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Abstract—The CoDel algorithm has been a significant ad-
vance in the field of AQM. However, it does not provide bounded
delay. Rather than allowing bursts of traffic, we argue that a
hard limit is necessary especially at the edge of the Internet
where a single flow can congest a link. Thus in this paper we
proposed an extension of the CoDel algorithm called “hard
limit CoDel”, which is fairly simple but effective. Instead of
number of packets, this extension uses the packet sojourn time
as the metric of limit. Simulation experiments showed that the
maximum delay and jitter have been well controlled with an
acceptable loss on throughput. Its performance is especially
excellent with changing link rates.

Index Terms—bufferbloat, CoDel, AQM.

I. INTRODUCTION

The CoDel algorithm proposed by Kathleen Nichols and
Van Jacobson in 2012 has been a great innovation in AQM.
It’s a “no-knobs” AQM that adapts to changing link rates,
and is likely to be deployed across the Internet in several
years after rigorous testing and analysis.

However, CoDel is designed to be an algorithm that allows
bursts of traffic while controlling average queue length.
When configured with a large buffer, it is suitable for
backbone links, but not for the edge of the Internet where
the link could be bottlenecked by a single flow. In a lot
of occasions, e.g., when performing stock trading, playing
online games, or playing music, jitter and maximum delay
would become a major concern of end users that the default
CoDel algorithm does not guarantees.

At the edge of the Internet, CoDel should be configured
with a buffer which is much smaller, and when the link rate
changes, the buffer size should also change accordingly.

Thus in this paper, we proposed an extension of the CoDel
algorithm called “Hard Limit CoDel”, which is specially
designed for links at the edge of the Internet where a
small and adaptive hard limit is necessary. “Hard Limit
CoDel” has just one parameter: the max delay (specified in
milliseconds). We have implemented the algorithm both in
the ns-2 simulator and in real embedded Linux platforms.
Experiment results show that the maximum delay could be
well controlled without much loss on throughput in most cir-
cumstances. In particular, this extension brings about much
better performance when the link rate changes significantly.
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II. BACKGROUND INFORMATION

Nowadays the Internet is suffering from high latency and
jitter caused by unprotected large buffers. The “persistently
full buffer problem”, recently exposed as “bufferbloat” [1],
[2], has been observed for decades, but is still with us.

When recognized the problem, Van Jacobson and Sally
Floyd developed a simple and effective algorithm called RED
(Random Early Detection) in 1993 [3]. In 1998, the Internet
Research Task Force urged the deployment of active queue
management in the Internet [4], specially recommending
RED.

However, this algorithm has never been widely deployed
because of implementation difficulties. The performance of
RED depends heavily on the appropriate setting of at least
four parameters:

• Minimum threshold
• Maximum threshold
• Exponential weighted moving average constant
• Maximum drop probability
As little guidance was available to set its parameters, RED

functions poorly in a number of cases, which led to a general
reluctance to use it. A number of variations and imitations
have been proposed since then, most of which focus on
creating an adaptive algorithm that is not so sensitive to the
initial parameters. Although research continued, deployment
did not.

Subsequent research succeeded to fix some of the flaws
in the original RED but failed to create an AQM that could
keep persistent buffers short without overdropping, until the
proposal of the “CoDel” algorithm 2012 [5]. In that paper
it is found that when the minimum packet sojourn time in a
specific interval is used as a measure of bad queue, it can be
efficiently controlled while still permitting bursts of traffic.
The authors have selected the best values for delay control
- 5ms for packet sojourn time and 100ms for the interval.
Simulation results showed that under the suggested setting,
this algorithm works well across a wide range of bandwidths,
RTTs, and traffic loads with high utilization. As the results
are so compelling, it becomes unnecessary to further tune
the parameters.

The ns-2 model of CoDel, the novel “no-knobs” AQM
was ported to the Linux kernel quickly, and a variant called
“fq codel” has also been implemented, which combines
stochastic fair queuing (SFQ) and CoDel to further improve
performance. In fq codel, different flows are hashed into a
number of queues; each queue is managed separately by the
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CoDel algorithm, and different queues take turns to send
packets.

III. CODEL AT THE EDGE OF THE INTERNET

As stated above, CoDel is proposed as an adaptive algo-
rithm that works for different RTTs, changing traffic loads
and link rates. It can be deployed in a number of network
scenarios including backbone links in the Internet, broadband
access servers of the ISPs, and home wireless networks in
everyone’s house.

However, can CoDel guarantee the expected quality of
service of end users? When the ISP configures a large buffer
managed by CoDel, though persistent queues are controlled,
allowing bursts of traffic means the queuing delay may be
very high in some short periods. The result is, though average
delay is controlled, maximum delay and jitter are not.

High delay and jitter affect a lot of applications of the
Internet including stock trading, online games, VoIP, etc. For
tomorrow’s virtual reality applications, the requirement on
latency is even higher: it should be kept under 30ms so that
something feels attached to your hand.

Therefore, at the edge of the Internet, the last bottleneck
along the path, more restriction should be introduced so that
maximum delay and jitter can be better controlled 1.

In the ns-2 and Linux kernel implementation of CoDel,
users can specify the buffer size by setting the limit param-
eter, which is the maximum number of packets in queue.
Since a buffer of 1000 packets is often too large for most
users, does it make sense to decrease the buffer size at the
Internet edge? Unfortunately, though it works for a link with
a static bandwidth, it does not for changing link rates. In a
wireless network where the signal strength varies, or when
the ISP has a “boost” feature that raise the bandwidth by 5
times for a few seconds when the link gets out of idle state,
the maximum delay might be 5 times larger than usual when
the bandwidth finally falls back.

As a result, number of packets is not a good measure of
buffer size. To provide consistent user experience (maximum
delay and jitter) at the edge of the Internet, packet sojourn
instead of number of packets should be used as the metric
of “limit” - and that’s all about our extension named hard
limit CoDel.

Hard limit CoDel has just one parameter: the max packet
sojourn time (max delay). The default value of the parameter
is 50ms, which is selected according to the demand of end
users. Most of today’s Internet applications can run smoothly
when the maximum delay is controlled in 50ms. But after all,
this value should be configurable and exposed to end users.

The pseudo code of hard limit CoDel is also very simple,
with only a few lines added to the original algorithm, as
shown in Figure 1. We believe that this extension of CoDel
can also be efficiently implemented in silicon.

1Although we just focus on the edge of the Internet in this paper, it does
not necessarily make sense even for backbone links when packets are early
dropped according to one criterion (the packet sojourn time), and dropped
according to another (the number of packets) when the limit is reached.

t y p e d e f s t r u c t {
p a c k e t t ∗ p ;
f l a g t o k t o d r o p ;

+ f l a g t h a r d d r o p ;
} d o d e q u e r e s u l t ;

d o d e q u e r e s u l t c o d e l q u e u e t : : dodeque ( t i m e t now )
{

d o d e q u e r e s u l t r = { queue : : deque ( ) , 0 , 0 } ;
i f ( r . p == NULL) {

f i r s t a b o v e t i m e = 0 ;
} e l s e {

t i m e t s o j o u r n t i m e = now − r . p−>t s t a m p ;
i f ( s o j o u r n t i m e < t a r g e t | |

b y t e s ( ) < maxpacket ) {
f i r s t a b o v e t i m e = 0 ;

} e l s e {
i f ( f i r s t a b o v e t i m e == 0) {

f i r s t a b o v e t i m e = now + i n t e r v a l ;
} e l s e i f ( now >= f i r s t a b o v e t i m e ) {

r . o k t o d r o p = 1 ;
}

}
+ i f ( s o j o u r n t i m e > max delay ) {
+ r . o k t o d r o p = 1 ;
+ r . h a r d d r o p = 1 ;
+ }
}
re turn r ;

}

p a c k e t t ∗ c o d e l q u e u e t : : deque ( )
{

t i m e t now = c l o c k ( ) ;
d o d e q u e r e s u l t r ;

+ do {
+ r = dodeque ( ) ;
+ } whi le ( r . h a r d d r o p && drop ( r . p ) ) ;

i f ( r . p == NULL) {
d r o p p i n g = 0 ;
re turn r . p ;

}
i f ( d r o p p i n g ) {

i f ( ! r . o k t o d r o p ) {
d r o p p i n g = 0 ;

} e l s e i f ( now >= d r o p n e x t ) {
whi le ( now >= d r o p n e x t && d r o p p i n g ) {

drop ( r . p ) ;
++ c o u n t ;
r = dodeque ( ) ;
i f ( ! r . o k t o d r o p )

d r o p p i n g = 0 ;
e l s e

d r o p n e x t = c o n t r o l l a w ( d r o p n e x t ) ;
}

}
} e l s e i f ( r . o k t o d r o p &&

( ( now − d r o p n e x t < i n t e r v a l ) | |
( now − f i r s t a b o v e t i m e >= i n t e r v a l ) ) ) {

drop ( r . p ) ;
r = dodeque ( ) ;
d r o p p i n g = 1 ;
i f ( now − d r o p n e x t < i n t e r v a l )

c o u n t = count >2? count−2 : 1 ;
e l s e

c o u n t = 1 ;
d r o p n e x t = c o n t r o l l a w ( now ) ;

}
re turn ( r . p ) ;

}

Fig. 1. The pseudo code of hard limit CoDel
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IV. SIMULATION ANALYSIS

We used the typical dumbbell topology with a single
congested link in our simulations, as shown in Figure 2.
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Fig. 2. The network scenario

As a new hard limit is introduced, the average and maxi-
mum delay in different network scenarios are expected to be
lower, and the throughput also lower. To see what exactly the
performance would be, we’ve written a few scripts and run
thousands of simulations, with bottleneck bandwidth from
1 Mbps to 100 Mbps, round-trip-time from 10ms to 500ms,
simultaneous bulk data transfer from 1 to 64, PackMime web
traffic intensity form 0 to 80, and reverse bulk data transfers
from 0 to 4. Each experiment is executed three times, one for
the original CoDel algorithm with a limit of 1000 packets,
one for hard limit CoDel with a max delay of 50ms, and the
last for a FIFO queue which is 50ms long. TCP New Reno
is used as the congestion control algorithm.

Just as the name implies, the most important feature of
hard limit CoDel is that theres a “hard limit” of queuing
delay. The default value of the hard limit is 50ms. However,
as the original CoDel is designed to be an algorithm that al-
lows bursts of traffic while controlling bad queues, the default
limit in both the ns-2 and the Linux kernel implementation
is quite large.

As a result, the maximum delay and jitter are not con-
trolled when therere a few bulk data transfers. Figure 3 shows
what exactly the maximum delay would be under different
level of congestion.

When the number of ftp flows increases, the maximum
delay also increases linearly. In particular, the delay may be
easily raised above 200ms when there are only 2 to 4 flows in
low and medium bandwidth (below 16 Mbps) environments.
If the ISP has configured a CoDel algorithm with a buffer of
1000 packets, such jitter may be observed frequently when
the users are surfing the Internet, as todays web pages contain
more and more big pictures. When running P2P applications,
it may be even worse.

The most significant advance of the original CoDel is the
effective control of bad queues and average delay. However,
as more packets are dropped in hard limit CoDel, its average
delay is even lower.

Figures 4 to 7 present the average delay under different
bandwidths and level of congestion, and there are several
noteworthy points:
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Fig. 3. The maximum delay of CoDel under different level of congestion
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Fig. 4. The average delay under bandwidth 1 Mbps
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Fig. 5. The average delay under bandwidth 4 Mbps

• The average delay of CoDel has been well controlled.
It is above 50ms only when the bandwidth is limited (1
Mbps) and there are a lot of bulk data transfers.

• Under high bandwidth, the average queue length of the
FIFO queue is the longest among the three. So instead
of an unprotected large buffer, we get an “unprotected
small buffer”.

We used the canonical RTT value 100ms in the previous
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Fig. 6. The average delay under bandwidth 16 Mbps
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Fig. 7. The average delay under bandwidth 64 Mbps

experiments. Smaller and larger RTTs have also been tested.
Smaller RTTs generally lead to a bit higher delays, and larger
RTTs lead to a bit lower delays. As there is no significant
difference, they are not displayed here to save space.

Although the measured delay is apparently lower with
hard limit CoDel, it is not achieved at no cost. It is found
that the link utilization is affected to some extent, and its
most sensitive to the round trip time and the number of bulk
transfers.

As presented in Figures 8 to 11, a small RTT leads to
higher throughput. A large RTT, on the other hand, leads to
lower throughput. When the number of ftp flows increases,
link utilization also rises quickly.

Actually, the throughput of hard limit CoDel is signifi-
cantly lower than the original CoDel only when the RTT is
large (500ms), the bandwidth is high (64 Mbps) with only
one TCP flow, in which case the throughput is only 4.1 Mbps,
63% lower than that of the original CoDel. Though it may
seem to be a significant loss, we argue that it is acceptable
because even in the worst case, a bit rate of 4 Mbps is
sufficient to support today’s 720p videos. The link utilization
is much higher when either of the three conditions changes.

When there’re some reverse bulk data transfers, the aver-
age delay is a lot higher but under 50ms most of the time
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Fig. 8. The link utilization of CoDel with 1 ftp
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Fig. 9. The link utilization of hard limit CoDel with 1 ftp
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Fig. 10. The link utilization of CoDel with 8 ftp

and the throughput is a bit lower.
When there’s a lot of web traffic, the bursts of web traffic

may “attack” the long-lived bulk TCP flows, leading to a
slightly lower throughput under high bandwidth. When the
bandwidth is lower, however, web traffic helps to improve
utilization.

As the figures related to reverse ftp and web traffic are not
surprising, they are not displayed here.
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Fig. 11. The link utilization of hard limit CoDel with 8 ftp
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Fig. 12. Measured delay under dynamic bandwidth
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Fig. 13. Measured throughput under dynamic bandwidth

Finally, the network scenario for changing bandwidth has
also been examined. We used a load of 4 FTPs and 5 web
connections per second to emulate an unstable 100 Mbps
wireless link, and the round trip time is 100ms. The link
rate is changed every 50 seconds, first dropping to 10 Mbps,
then to 1 Mbps, then jumping to 50 Mbps, dropping to 1

Mbps, and finally jumping back to 100 Mbps. The measured
delay and throughput are presented in Figure 12 and 13.

Though it is pointed out in [5] that CoDel works much
better than tail drop and RED under dynamic bandwidth, the
authors did not pay attention to the fact that the maximum
delay of CoDel could be rather high (up to 2000ms at the
50 Mbps to 1 Mbps transition). However the maximum
delay is well controlled with Hard limit CoDel, with an
acceptable (about 2.6%) loss on overall throughput. We
have also tested CoDel with a smaller buffer (50ms @
100Mbps). However the buffer still becomes too large when
the bandwidth decreases. As its curve is similar to that of
CoDel with a buffer of 1000 packets, it’s not displayed here.

We have also implemented hard limit CoDel in real Linux
platforms 2, and organized a series of experiments. As the
results are similar, they’re not display here to save space.

V. CONCLUSION

Though CoDel has been a fundamental advance in the field
of AQM, it does not provide a delay bound which is urgently
needed at the edge of the Internet where the link could be
bottlenecked by a single flow. The current implementation of
CoDel in the ns-2 simulator and the Linux kernel uses the
number of packets as the limit, which may cause extremely
high latency when the link rate decreases significantly.

As a result, we argue that number of packets is not a good
metric of limit. Instead of number of packets, the packet
sojourn time should be used as the metric of limit. This
modification of CoDel is simple but effective. Simulation
experiments showed that delay has been well controlled with
an acceptable loss on throughput. It works much better than
the original algorithm especially when the bandwidth varies.

Although the extension is called “hard limit CoDel” in this
paper, we argue that it should be merged to original CoDel
algorithm as a standard option.
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