

Abstract— Software testing is an important activity in

software development in terms of quality control. Software

testing requires test cases for testing the system. Requirements

changes can occur during the development phase, as a result,

use case descriptions are changed. Many test cases are unusable

because of use case description changes. It is not easy to specify

whether they are usable or unusable. This paper proposes an

approach for analyzing impact on test cases when use case

description are changed.

Index Terms— test case, use case description, impact

analysis

I. INTRODUCTION

oftware testing is an important activity in the software

development life cycle. Test cases are key factors in

software testing. Test cases are created from work products

such as use cases and source codes. The construction of use

case occurs in requirements gathering phase. Therefore, at

the beginning of development life cycle, requirements

gathering phase is the appropriate time to emphasize the

change. Changes can be occurred to any artifacts such as

system requirements documents, use case diagrams, and

XML documents [1]. When requirements changes during

software development impact existing work products, test

cases must be updated to consistently maintain. It has

commonly been reported that impacted test cases associate

with time consumption and costly.

This paper attempts to propose a framework to identify

impacted test cases on requirements changes through use

case description. Our approach is divided into three steps:

requirements validation matrix generating, use case

description changes analysis, and impacted test case

analysis. The overall structure of the study takes the form of

six sections, including this introductory section. Section II

begins by laying out the theoretical dimensions of the

research. Section III is concerned with the background of

use case description, and requirements validation matrix.

Section IV defines use case description changes impact test

cases. Section V explains the framework with an example.

Finally, the conclusion gives a brief summary, and areas for

further research are identified.

Manuscript received December 28, 2014.

T. Sakkarinkul and T. Suwannasart are with the Software Engineering

Laboratory Center of Excellence in Software Engineering, Faculty of

Engineering, Chulalongkorn University, Bangkok, Thailand (e-mail:

tawan.s@student.chula.ac.th, taratip.s@chula.ac.th).

II. RELATED WORK

There are relatively few historical studies in the area of

test case impact analysis. S. Phetmanee [2] developed a tool

for impact analysis of test cases based on changes of a web

application. The tool generates new test cases based on the

black-box testing techniques by comparing two types of

document: HTML document file, and XML Schema file.

The HTML document file describes inputs and their forms.

Further, the XML Schema file is a description of

grammatical rules of XML document which supports

boundary value definitions and can be used for well-formed

input validation. Consequently, new test cases are generated

by either equivalence class or boundary value analysis.

Similarly, J. Jainae [3] proposed a framework for test case

impact analysis of database schema changes using use cases.

The framework generates new test cases based on black-box

testing techniques. There are four steps: analyzing database

schema file, finding and repairing affected use cases,

analyzing affected test cases, and generating new test cases.

In addition, existing test cases generated from the use case

description are taken into the analysis. As a result, affected

test cases are replaced by new generated test cases which are

either valid or invalid test case.

Whereas the previous studies use the black-box testing

techniques to generate test cases, M. Raengkla [1]

demonstrated a use case description change detection tool.

She focuses on three parts: use case description input,

output, and procedure. The changes of use case description

input and output are detected by the difference of their

numbers, types, and sizes. Furthermore, the changes of use

case description procedure are detected by the difference of

its number, sequence, condition, and loop in the procedures.

The inputs of the tool consist of an old use case description,

a new use case description, test cases, and a requirements

validation matrix. Difficulties arise, however, when the

requirements validation matrix does not exist. This paper is

based on her approach. Although, we argue that

requirements validation matrix is not necessary for an input

because it can be generated by other inputs.

III. BACKGROUND

A. Use Case Description

A use case description is a detail of a use case in the use

case diagram. Cockburn [4] proposed a use case description

format by “One-Column Table”, which is able to understand

simply, shown in Table I.

Test Case Impact Analysis from Use Case

Description Changes

Tawan Sakkarinkul, Taratip Suwannasart

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

TABLE I. USE CASE DESCRIPTION IN ONE-COLUMN TABLE

Use Case # <the name is the goal as a short active verb phrase>

Context of use <a longer statement of the context of use if needed>

Scope <what system is being considered black box under

design>

Level <one of summary, primary task, subfunction>

Primary Actor <a role name for the primary actor, or a description>

Stakeholder and

interests

Stakeholder Interests

<stakeholder

name>

<put here the interest of the

stakeholder>

<stakeholder

name>

<put here the interest of the

stakeholder>

Preconditions <what we expect is already the state of the world>

Minimal

Guarantees

<the interests as protected on any exit>

Success

Guarantees

<the interests as satisfied on a successful ending>

Trigger <the action upon the system that starts the use case>

Description Step Action

1 <put here the steps of the scenario from

trigger to goal delivery and any cleanup

after>

2 <…>

Extensions Step Branching Action

1a <condition causing branching>:

1a1 <action or name of sub use case>

1a2 <…>

Technology and

Data Variations

1 <list of variations>

Likewise, S. Leeraharattanarak [5] adapted Cockburn’s

format to generating test cases. Table II compares the two

formats.

TABLE II. USE CASE DESCRIPTION COMPARING BETWEEN

COCKBURN AND S. LEERAHARATTANARAK

Use Case Description Cockburn S. Leeraharattanarak

Use Case No. - Include

Use Case Name Include Include

Context of use Include Include

Scope Include -

Level Include -

Primary Actor Include Include

Stakeholder and interests Include -

Preconditions Include Include

Input - Include

Minimal Guarantees Include Include

Success Guarantees Include Include

Trigger Include Include

Description Include Include

Extensions Include Include

Technology and Data

Variations

Include -

Abstract Use Case - Include

B. Requirements Validation Matrix

Requirements validation matrix [1], [6] shows the

relationship between use cases and test cases. It is used for

forward and backward traceability, therefore, it is able to

indicate test cases that are not impacted by use case

description changes. Table III gives an example of

requirements validation matrix.

TABLE III. AN EXAMPLE OF REQUIREMENTS VALIDATION MATRIX.

 Use Case Description

UC1 UC2

Test Case TC1-01 X

TC1-02 X

TC2-01 X

TC2-01 X

IV. USE CASE DESCRIPTION CHANGES IMPACT TEST CASES

This paper uses requirements validation matrix to identify

test cases which can be categorized into the following types

of testing

 valid input testing

 invalid input testing

 success scenario testing for pass

 success scenario testing for fail

 alternative scenario testing

The differences of use case description changes have an

effect on test cases. This paper focuses on five forms of

changes.

1) Use Case Name

Use case name changes affect only the test case name.

The result of the test case is still valid.

2) Use Case Input

There are four main use case input changes. Firstly, the

number of input changes affects the amount of the test case

inputs. Secondly, if the input names are changed, the test

case input names will be affected. Another input change is

that its types can affect the test case input types and values.

Although the test cases are valid input testing, and input type

changes do not decrease any possible valid input values, the

input values are not affected. Finally, the input constraint

changes have consequences for the test case precondition

and the input values. However, the test cases that are valid

input testing, and the input constraint changes do not reduce

any possible valid input values. Then, the precondition and

input values are not affected.

3) Use Case Output

A use case output is an additional element of use case

description. It describes a proper output of the system. Thus,

the use case output is related to the expected outputs of test

cases. There are three main use case output changes. Firstly,

the number of output changes affects the amount of test case

expected outputs. Secondly, output name changes affect test

case expected output name. Finally, output type changes also

have influences on test case expected output type and values.

4) Success Scenario

Success Scenario condition changes affect test case

precondition and input values. If the test cases are success

scenario testing for pass, and condition changes do not

reduce possible input values for pass the condition,

precondition and input values will not be affected.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

5) Alternative Scenario

Alternative Scenario condition changes can have an

impact on the test case precondition and the input values.

Their consequences are similar to the success scenario.

V. TEST CASE IMPACT ANALYSIS FRAMEWORK

Fig. 1. The test case impact analysis framework

According to use case description changes, figure 1 shows

the three-step test case impact analysis framework:

requirements validation matrix generating, use case

description changes analysis, and impacted test cases.

A. Inputs

1) Use Case Descriptions

A use case description consists of a use case ID, a use

case name, inputs, outputs, a success scenario, and

alternative scenarios. The use case description can be in

many forms such as database, spreadsheet and text file, then

it should be transformed into XML document in well-

formedness.

2) Test Cases

A test case consists of a test case ID, a test case name, a

precondition, inputs, and expected outputs. Likewise, it has

to be transformed into XML document in well-formedness.

B. Requirements validation matrix generating

The framework analyzes use case descriptions in order to

map with test cases. This paper focuses on three components

of use case description which are name, input and output.

The use case name and the test case name should be similar

while the use case inputs must be the same as the test case

inputs. Moreover, the use case outputs must be the same as

the test case outputs. Normally, test cases are generated from

a use case description of which name is similar to the test

cases. It can be implied that the naming concept is applied.

This study determines the similarity of use case name and

test case name by using the similarity percentage which is

calculated by a number of words contained in both use case

name and test case name divided by the total number of

words in the use case. The similarity percentage is greater

than or equal to the acceptable level, and inputs and outputs

of the use case and the test case are same, then they have a

relationship.

C. Use case description changes analysis

In order to analyze each pair of the use case descriptions,

the framework indicates the component changes and their

details. The scope of the analysis is focused on four

components of use case descriptions including a name,

inputs, outputs, and a success scenario. The input type and

the input constraints change analysis require additional

information to determine whether those changes affect the

previous valid values of the inputs or not. Success scenario

condition change analysis consists of two types. The first

type is constraint reduction determined by adding “OR” or

removing “AND” condition. Another is constraint change.

The result of the use case description changes analysis is a

changes list.

D. Impacted test case analysis

In order to analyze impacted test cases, there are two

steps. Firstly, the possible impacted test cases that related to

use case description changes are identified by requirements

validation matrix. Secondly, the components of impacted

test cases are indicated by the changes list and the test case

types, including valid input testing, invalid input testing, and

success scenario testing for pass. Moreover, additional

information is required to describe the type of testing.

E. Framework demonstration

The framework can be illustrated briefly by the following

case. There are two use case descriptions with two versions

and four test cases as inputs. Table IV and V show the two

old use case descriptions. Table VI and VII explain the two

new use case descriptions. Table VIII, IX, X and XI are four

test cases.

TABLE IV. USE CASE DESCRIPTION UC_VA_01 VERSION 1

ID UC_VA_01

Name add a volunteer’s activity

Input Name Type Constraints

volunteerCode String required = true

activityCode String required = true

workingDate Date required = true

hours Integer required = true

min = 1

max = 24

Output Name Type

activityRecordId Long

Success

Scenario

isActiveVolunteer(volunteerCode)

isActiveActivity(activityCode)

!isFutureDate(workingDate)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

TABLE V. USE CASE DESCRIPTION UC_VD_01 VERSION 1

ID UC_VD_01

Name add a volunteer’s donation

Input Name Type Constraints

volunteerCode String required = true

donationCode String required = true

donationDate Date required = true

amount Double required = true

scale = 2

min = 100.00

max = 100000.00

Output Name Type

donationRecordId Long

Success

Scenario

isActiveVolunteer(volunteerCode)

isActiveDonation(donationCode)

!isFutureDate(donationDate)

TABLE VI. USE CASE DESCRIPTION UC_VA_01 VERSION 2

ID UC_VA_01

Name add volunteer activity

Input Name Type Constraints

volunteerCode String required = true

activityCode String required = true

activityDate Date required = true

startHour Integer required = true

min = 0

max = 23

endHour Integer required = true

min = 1

max = 24

Output Name Type

activityRecordId Long

Success

Scenario

isActiveVolunteer(volunteerCode)

isActiveActivity(activityCode)

!isFutureDate(workingDate)

endHour > startHour

TABLE VII. USE CASE DESCRIPTION UC_VD_01 VERSION 2

ID UC_VD_01

Name add volunteer donation

Input Name Type Constraints

volunteerCode String required = true

donationCode String required = true

donationDate Date required = false

Amount Double required = true

scale = 2

min = 100.00

max = 100000.00

Output Name Type

donationRecordId Long

Success

Scenario

isActiveVolunteer(volunteerCode)

isActiveDonation(donationCode)

TABLE VIII. TEST CASE TC_VA_01_01

ID TC_VA_01_01

Name add volunteer activity : valid

Pre-condition isFuture(workingDate) = false

Input Name Type Value

volunteerCode String V01

activityCode String A01

workingDate Date 2014-11-15

hours Integer 8

Output Name Type Value

activityRecordId Long *

TABLE IX. TEST CASE TC_VA_01_02

ID TC_VA_01_02

Name add volunteer activity : invalid hour

Pre-condition isFuture(workingDate) = false

Input Name Type Value

volunteerCode String V01

activityCode String A01

workingDate Date 2014-11-15

hours Integer 25

Output Name Type Value

activityRecordId Long null

TABLE X. TEST CASE TC_VD_01_01

ID TC_VD_01_01

Name new volunteer donation : valid

Pre-condition isFuture(donationDate) = false

Input Name Type Value

volunteerCode String V01

donationCode String D01

donationDate Date 2014-11-15

amount Double 10000

Output Name Type Value

donationRecordId Long *

TABLE XI. TEST CASE TC_VD_01_02

ID TC_VD_01_02

Name new volunteer donation : invalid date

Pre-condition isFuture(donationDate) = true

Input Name Type Value

volunteerCode String V01

donationCode String D01

donationDate Date 2016-11-15

amount Double 10000

Output Name Type Value

donationRecordId Long Null

The first step is that the framework generates a

requirements validation matrix shown in table XII. This

example sets the acceptable level of similarity percentage at

50%. The use case UC_VA_01 is related to the test case

TC_VA_01_01 and TC_VA_01_02 with 100% similarity

because every words of the use case name is appeared in

those test case names. It means that similarity percentage is

greater than the acceptable level, as a result, they have a

relationship. The use case UC_VD_01 is related to the test

case TC_VD_01_01 and TC_VD_01_02 with 66.67%

similarity because there are two out of three words of use

case name are appeared in those test case names. In the same

way, they also have a relationship.

TABLE XII. REQUIREMENTS VALIDATION MATRIX

Use case

UC_VA_01 UC_VD_01

Test case

TC_VA_01 X (100%)

TC_VA_02 X (100%)

TC_VD_01

X (66.67%)

TC_VD_02

X (66.67%)

The second step is that the framework compares between

two versions of the use case descriptions and displays the

changes list of the use case descriptions in table XIII.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

TABLE XIII. CHANGE LIST OF THE USE CASE DESCRIPTIONS

Use Case Description

Component Change

Type

Detail

UC_VA_01

Input Rename from “workingDate” to “activityDate”

Remove Hours

Add startHours

Add endHours

Success

Scenario

Increase

Constraints

endHour > startHour

UC_VD_01

Input Decrease

Constraints

from “require = true” to “require =

false”

Success

Scenario

Decrease

Constraints

!isFutureDate(donationDate)

 Finally, the framework displays a list of the impacted

test case in table XIV and XV. Table XIV shows the status

of the test cases, and table XV shows the details of the

impacted test cases.

TABLE XIV. REQUIREMENTS VALIDATION MATRIX WITH TEST CASE

STATUS

Use case

UC_VA_01 UC_VD_01

Test case

TC_VA_01
X (100%)

modify and retest

TC_VA_02
X (100%)

modify and retest

TC_VD_01

X (66.67%)

retest

TC_VD_02

X (66.67%)

modify and

retest

TABLE XV. DETAIL OF IMPACTED TEST CASES

Test case

Component Recommendation Remark

TC_VA_01-1

Input change “workingDate” into

“activityDate”

UC_VA_01

- input name change

remove “hours” UC_VA_01

- input decrease

add “startHours” UC_VA_01

- input increase

add “endHours” UC_VA_01

- input increase

edit value of “startHours”

and “endHours”

UC_VA_01

- success scenario

constraint change

TC_VA_02-2

Precondition edit message UC_VD_02

- success scenario

constraint decrease

VI. CONCLUSION AND FUTURE WORK

This paper aims to propose an approach for test case

impact analysis from use case description changes. This

study has shown that the test case impact can be identified

automatically by the framework. In addition, the framework

can be used for generating a requirements validation matrix.

Finally, the framework helps to reduce an effort to find

impacted test cases.

For future research, it would be interesting to implement a

prototype using the proposed framework. It can be tested by

use case description changes focused on the four

components including a name, inputs, outputs, and a success

scenario. Then, the results of prototype are evaluated by

comparing the time reduction and resource consumption

with a traditional method. In addition, the information

retrieval techniques can be used in order to map use cases

and test cases by their names in the requirements validation

matrix generating. The further studies could be improved the

knowledge of the test case impact analysis.

REFERENCES

[1] M. Raengkla and T. Suwannasart, "A Test Case Selection from Using

Use Case Description Changes," presented at the International

MultiConference of Engineers and Computer Scientists, Hong Kong,

2013.

[2] S. Phetmanee and T. Suwannasart, "A Tool for Impact Analysis of

Test Cases Based on Changes of a Web Application," presented at the

the International MultiConference of Engineers and Computer

Scientists, Hong Kong, 2014.

[3] J. Jainae and T. Suwannasart, "A Tool for Test Case Impact Analysis

of Database Schema Changes Using Use Cases," presented at the

Information Science and Applications (ICISA), 2014 International

Conference on, 2014.

[4] A. Cockburn, Writing Effective Use Cases: Addison-Wesley

Longman Publishing Co., Inc., 2000.

[5] S. Leeraharattanarak, "An Approach for Automatically Generating

Test Cases from Use Cases," Master of Science in Compurter

Science, Computer Engineering, Chulalongkorn University, 2004.

[6] "IEEE Standard Computer Dictionary: A Compilation of IEEE

Standard Computer Glossaries," IEEE Std 610, pp. 204, 1991.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

