
A Systematic Approach for Configuration
Management in Software Product Lines

K.L.S. Soujanya,Member,IAENG , A. Ananda Rao, Member, IAENG

Abstract— Product lines achieve significant cost and effort
reduction through large scale reuse of software product assets.
Software Product Lines (SPL) consists of core assets and
custom assets, which are shared among multiple products.
Core assets, custom assets and products evolve independently.
In single product the evolution of the product is in the time
dimension, whereas the evolution of products in SPL is in both
time and space dimension. Software Configuration
Management (SCM) is a software engineering discipline that
concerns the management of software evolution and change
control. Available SCM systems are suitable for the single
product evolution but inadequate for SPL systems. A software
version management system is proposed to support product
line engineering by supporting product line evolution, product
derivation and change promulgation from core assets and
custom assets to multiple products and vice versa. This
approach supports twenty-three cases of amend
promulgations.

Keywords/phrases: core assets, custom assets, software

configuration management, software product line .

 I. INTRODUCTION

Over the years, software is developing at a fast pace, as it

became inescapable and basic in our data based society so
all software makers ought to expect obligation regarding its
unwavering quality. Earlier “reliable software” meant error
free software, but these days concerns like, adaptability and
maintainability are equally vital. The need of the day is
efficiency and optimization. This can be achieved by
adopting software product lines. Software product line
engineering is an approach that develops and maintains
families of products while taking advantage of their
common aspects and predicted variability. Despite the
benefits of product lines many challenges remain. Product
lines need to evolve and adapt continuously to stay
competitive to meet the requirements of new customers, and
to reflect changes in technologies [1]. However, the issue of
product line evolution is hardly addressed by existing
approaches and tool support is still not adequate.

Evolution in product lines is more challenging than in

single systems due to the two inter-winning life-cycles of

Manuscript received December 2, 2014; revised January 22, 2015.
 K.L.S.soujanya is Research Scholar with JNTUA, Ananthapuramu,

Andhra Pradesh, India (phone: 09948143850; e-mail:souj47@gmail.com).
A.Ananda Rao is Director and professor with JNTUA, Ananthapuramu,

Andhra Pradesh, India (e-mail: akepogu.rose@gmail.com).

domain engineering and application engineering. In domain-
engineering, reusable core assets are developed and the
scope of the system is defined whereas in application
engineering, the variability of the system is defined [2]. In
2004 ACM/IEEE Software Engineering Curriculum
Guidelines list software evolution as one of ten key areas of
software engineering education. Software is dynamic in
nature. In 1970, Lehman formulated laws of software
evolution, which says that a program to be used in a real
world environment necessarily must change or becomes
progressively less useful in the environment [3]. SCM
encompasses the disciplines and techniques of initiating,
evaluating and controlling change to software products
during and after the development process. It emphasizes the
importance of configuration control in managing software
production [2]. The SPL poses a different problem to SCM
in comparison to a single product software development. In
a single product, the evolution of a product line is in the
time dimension [18]. In SPL, products evolve independently
of the components that are shared among the different
products. Products and components have their own line of
development. The evolution of the products are said to
evolve in the space dimension while the evolution of the
components are said to evolve in the time dimension [23].

The contribution of the paper is configuration

identification of the software artifacts participating in the
software product line. During the evolution the changes in
the different core assets and modifications in the different
custom assets are identified and stored, so that the versioned
artifacts can be used as and when needed. When the changes
in the assets are reflected in the products, it is termed as
forward promulgation. The changes in the products are also
reflected back to the assets data base. This is termed as
rearward promulgation.

II. RELATED WORK

In the generic SCM model described by Clements and

Northrop [4] core assets, custom assets and product
instances are kept under configuration management. For
each product instances under SCM, there is a corresponding
product in use. Van gurp [5] proposes coupling variation
modeling tools with subversion to support product
derivation. He has yet to have a prototype to prove that the
idea works. Kruger [6] describes an approach that uses
conventional SCM tools. The core assets and product line
instantiation infrastructure are kept under SCM.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Products are generated and are not kept under SCM. All
changes are made in core assets and custom assets. In van
Ommering [7], Kruger and van duresen[8] approaches,
forward propagation is automatic. Since changes occur in
the core assets, a product that uses the latest gets the new
changes. Dependency among components and products is
manually maintained. Molhodo SPL[9] is a prototype to
solve the evolution problem at the configuration
management level instead of at the source code at the
programming language level. It is incomplete as it is only a
research prototype.

 III. PROPOSED WORK

In the existing system configuration management is

applied on core assets and products. Product line software
consists of domain engineering and application engineering.
Domain-engineering defines the commonality and
variability of assets. “Core assets – contains a set of domain
specific but application independent component that can be
adapted and reused in various related products”. “Custom
assets – contains a set of application specific components.”

A product is a combination of core assets and custom

assets. The software product line takes core and custom
assets as an input and produces a product as an output. An
individual product in the product line may share same core
assets and different custom assets to adapt to the specific
product requirement. A product can logically be considered
as containing two parts - core part and custom part, which
come from the core assets and custom assets respectively.
Changes can propagate from the core assets project and
custom assets project to products or from products to core
assets project and custom assets project.

At the point when changes spread from core assets and

custom assets to products is eluded as onward amend
promulgation. A case of the onward amend promulgation is
the change of the public asset in the product with corrective
and improvement changes in related core assets and custom
assets. Rearward amend promulgation is when changes
transmit from the product to the core assets and custom
assets. An example of rearward amend promulgation is the
propagation of corrective change made in a public asset in a
product in the core assets and custom assets project in order
to make other products to incorporate changes in their public
assets. As a matter of policy for SPLs, rearward amend
promulgation should occur only when the changes being
propagated is important to the product line so that other
products can use.

Table 3.1 describes all possible amend promulgation that

can occur by showing before and after states of hypothetical
assets of core assets (IA), custom assets (DA) and product
instances (P). Changes to an asset IA in the core-assets
project are indicated by IA*, to an asset DA in the custom
assets project are indicated by DA` and to an asset P in the
product instance are indicated by P^. The merged result of
the changes of the assets from the core, the custom and the

product is indicated by P*`^, from the core and the product
is indicated by P*^, from the custom and the product is
indicated by P`^ and from the core and the custom is
indicted by P*`. From the table 3.1, cases 1 to 9 shows
onward amend promulgation while cases 10 to 20 show
rearward amend promulgation.

The proposed system supports all the above forms of
amend promulgation.

Table I: Different forms of amend promulgation

S.NO BEFORE AFTER

1 IA DA’ P IA DA’ P’

2 IA* DA P IA* DA P*

3 IA* DA’ P IA* DA’ P*’

4 IA* DA P^ IA* DA P*^

5 IA DA’ P^ IA DA’ P^’

6 IA* DA’ P^ IA* DA’ P^*’

7 IA* DA’ P^ IA* DA’ P*’

8 IA DA’ P^ IA DA’ P’

9 IA* DA P^ IA* DA P*

10 IA DA

IA DA P

11 IA P IA DA P

12 DA P IA DA P

13 IA DA P^ IA DA P^

14 IA DA P^ IA^ DA^ P^

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

15 IA DA’ P^ IA^ DA’^ P^

16 IA* DA P^ IA*^ DA^ P^

17 IA* DA’ P^ IA*^ DA’^ P^

18 IA* DA’ P^ IA^ DA^ P^

19 IA DA’ P^ IA^ DA^ P^

20 IA* DA P^ IA^ DA^ P^

21

DA P IA DA P

22 IA

P IA DA P

23

P IA DA P

The following describes each of the cases in more details:

 Case 1: The product is sharing the core asset IA

and custom asset DA. Changes have been made to DA in the
custom assets project. In this case the changes made in the
custom-assets project are brought to the shared asset in the
product. An example of this case is a correction made to an
asset in the custom asset projects which is useful to the
product sharing the asset. Thus thechanges are pushed to
the product.
 Case 2: The product is sharing the core asset IA

and custom asset DA. Changes have been made to IA in the
core assets project. In this case the changes made in the core
assets project are brought to the shared asset in the product.
An example of this case is a correction made to an asset in
the core asset projects which is useful to the product sharing
the asset. Thus the changes are pushed to the product.
 Case 3: The product is sharing the core asset IA

and custom asset DA. Changes have been made to IA and
DA in the core and custom assets project. In this case the
changes made in the core assets and custom assets project
are brought to the shared asset in the product. An example
of this case is when a correction is made to an asset in the
core and custom asset projects which is useful to the product
sharing the asset and thus the changes are pushed to the
product.
 Case 4: Product is sharing the asset IA from the

core asset project and DA from the custom asset project.

Changes have been made to the shared asset P in the product
and the asset IA in core asset project. In this case the
changes from the asset IA in the core project is merged with
the shared asset P with the product specific changes.. This
case would represent a products independent evolution
while bringing correction changes from the core project.
 Case 5: Product is sharing the asset IA from the

core asset project and DA from the custom asset project.
Changes have been made to the shared asset P in the product
and the asset DA in custom asset project, in this case the
changes from the asset DA in the custom project is merged
with the shared asset P with the product specific changes.At
this stage, shared asset P of the product has both set of
changes. This case would represent a products independent
evolution while bringing correction changes from the core
project.
 Case 6: Product is sharing the asset IA from the

core asset project and DA from the custom asset project.
Changes have been made to the shared asset P in the
product, the asset IA in core asset project and the asset DA
in the custom asset project, in this case the changes from the
asset IA in the core project and DA in the custom project are
merged with the shared asset P with the product specific
changes, now P of the product has all the set of changes.
This case would represent a products independent evolution
while bringing correction changes from the core and custom
project.
 Case 7: Changes have been made to the assets in

the custom assets project, core assets project and product
project. The developer wants to replace the modified asset
in the product with modified assets in the core and custom
assets projects. After the developer performs this action, the
asset in the product will be identical to the one in the core
and custom assets project. In this case, the developer may
find the product specific changes which may not be useful
and could be subsequently replaced with the changes made
in the core and custom project.
 Case 8: Changes have been made to the assets in

the custom assets project and product project. The
developer wants to replace the modified asset in the product
with modified assets in the custom assets projects. After the
developer performs this action, the asset in the product will
be identical to the one in the custom assets project. In this
case the developer may find the product specific changes
which may not be useful and could be subsequently replaced
with the changes made in the custom project.
 Case 9: Changes have been made to the assets in

the core assets project and product project. The developer
wants to replace the modified asset in the product with
modified assets in the core assets projects. After the
developer performs this action, the asset in the product will
be identical to the one in the core assets project. In this case
the developer may find the product specific changes might
not be useful and could be replacing with the changes made
in the core project.
 Case 10: At this stage, an asset from the core assets

and custom assets project, which had not been shared with
the product, is now shared with the product. The asset may
be needed to the product.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

 Case 11: At this stage, an asset from the core assets
project that had not been shared with the product is now
shared with the product. The asset may be needed to the
product.
 Case 12: At this stage, an asset from the custom

assets project that had not been shared with the product is
shared with the product. The asset may be needed to the
product.
 Case 13: The Product is sharing the asset IA from

the core asset project and DA from the custom asset project.
Changes have been made to the shared asset P in the
product. In this case, the changes in the product asset P is
changed with product specific changes. This case might
represent a product’s independent evolution.
 Case 14: The Product is sharing the asset IA from

the core asset project and DA from the custom asset project.
Changes have been made to the shared asset P in the
product. In this case, the changes in product asset P are
changed with product specific changes and these changes
are reflected on core assets and custom assets projects.

Cases fifteen to twenty three are similar to the cases one

to nine but changes are propagated in the opposite direction.
There is a semantic difference among cases seven eight nine
and cases twenty one, twenty two, twenty three.

IV. IMPLEMENTING CHANGE PROMULGATION

The proposed method allows product specific changes to

shared components without interfering with the changes
made to the referred component in the core and custom
projects. To support product specific changes to shared core
assets and custom assets in order to avoid interference
between the product’s changes and the changes to the core
asset’s and custom asset’s project’s, the core asset project
and the custom asset project creates a product specific
branch to support the changes. When a product developer
checks in their product project with changes to a shared core
asset or custom asset, the core assets and custom assets
projects created an automatic branch to support it. The
subsequent checkin of changes to this shared asset for that
particular product creates more versions of the product
specific support branch created earlier.

The following is the algorithm for the proposed approach.

Procedure1. Configuration management:

1. create assets();
2. create product();
3. if product is changed to next version then
4. read next version elements or assets
5. d=diff(historical artifacts, next version elements or

artifacts)
6. if d is true then
7. Update the artifacts with corresponding core and

custom artifacts in IA and DA list respectively.
8. go to step 5 until artifacts are completed.
9. end if;

10. end if;
11. go to step 2 until product = n

Procedure 2. Creating the core and custom assets:

1. create assets()
2. {
3. read asset
4. if asset is basic component then
5. store in IA list
6. else
7. store in DA list
8. end if;
9. }

Procedure 3. Creating the product with different core and

custom assets

1. create product()
2. {
3. read the requirements of customer
4. if requirements match with the historical asset then
5. get IA list
6. select required core assets from IA list
7. get DA list
8. select required custom assets from DA list
9. else
10. create assets();
11. end if;
12. }

The following is a run-through evolution of a simple

product line example that demonstrates our approach, which
supports product line evolution and change promulgation.
Fig 4.1 depicts the main development case of product PR
project, the core assets (IA) project, the custom asset’s (DA)
project and the product PQ project. The core asset’s project
consists of A,B and C. The custom project consists of I, J
and K.. Product PR is using A and B asset’s from the core
asset’s project and J from custom asset’s project. The
product PQ is using B and C from the core asset’s project
and I and K from the custom asset’s project. In the Fig the
version trees of four projects consists of trees with one
version. In the Fig product PR is at version PR1.0, the core
assets project is at IA1.1.1, custom assets project DA1.1.1
and PQ is at version PQ1.0.

Fig 1: The version trees with First version

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Fig 1: Product PR1.0 is using A and B from core assets
project and J from custom assets project. Product PQ1.0 is
using B and C from core assets project and I and K from
custom assets project.

Fig 2: version trees with second version

In the Fig 2 amendments are made to A of core assets, J

of custom assets projects, A and J of product R and C of
product Q. The changes made in both products R and Q are
to shared assets. To support product specific changes to
shared assets, this approach automatically creates branches.
These branches are created when the changes checked in.
PR1.1 is created to support the changes to A and J in
product R and PQ2.0 is for product Q’s changes to C. The
main idea is that all the changes to the shared components
are stored in corresponding core assets, custom assets and
special branches are created to support product specific
changes.

Fig 2 Core assets project has changes to A resulting in

IA2.1.1. Custom assets project has changes to J resulting in
DA1.2.1. Product R has product specific changes to core
asset A and custom asset J, resulting in version PR1.1.
Product Q introduces at product specific component L and
makes product specific changes to C resulting in PQ2.0.

The Fig 3 shows how amend promulgation is performed.

Product R updates A with changes made in the core assets
project (onward amend promulgation) this results in version
PR2.0 our approach performs a merge of changes made in A
in product R of version PR1.1 with A of core assets project
of version IA2.1.1. Resulting in IA2.1.2. The changes made
to C in product Q is pushed to the core assets project
(rearward amend promulgation) in addition the product
specific component J is pushed to the custom assets project,
so that other products can use it. Our approach performs a
merge of changes made in C in product Q of version PQ2.0
with C of the core assets project of version IA 2.1.2. When
L is propagated or pushed to the custom assets project, L is

also removed from product Q and a shared component is
created in its place that refers to L in the custom assets
project.

Fig 3: version trees with third version

Fig 3: Changes to C in product Q is pushed to core assets

project (rearward amend promulgation), changes to J in
product R is pushed to custom assets project (rearward amen
promulgation). In addition product specific component J is
moved to the custom assets project so that other products
can use (rearward amend promulgation). As a result product
Q shares J. Product R updates A with changes made from
core assets project (onward amend Promulgation).

 V. RESULTS AND CONTRIBUTION

To evaluate this approach AAR (Automated Academic

Regulations) product line is used. To derive a product user
can choose artifacts from core and custom assets. Once the
user is with a product, the user can add product specific
content and modified shared content. All the cases of change
promulgation are evaluated and the model was able to
perform all the twenty-three cases of change promulgations
described above. In using this approach it is clearly visible
as to which version of which asset is present in a particular
product.

 VII. CONCLUSION AND FUTURE WORK

In configuration management of product line engineering

work has been done on multiple evolving baselines of the
assets rather than on a large number of individual product
baselines. The proposed approach consists of a version
model for a product line consisting of a core assets project,
custom assets project and multiple product projects, where
core assets and custom assets are shared among the products
with the use of shared components. Using the shared

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

component data structure and branching of core assets
project and custom assets project it is able to support the
independent development of core assets, custom assets and
products and change promulgation between them. This
approach supports twenty-three cases of amend
promulgations. Older SCM systems such as CVS [11] do
not support code sharing. More recent SCM systems such as
subversion [12], GIT [13] and Bazaar [14], support sharing
of repositories which are closer to the idea of sharing
components. However, these do not address the SPL
evolution problem.

As a part of future work, a frame-work for managing

interdependencies among various parts of the system in
product line evolution is proposed. It is also proposed to
give certain recommendations to be followed in the
rearward amend promulgation.

ACKNOWLEDGEMENTS

We are very much thankful for reviewers at ROSE lab,

JNTUA, Anantapuramu, and CMRCET for providing
facilities to carry out this research work.

 REFERENCES

[1] Pressman, R.1992.Software engineering: A practitioner’s
Approach, 3rd edition, Mc-GrawHill.

[2] K.pohi, G.Bockle, F.Van der Liinden, Software Product
Line Engineering Foundations, Principles and
Techniques, Springer,2005.

[3] Frame work for Software Product Line Practice,
http://www.sei.cmu.edu/reports/87cm004.pdf

[4] T.Mens, S. Demeyer, software evolution, DOI 10.
1007/978-3-540-7644 Springer 2008.

[5] L.N. Paul Clements and L.M. Northorop, software
product lines practices and patterns, Addison- Wesley
professional, 3rev ed., 2001.

[6] J. Van gurp and C. Prehofer, Version management tools
as a basis for integrating product derivation and software
product families, in proceedings of the workshop on
variability management- working with variability
mechanisms at SPLC, No. 152.06/E,pp. 48 – 58, October
2006.

[7] C.W Krueger, Variation management for software
production lines, in SPLC 2: proceedings of the second
international conference on software product lines,
(London, UK), PP.37-48,Springer- verlag, 2002.

[8] R.C. van Ommering, Configuration management is
component based product populations, in SCM, pp.16-23,
2001.

[9] van Deursen, M.de Jonge, and T. Kuipers, Feature-based
product line instantiation using source-level packages,
2002.

[10] Thao. Managing Evolution of Software Product Line, in
Proceedings of the 34th International Conference on
Software Engineering (ICSE 2012), IEEE computer
Society Press, 2012

[11] A configuration Management Model for Software
Product Line, Linguo Yu and Srini Ramaswamy

[12] T. Morse, CVS, Linux Journal, vol.1996, no 21es, p.3,
1996.

[13] Subversion.tigris.org, http://subversion.tigris.org/
[14] Git-fast version control system, http://git-scm.com/
[15] Bazaar versioning system, http://bazaar.conical .com/
[16] Cvs-concurrent versions system
[17] Mercurial SCM, http://mercurial.selenc.com.
[18] T.Mens, A state-of-the-art survey on software merging,

Software Engineering, IEEE Transactions on, vol.28,pp.
449-462,May 2002.

[19] XML security standard,
http://www.w3.org/standards/xml/security/

[20] Google docs, http://www.google.com/google-d-
/documents/

[21] P.Clements and L.M..Northrop, Software Product lines:
Practices and Patterns. Addison-wesley,2002.

[22] Software Architecture in Practice, second edition
LenBass, Paul Clements, Rick Kazman, pearson-2010.

[23] D.Batory, D.Benavides, and a. Ruiz-Cortes, Automated
analysis of feature models: challenges ahead,
Commun.ACM,vol. 49, pp. 45-47,December,2006.

 K.L.S Soujanya received B.E degree from Osmania
 University, Hyderabad, Telangana , India and M.Tech
 degree in CSE from JNTU College of Engineering,
 Anantapuramu, Andhra Pradesh, India. She is persuing
 Ph.D at JNTUA, Anatapuramu, Andhra Pradesh, India.
 Attended various conferences at IIIT Hyderabad, IIT
 Chennai, Infosys Mysore and workshops at JNTUA,
 JNTUH. Her research areas include software engineering,
 cloud computing and data mining.

 Dr. Ananda Rao Akepogu received B.Tech degree in
 Computer Science & Engineering from University of
 Hyderabad, Andhra Pradesh, India and M.Tech degree in A.I
 & Robotics from University of Hyderabad, Andhra Pradesh,
 India. He received PhDdegree from Indian Institute of

Technology Madras, Chennai, India. He is Professor of Computer Science
& Engineering Department and currently working as Director industrial
relations and placements of JNTUA College of Engineering, Anantapur,
Jawaharlal Nehru Technological University, Andhra Pradesh, India. Dr.
Rao published more than 100 publications in various National and
International Journals/Conferences. He received Best Research Paper
award for the paper titled “An Approach to Test Case Design for Cost
Effective Software Testing” in an International Conference on Software
Engineering held at Hong Kong, 18-20 March 2009. He also received Best
Educationist Award,Bharat Vidya Shiromani Award, Rashtriya Vidya
Gaurav Gold Medal Award, Best Computer Teacher Award and Best
Teacher Award from the Andhra Pradesh chief minister for the year 2014.
His main research interest includes software engineering and data mining

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

