

VI. RELATED WORKS

In [8], Kashihara et al. proposed a method of blanking an
important point of data or control flow of a C code to make
instructive fill-in-blank problems using Program Dependence
Graph (PDG) without considerations of semantic aspects of
the algorithm. PDG can represent the relationship of data
dependency and control flows between commands using a
graph. In future studies, we will consider the use of PDG to
extract important elements in the code.

In [9], Shinkai et al. proposed a C programming education
assistant system on Moodle using fill-in-blank problems like
in this paper. It extracts important elements in a code for
questions using PDG.

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

TABLE II
FEATURES OF 10 CODES WITH LARGE DIFFERENCE BETWEEN TWO
NUMBERS.
code # of # of # of # of # of

ID blanks | statements | classes | methods | if, switch

1 33 47 1 3 8

2 19 33 1 3 3

3 42 54 3 9 0

4 42 53 1 4 3

5 19 30 1 1 2

6 44 54 3 8 0

7 23 30 3 3 0

8 18 28 1 1 2

9 22 31 2 5 0

10 19 25 1 1 7

In [10], Taguchi et al. proposed a programming education
assistant system to provide assignments fitting to individual
students. The understanding level and the motivation of
a student is measured by using the collaboration filtering
technique, which estimates the tendency and preference of a
student from those of similar students using the database of
them. Because our algorithm may need to generate fill-in-
blank problems with various levels to deal with a variety of
students, we will consider the use of this technique.

VII. CONCLUSION

In this paper, we proposed a graph-based blank element se-
lection algorithm for fill-in-blank problems in Java Program-
ming Learning Assistant System (JPLAS). We verified the
algorithm through applications to 100 Java codes, where the
uniqueness of grammatically correct answers is confirmed.
In future studies, we will further apply this algorithm to
more variety of codes to justify the uniqueness, generate fill-
in-blank problems using this algorithm, and assign them to
students in Java programming courses in plural universities
including our department to verify the effectiveness in Java
programming educations.

REFERENCES

[1]1 N. Funabiki, Y. Matsushima, T. Nakanishi, K. Watanabe, and N.
Amano, "A Java programming learning assistant system using test-
driven development method,” IAENG Int. J. Computer Science, vol.
40, no.1, pp. 38-46, Feb. 2013.

[2] N. Funabiki, Y. Korenaga, Y. Matsushima, T. Nakanishi, and K.
Watanabe, ”An online fill-in-the-blank problem function for learning
reserved words in Java programming education,” Proc. Int. Symp.
Front. Inform. Sys. Netw. Appl., pp. 375-380, March 2012.

[3] M. R. Garey and D. S. Johnson, Computers and intractability: A guide
to the theory of NP-completeness, Freeman, New York, 1979.

[4] JFlex, http://jflex.de/.

[5] jay, http://www.cs.rit.edu/~ats/projects/lp/doc/jay/package-summary.
html.

[6] CodePress, http://sourceforge.net/projects/codepress/.

[7] Scope, http://java.about.com/od/s/g/Scope.htm.

[8] A. Kashihara, K. Kumei, K. Umeno, and J. Toyota, "How to make fill-
in-blank program problems for learning algorithm,” Proc. Int. Conf.
Comput. in Education, pp. 776-783, 1999.

[9] J. Shinkai, Y. Hayase, and I. Miyaji, "A study of generation and

utilization of fill-in-the-blank questions for programming education

on Moodle,” IEICE Tech. Report, ET, pp. 7-10, Oct. 2010.

H. Taguchi, H. Itoga, K. Mouri, T. Yamamoto, and H. Shimakawa,

”Programming training of students according to individual understand-

ing and attitude,” ISPJ Journal, vol. 48, no. 2, pp. 958-96, Feb. 2007.

[10]

IMECS 2015

