

Abstract— Asynchronous system is widely used in real time

systems. It operates under the concurrent controls of the

hardware components. The hardware components would be

implemented using asynchronous circuits. In this paper, the

behavioral specification of an asynchronous system is defined

firstly using valid and live signal transition graph (STG). Our

goal is to verify the implementation of the asynchronous

system, drawn in the forms of the gate level circuit diagram.

The gate level diagram is difficult to be verified against the

expected behavioral specification given in STG. We propose

an alternative scheme of the signal persistence checking of

asynchronous system implementation. The formal verification

model of the asynchronous system is constructed using

Promela code. The simulation of the formal model is done by

SPIN. We propose the 2-phase signal persistence checking

which performs the liveness and lock relation checking of the

circuit implementation.

Index Terms—Asynchronous System, Persistence Checking,

Promela, Lock Relation.

I. INTRODUCTION

esign of asynchronous system is widely used in various

real time systems. It operates under the concurrent

controls of the hardware components. The asynchronous

system, much like object-oriented software, is typically

constructed of modular hardware objects. The hardware

object would be designed and implemented using

asynchronous circuits. Therefore, the design of an

asynchronous circuit is clock-less, difficult and error-prone

which is due to the unpredictable behavior of the

asynchronous circuit itself [1]. The designer typically

agrees on the high level behavior of the asynchronous

circuit beforehand. That is why the behavioral specification

of the asynchronous circuit would be defined firstly. After

that the structural specification of the expected

asynchronous circuit would be then implemented. Several

tools and languages are proposed to capture the behavioral

design such as Petri net [2] and Signal Transition

Weerasak Lawsunnee is a graduate student of department of Computer

Engineering, Faculty of Engineering, Chulalongkorn University. His research

interest is Software Engineering (e-mail: weerasak.l@student.chula.ac.th).

Arthit Thongtak is currently an Assistant Professor of department of

Computer Engineering, Faculty of Engineering, Chulalongkorn University.

His research interests include Digital System Engineering, Digital Systems

Testing, Fault Tolerant Computing, Asynchronous System Design (e-mail:

arthit.t@chula.ac.th).

Wiwat Vatanawood is currently an Associate Professor of department of

Computer Engineering, Faculty of Engineering, Chulalongkorn University.

His research interests include Formal Specification, Formal Verification,

Software Architecture (e-mail: wiwat@chula.ac.th).

Graph (STG) [3]. While VHDL, Verilog, SystemVerilog

[4] are among the tools used to capture the behavioral

design.

In this paper, we focus on the given high level behavioral

specification of the asynchronous system drawn in STG, as

our expected asynchronous flows. Our goal is to verify the

implementation of the asynchronous system, drawn in form

of the gate level circuit diagram, against the expected STG.

The gate level circuit diagram may be complicatedly drawn

with the huge numbers of AND, OR, NOT gates, even C-

element, and theirs connections. Some output signals may

be fed loopback as the inputs to the same circuit, so that it

would possibly lead to the violation of the persistence and

completion of the asynchronous circuit design. It is obvious

that the checking of the persistence and completion of the

gate level circuit diagram is still difficult and tedious task.

We propose an alternative scheme of the signal

persistence checking to ensure that the implementation of

the asynchronous system, shown in the gate level circuit

diagram, is live and persistent conforming to the expected

behavioral specification, shown in a given STG. In our

scheme, we formalize the asynchronous system and have it

simulated using Promela and SPIN. The result of the

simulation generates the possible long sequence of signal

values and transitions, called Signal Simulation (SS). The

SS consists of the nearly exhaustive states of the probed

signals of the inputs and outputs of the gates or elements in

the diagram. We propose the 2-phase signal persistence

checking to indicate the liveness and persistence of the gate

level circuit diagram. The 2-phase signal persistence

checking would be described later in this paper.

This paper is organized as follows. The introduction is

described in section 1. The fundamental background is

reviewed in section 2 and section 3 discusses our scheme of

signal persistence checking of the asynchronous system

implementation. Section 4 is our conclusion.

II. BACKGROUND

A. Signal Transition Graph

A Signal Transition Graph (STG) is an interpreted Petri

Net and it is used to specify the behavior of an

asynchronous circuit. The vertices of such graph represent

the rising and falling transitions of the signals of the

circuit. The edges of such graph represent the flow relations

which indicate the sequences of the transitions.

In our scheme, we consider only the live STG with

single-cycle and no free-choice. Each place has only one

Signal Persistence Checking of Asynchronous

System Implementation using SPIN

Weerasak Lawsunnee, Arthit Thongtak, Wiwat Vatanawood

D

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

fan-in transition and one fan-out transition so that the

places are eliminated. Our simplified STG is formally

defined as a 3-tuple = <T,F,M>. T is a finite set of

transitions (or “events”), and F is a set of flow relations

where F (TxT), and M is a set of marking (or “tokens”).

Each transition t T is represented by signal name s and

transition direction (rising or falling). A transition s+ is a

rising transition of signal s, while s- is a falling transition

of signal s. The rising transition s+ means that the signal

value of s changes from 0 to 1. While, the falling transition

s- indicates the change of the signal value from 1 to 0. The

transition s* means either s+ or s-, and the means the

complementary transition of s*. M is a set of marking mi

where mi is a ordered pair (t1,t2) and mi F. For mi =

(t1,t2), t1 is called “before transition to mi” and t2 is called

“next transition to mi.”

Fig. 1. A Simplified STG

In Fig. 1, A simplified STG is shown and the

components of STG is defined as T = {a+, a-, b+, b-, c+, c-

}, F = { (a+,c+), (c+,a-), (a-,c-), (c-,a+), (b+,c+), (c+,b-),

(b-,c-), (c-,b+) } and there are two marking or tokens,

M = { (c-,a+), (c-,b+) }.

B. Promela and SPIN

Promela (Process or Protocol Meta Language) [5] is one

of the well-known verification modeling languages. The

language provides the mechanisms to represent the

concurrent processes. It is also convenient for Promela to

model the asynchronous system. Promela is C-like language

so that it is common to almost developers and easier to

understand. A sample of Promela code is shown in Fig. 2.

A process is declared by the word “proctype” following

with the process body. The assertion would be easily

inserted to probe a particular condition needed. The

Promela is supported by SPIN which is a verification

system [6]. The SPIN [7] is one of the popular tools to do

the simulation or exhaustive state exploration of a formal

model. In our approach, we would formalize the

asynchronous system and its circuit implementation using

Promela and SPIN is exploited to do the simulation.

Fig. 2. A Sample of Promela Code

III. OUR SIGNAL PERSISTENCE CHECKING SCHEME

In this paper, we propose an alternative checking scheme

of the signal persistence of asynchronous circuit. In the

beginning, the asynchronous flows of asynchronous system

would be specified using a STG which is live, persistent,

single-cycle and no free-choice. Our goal is to check

whether the circuit implementation in form of gate level

diagram would perform the similar behaviors as specified

in the given STG. The formal verification model is

prepared according to the given STG and the circuit

implementation diagram. We also provide the guidelines of

the constructing such formal verification model in terms of

Promela code. The formal model is now the representation

of the implementation of the asynchronous system (the

circuit gate level diagram).

Meanwhile, we introduce the Signal Transition Sequence

(STS) and the Lock Relation Sequence (LRS) which are

used in our scheme. The STS represents all of the possible

unfolding sequences of signal transitions of each simple

cycle in live STG. The STS includes all nodes of the STG,

called transitions and they are enabled/fired eventually. The

STS is used to test the liveness of the circuit

implementation. Moreover, The LRS represents the

sequences of signal transitions that show the patterns of

semi-lock and full-lock relations in live STG. The LRS is

used to test the signal persistence of the circuit

implementation.

 We propose the 2-phase signal persistence checking to

test both STS coverage and LRS coverage on the circuit

implementation. The SPIN is exploited to simulate the

possible sequences of signal transitions of the circuit’s input

and output signals, called Simulation Sequence (SS) as

mentioned earlier. The SS would be checked by using our

2-phase checking scheme and the result is reported. The

overview of our signal persistence checking scheme is

shown in Fig. 3.

A. Generate Signal Transition Driver from STG

Firstly, the target behavioral specification of the

asynchronous system would be given in the form of valid

and live STG. We provide a guideline to construct the

Promela code to drive the transition next to the trigger

transition as written in STG. For example, a sequence of

transitions <t1, t2, t3, t4>, t1 is the trigger transition of t2,

and t2 is the trigger transition of t3, etc. In our approach, we

intend to fire the transitions of the input signals

immediately next to each output signals. A Sample of the

target specification in STG is shown in Fig. 4.

The guideline to construct the Promela code from STG is

as follows.

1) Create an active proctype in Promela for each output

signal Sout in STG

2) Within the active proctype in (1)

Loop forever to do

If (the rising transition of Sout is found) and

(the next transition is input signal Sin) Then

fire the transition Sin

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

If (the falling transition of Sout is found) and

(the next transition is input signal Sin)

Then fire the transition Sin

Endloop

Generate
Asynchronous

Circuit
Implementation

Generate
Signal Transition
Driver from STG

Simulator
(SPIN)

Asynchronous
Circuit

Implementation
in Gate Level

Diagram

Asynchronous
Circuit

Specification in
STG

Promela
Code of the

Circuit

Promela
Code of the

Transition Driver

Simulation
Sequence

(SS)

Generate
Signal

Transition
Sequence (STS)

Signal
Transition
Sequence

2-Phase Signal
Persistence

Checking

Generate
Lock Relation

Sequence

Lock Relation
Sequence

A B D E

C

F

Results

Fig. 3. Our Signal Persistence Checking Scheme

Fig. 4. A Sample Target Specification of Circuit in STG [8]

In the STG shown in Fig. 4, there are two output signals,

called Ao and Ro, and two input signals, called Ai and Ri.

The rising transition of Ao, labelled as Ao+, is followed by

the transition Ri- . Also, the falling transition of Ao,

labelled as Ao-, is followed by the transition Ri+. By using

our guideline, the Promela code constructed from the STG

in Fig. 4 is shown in Fig. 5. Two active proctypes are

created for the two output signals, called MonitorAo() and

MonitorRo(). Within each proctype, the do loop is created

and the input signals next to the output transitions are fired

as shown in the If-statements. The printf statement would

capture the actual signal values of inputs and outputs at the

firing moment. In fact, the printf statement provides us the

sequence of signal values, called Signal Sequence (SS),

during the simulation in SPIN.

The initial values of the signals in STG would be set to

zero. Therefore, the Promela global variables representing

the signals – Ai, Ri, Ao, Ro, are initially set to zero.

Fig. 5. The Promela Code of the Transition Driver

B. Generate Asynchronous Circuit Implementation

Fig. 6. A Sample of the Circuit Implementation [9]

 The asynchronous circuit implementation is drawn in

the form of gate level diagram, which includes AND, OR,

NOT, NOR, NAND, C-element, etc. Fig. 6 shows a sample

of the circuit implementation of the STG shown in Fig. 4.

The diagram would be converted into Promela code.

The guideline describing how to construct the Promela

code is shown as follows.

1) Create an active proctype in Promela for each element

or gate G in the diagram

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

2) Within the active proctype in (1)

Loop forever to do

 Change the output signals according to the truth

table of the type of the element or gate.

Endloop

Fig. 7. The Promela Code of the Circuit Implementation

In the Fig. 6, two C-elements are drawn. The output

signals, Ao and Ro are fed loopback as the inputs to each

other C-element. By using the guideline, Two active

proctypes are created, called Celement1() and Celement2().

The proctype simply perform the changing of the outputs

according to the C-element’s truth table. Fig. 7 shows the

Promela code of the circuit implementation of the diagram

in Fig. 6. The printf statement also captures and provides us

the Simulation Sequence (SS) during the simulation in

SPIN.

C. Generate Simulation Sequence

We consolidate the Promela code from both the transition

driver part (in Fig. 5) and the circuit implementation part

(in Fig. 7) to construct our formal verification model. Then,

the SPIN is used to simulate the behaviors of this system

model. The printf statements are used as our instrument

probing and generate the sequence of signal values, called

Simulation Sequence (SS).

The SS is formally defined as a n-tuple = <s1, s2, …, i,

si+1, …, n> where si is a snapshot of the observable signal

values, and n is the number of snapshot where 1 i n.

A snapshot is a k-tuple s = <v1, v2, …, vi, vi+1, …, vk> where

vi is the ordered signal value (0,1) of the k numbers of

inputs and outputs observed at a particular moment. For

example, s1 = <1, 0, 0, 1> and s2=<1, 1, 0, 1> are the two

snapshots of the signals Ri, Ro, Ai, Ao of the Fig. 4 and

Fig. 5. The SS = <<1, 0, 0, 1>, <1, 1, 0, 1>>. Practically,

the number of snapshots should be huge when the

exhaustive checking is conducted. The SS is expected to

demonstrate the snapshots of the formal model and this

sequence is our key ingredient in our signal persistence

checking scheme at last.

D. Generate Signal Transition Sequences

The Signal Transition Sequence (STS) is introduced to

represent all of the possible unfolding sequences of signal

transitions of each simple cycle in live STG.

The STS is formally defined as a set = { L } where L is

the sequence of transitions. A sequence of transitions is n-

tuple L = <t1, t2, …, ti, ti+1, …, tn>, where ti is either rising

transition r+ or falling transition r-, and r is the signal

name. For example, a STS = { <Ri+, Ao+, Ri-, Ro+, Ao-,

Ai+, Ro-, Ai->, <Ri+, Ao+, Ri-, Ro+, Ai+, Ao-, Ro-, Ai->

}. The STS includes all nodes of the STG, called

transitions, and they are enabled/fired eventually.

Therefore, the STS is used to test the liveness of the circuit

implementation.

The guideline of the extracting of the STS from the given

STG (2 fan-in/2 fan-out) is shown in Fig. 8.

Input

A valid and live STG called G=<T,F,M> where T is a

set of transitions t and M is a set of marking Mi

where Mi is a ordered pair (t1,t2) and (t1,t2) F.
t1 is called "before transition to Mi" and t2 is

called "next transition to Mi"

Output

A sequence STS called S={ L } where L is a

sequence of transitions <a1, a2, ..., an>.

For each marking Mi

 Create a null sequence L

 Loop until the marking Mi traverses back the

 start edge/position again

 Locate marking Mi = (ti,tj)

 If tj has more than one fan-in transitions

 then Append Extra of the other trigger

 transitions x's of tj to the sequence L

 EndIf

 Append tj to the sequence L

 Fire the transition tj so that the marking Mi

 move forward the unvisited edge

 Endloop

 Add sequence L to the set S

For each sequence L in the set S

 For each Extra trigger transition xi

 Create a new sequence Lx similar to L

 In Lx, Swap order of the Extra trigger

 transition xi and the previous one

 Add sequence Lx to the set S

 EndFor

EndFor

Remark: The STS S is the union all of the sequence

 L and Lx so that the duplicate sequences

 are eliminated.

Fig. 8. The Guideline to Extract the STS

We develop a tool to extract the STS using C# and the

sample of the tool is shown in Fig. 9. In the tool, the rising

and falling transitions are labelled as Ai1 and Ai0 instead

of Ai+ and Ai-.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Fig. 9. A Sample of the Signal Transition Sequence

E. Generate Signal Transition Sequences

The Lock Relation Sequences (LRS) is introduced based

on the definition of Lock Relation in [2].

Similar to STS, the LRS is formally defined as a set

 = { R } where R is the sequence of transitions. A

sequence of transitions is k-tuple R = <t1, t2, …, ti, ti+1, …,

tk>, where ti is either rising transition r+ or falling

transition r-, and r is the signal name. However, each

sequence of transitions R is based on Semi-Lock and Full-

Lock Relation definition in [2].

For example, a LRS = { <Ao-, Ro-, Ao+>, < Ao-, Ro-,

Ao+, Ro+>}. Therefore, the LRS is used to test the signal

persistence of the circuit implementation according to

[Park]. In our approach, only semi-lock and full-lock

relation patterns are considered.

In Fig. 10. The rising and falling transitions are labelled

as Ai1 and Ai0 instead of Ai+ and Ai-.

Fig. 10. A Sample of the Lock Relation Sequences

F. 2-Phase Signal Persistence Checking

We propose a 2-phase signal persistence checking

scheme to ensure the liveness and persistence of the circuit

implementation written by gate level diagram. Firstly, the

STS coverage checking is performed. As mentioned earlier,

the STS represents all unfolding sequences of the

transitions of the STG. If the SS, which represents the

execution of the formal model, covers the STS, then the

circuit implementation is also live. Every node of STG is

reachable and fired eventually by the circuit

implementation simulation found in the SS. Secondly, the

LRS coverage checking is performed. If the circuit

implementation, simulated by the SS, matches the patterns

of the LRS, then it is also persistent.

In order to support this signal checking approach, we

develop a tool to perform this 2-phase signal persistence

checking using C#. The STS coverage checking and the

LRS coverage checking are performed shown in Fig. 11.

The result is shown in Fig. 12.

In Fig. 11, the first table shows the patterns matching of

STS found in the SS. The transaction sequence SS splits

into a set of subsequences of SS and the coverage testing is

conducted by searching the sequences of STS in these

subsequences of SS. In the sample table, STS3 is found

firstly at the transition position 1 to 8. Then, STS5 is found

within the transition position 593 to 608, etc. While, the

second table, in Fig. 11, shows the coverage of LRS in the

SS. The semi-lock sequence: Ao0 > Ro0 > Ao1, is found

during the simulation step 6-10. The semi-lock sequence:

Ri0 > Ao0 > Ri1, is also found during the simulation step

5-9, etc. While the full-lock sequence: Ao0 > Ro0 > Ao1 >

Ro1, is found at the step 6-11, etc. The result in Fig. 12

concludes the number of STS and LRS found in the

simulation sequence SS.

Fig. 11. The STS Coverage and the LRS Coverage Checking

Fig. 12. Summary Result table

IV. CONCLUSION

In this paper, we propose an alternative scheme of signal

persistence checking of asynchronous system

implementation. The circuit implementation drawn in gate

level diagram is checking against its behavioral

specification in STG. We also propose the 2-phase signal

persistence checking using STS coverage and LRS coverage

testing. We introduce how to generate STS and LRS and

develop a software tool to support our approach. However,

we focus only the STG with live, single cycle, and no free-

choice. Our future works would concern more on the non-

terminal signals and the delay of the circuit gate and its

wiring.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

REFERENCES

[1] Dill L.D. and Clarke E. Automatic verification of asynchronous circuits

using temporal logic. In Proceedings of the 1985 Chapel Hill

Conference on VLSI, Computer Science Press, May 1985.

[2] Park,S.B, “Synthesis of Asynchronous VLSI Circuits from Signal

Transition Graph Specifications. Doctoral dissertation, Department of

Engineering-Computer Science, Tokyo Institute of Technology,1996.

[3] Tam-Anh Chu, “Synthesis of self-timed VLSI circuits from graph-

theoretic specifications”, PhD thesis, Massachusetts Institute of

Technology, June 1987.

[4] Hauck S. Asynchronous Design Methodologies: An Overview.

Proceedings of the IEEE 1995, pp. 69-93.

[5] Christel Baier and Joost-Pieter Katoen, “Principles of Model Checking”,

The MIT Press Cambridge, Massachusetts London, England, 2008

[6] Gerard J. Holzmann, “Principles of the Spin Model Checker”, Springer-

Verlag London Limited, 2008.

[7] Ke Jiang, “Model Checking C Programs by Translating C to Promela”,

Institutionen för informationsteknologi, Department of Information

Technology. September 2009.

[8] E.M.Sentovich, L.Lavagno et.al., “SIS: A system for sequential circuit

synthesis”, Electronics Research Lab. Memorandum No. UCB/ERL

M92/41, UC at Berkeley May 1992.

[9] Arthit Thongtak, "A Study on testing methodologies of asynchronous

logic circuits," PhD Thesis, Dept. of Electrical and Electronics

Engineering, Tokyo Institute of Technology, Japan, Jan.1996. (In

Japanese).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol II,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-9-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

