
A Network-Based Scalability Model for
Distributed Real-Time Resource Management

Dominik Meiländer, Marcel Lorke, and Sergei Gorlatch

Abstract—We consider a challenging class of so-called Real-
Time Online Interactive Applications (ROIA); popular exam-
ples include multi-player online computer games, e-learning and
training based on real-time simulations. ROIA combine high
demands on scalability and real-time user interactivity with the
problem of an efficient and economic utilization of resources
with heterogeneous network capabilities. This paper proposes a
generic scalability model for ROIA that analyzes the application
performance during runtime and predicts the demand for load
balancing, i.e., whether and when to add/remove resources or
redistribute workload. In an experimental evaluation, we prove
the quality of our model by comparing the proposed workload
distribution using our model against the optimal workload
distribution for a multi-player online game.

Index Terms—scalability model, network communication,
resource management, Real-Time Online Applications (ROIA),
Real-Time Framework (RTF).

I. INTRODUCTION

THIS paper is motivated by the challenges of the emerg-
ing class of Real-Time Online Interactive Applications

(ROIA). Popular and market-relevant representatives of this
application class are massively multi-player online games,
as well as real-time training and e-learning based on high-
performance simulation. ROIA are characterized by high
performance requirements, such as: short response times to
user inputs (about 0.1-1.5 s); frequent state updates (up to
50 Hz); large and frequently changing number of users in a
single application instance (up to 104 simultaneously).

Since the high demands on ROIA performance usually
cannot be satisfied by a single server, scalability (i.e., ac-
commodating an increasing number of users) is achieved by
employing distributed, multi-server application processing.
Two main resources needed for the operation of ROIA are
computational power and network bandwidth [1]. While we
addressed the scalability of ROIA with respect to com-
putational power in [2], this work focuses on scalability
with respect to network bandwidth which is used for the
communication between ROIA servers and their clients as
well as for inter-server communication. Recently, ROIA
providers increasingly use virtualized Cloud resources for
ROIA, e.g., via Amazon EC2 [3]. The availability of poten-
tially unlimited Cloud resources increases the demand for
predicting application scalability and estimating the effect
of different load-balancing actions, i.e., adding resources or
redistributing workload.

In this paper, we focus on the scalability of ROIA with
respect to network bandwidth when choosing among multiple

Manuscript received August 25, 2014; revised September 01, 2014. Our
research has received funding from the EC’s 7th Framework Programme
under grant agreements 318665 (OFERTIE) and 295222 (MONICA).

D. Meiländer, M. Lorke and S. Gorlatch are with the Department
of Computer Science, University of Muenster, Germany e-mail: (see
http://www.uni-muenster.de/PVS/en/mitarbeiter/).

load-balancing actions. Our contribution is a novel network-
related scalability model that analyzes the performance of
a ROIA application during runtime, predicts the maximum
supported number of users and determines a suitable work-
load distribution for resources with heterogeneous network
capabilities. We utilize our Real-Time Framework (RTF) [4]
to provide a case study application that is used to evaluate the
quality of the workload distribution proposed by our model.

The paper is organized as follows. Section II describes
our target class of Real-Time Online Interactive Applications
(ROIA) and the Real-Time Framework (RTF) used for their
development and execution. Section III presents our new
model for predicting the maximum supported number of
users per server. Section IV reports our experimental results
on the evaluation of the proposed workload distribution for
an example multi-player online game. Section V compares
our approach to related work and concludes the paper.

II. SCALABLE ROIA DEVELOPMENT WITH RTF

Typically, there are three different actors involved in
the development and execution of ROIA: (i) Application
developers implement the ROIA application, i.e., server and
client programs realizing the application logic, and suitable
mechanisms for application state distribution and monitoring,
(ii) Application providers make ROIA accessible to users by
executing application servers on hardware resources and im-
plement dynamic load balancing for ROIA sessions accord-
ing to the current user workload, and (iii) Users connect their
personal computers (clients) to application servers using the
application client and control their avatars that interact with
application entities, i.e., other users’ avatars or computer-
controlled characters, in the virtual environment. Each user
accesses an application state which he shares with other users
and interacts with them within one virtual environment.

We use the real-time loop model [5] for describing ROIA
execution on hardware resources. Each user’s client is con-
nected to one application server that processes users’ inputs
(e.g., commands and interactions with other users), computes
the application state updates and sends them to its users’
clients (left-hand side of Fig. 1). One iteration of the real-
time loop is called a tick and consists of three steps:

1) Each server receives inputs from its connected users.
2) Each server computes a new application state accord-

ing to the application logic.
3) Each server sends the newly computed state to its

connected users and to other servers.
Steps 1 and 3 involve communication to transmit the users’
inputs and state updates between multiple application servers.
The computation of a new application state (step 2) involves
quite compute-intensive calculations which apply the appli-
cation logic to the current state, taking into account the newly

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Replication 2

Replication 1

2. Calculate new
application state

1. Receive
user inputs

3. Send new
application state

User Inputs

Client

Client

Client

Client

Server

Server

State Update

Server

Application state
(set of entities)

Zone 2

Zone 1

Instance 1

Instance 2

Fig. 1. One iteration of the real-time loop (left); RTF methods for application state distribution (right).

received users’ inputs. The time required for one iteration of
the real-time loop (tick duration) is directly related to the
application’s response time, and, hence, is used as a quality-
of-experience criterion for ROIA.

The Real-Time Framework (RTF) [6] is our high-level de-
velopment platform for ROIA which supports the application
developer in three essential tasks as explained in the fol-
lowing: (i) application state distribution, (ii) communication
handling, and (iii) monitoring and distribution handling.

RTF supports three common methods of application state
distribution among servers (on the right-hand side of Fig. 1):
zoning, instancing and replication, and combinations of them
[6]. Zoning assigns the processing of the entities in disjoint
areas (zones) to distinct servers. Instancing creates separate
independent copies of a particular zone; each copy is pro-
cessed by a different server. In the replication approach, each
server keeps a complete copy of the application state, but
each server is responsible for a disjoint subset of entities
(active entities, black in Fig. 1) and receives updates for so-
called shadow entities (grey in Fig. 1) from other servers.

RTF provides high-level mechanisms for communication
handling: automatic (de-)serialization for objects to be trans-
ferred over network (user inputs, application state updates,
etc.), (un-)marshalling of data types, and optimization of
the bandwidth usage. RTF’s monitoring and distribution
handling allows the provider to change the distribution of
the application state during runtime, as well as to receive
monitoring data from RTF inside an application server.
The distribution of the application state can be changed by
load-balancing actions which include: (i) adding/removing
resources to/from the application processing using zoning,
instancing and replication, or (ii) migrating users between
application servers, i.e., transferring the responsibility for
user input processing and state update computation from one
server to another.

III. THE SCALABILITY MODEL

In this section, we design a network-based scalability
model for ROIA that will predict the maximum number of
clients for each application server in order to predict when
a server will become overloaded and to trigger some other
load-balancing action, e.g., user migration from the over-
loaded server to the other servers. Obviously, the maximum
possible number of clients of a zone depends on the number

of servers assigned to it and the bandwidth of their network
links.

Our model needs to solve an optimization problem, i.e.,
maximizing a target function given multiple input values
(e.g., number of replicas) and non-trivial constraints ex-
pressed as inequations. For computing a solution to this
optimization problem, we utilize the technique of nonlinear
programming [7]. This allows us to model relevant con-
straints as a set of equations and inequations, and employ
existing nonlinear programming tools, e.g., the CHOCO
Solver Library [8].

Our model aims at maximizing the number of supported
clients on N servers which is expressed by the following
target function (ai being the number of clients on server i):

nmax(N) = max{
N∑
i=1

ai | given constraints are satisfied}

Our model is based on the guaranteed bandwidth of
network links which denotes the bandwidth that is available
to an application at any point in time. In contrast to the
available bandwidth (i.e., the unused bandwidth) of network
links, which is an often-used performance indicators for
determining how many additional clients can be served [9],
the guaranteed bandwidth is a stable value that is not
influenced by other applications using the same links. For
ROIA, it is common to specify QoS requirements for network
links which makes it easy to determine practical values
for the guaranteed bandwidth. Obviously, the guaranteed
bandwidth is smaller or equal to the theoretically maximum
bandwidth of the link and has the advantage that it allows
for optimization without considering the current available
bandwidth of any of the relevant links. In the following, we
refer to the guaranteed bandwidth as bandwidth if not stated
otherwise.

Our model addresses ROIA that are hosted in a datacenter.
However, the underlying network topology that connects all
servers has big influence on scalability issues. To take the
network topology into account, we start with modeling a sim-
ple setup containing a single router in order to identify basic
input values and constraints for our model (Section III-A).
Then, we enhance our model for a more generic scenario
involving multiple routers in a datacenter (Section III-B).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

Internet
out

ext

inext

in1

out
1

out2
in2

out3
in3out4

in4

Server 1 Server 2

Server 3Server 4

Internal Network

Fig. 2. Single router topology.

A. Single Router Topology

The single router topology is a very simple network
topology that is actually very rarely used for ROIA in
practice, but which allows us to determine basic input values
and constraints for our model. Fig. 2 illustrates how several
servers are connected to each other through a single router
in a local-area network (LAN). The router is connected to
an external network (e.g., the Internet) from which users
connect to the application servers. We denote the bandwidth
of the router’s incoming and outgoing links to the external
network by inext and outext , respectively. The bandwidth
of the incoming and outgoing (internal) links of application
server i are denoted by ini and outi , correspondingly, where
i < N and N is the number of application servers used for
the replication of a particular zone (N = 4 in Fig. 2). Later
on we will calculate approximating functions for inext (and
other functions in our model) based on experimental results
for a particular application.

In the following, we develop constraints for the single
router topology. For this purpose we distinguish between
(i) external network links, and (ii) internal network links.

The external network links receive client inputs as incom-
ing traffic as illustrated in Section II (step 1 in Fig. 1). Hence,
the total amount of incoming traffic from external network
links is determined by the sum of bandwidth input(ai)
required for receiving the inputs of ai active entities from
server i, where i ≤ N and N is the number of servers.
Since the total amount of incoming traffic from external links
is restricted by the bandwidth of the router’s incoming link
to the external network, our first constraint is expressed as
follows:

N∑
i=1

input(ai) ≤ inext (1)

The outgoing external links are used for sending state
updates to clients. The bandwidth update(ai , si) of server
i to external network links is determined by the number of
active entities ai as well as by the number of shadow entities
si: state updates are sent for each active entity and the size of
state updates is determined by the overall number of clients
(i.e., active + shadow entities; both kinds of entitites are
explained in Section II) since each entity may change its
state:

N∑
i=1

update(ai , si) ≤ outext (2)

The internal network links are used for communication
between the application servers as well as between servers
and clients. The latter is the part of the client-server com-
munication within the internal network. The incoming links
are utilized as follows:
• For ai active entities of server i, bandwidth input(ai)

(as used in (1)) is used for receiving input actions from
the clients that are controlling these entities.

• For si shadow entities of server i, bandwidth eu(si)
is used for receiving entity updates from the servers
that are responsible for the corresponding active entities.
eu() is a function that takes the number of entities for
which updates are received (for incoming links) or sent
(for outgoing links).

• For interactions of shadow entities with active entities of
server i, bandwidth fa(ai , si , ai + si) is used on server
i for receiving forwarded actions from the servers that
are responsible for these shadow entities. It is important
to distinguish between the initiator and the target of
an interaction between active and shadow entities since
sending forwarded actions generates outgoing traffic on
the initiator’s server and incoming traffic on the target’s
server. Hence, fa() is a function that takes the number
of potential targets as first, the number of potential
initiators of interactions as second, and the overall
number of entities as third argument. For modeling
incoming bandwidth on server i, the number of potential
targets corresponds to ai (active entities), the number of
potential initiators corresponds to si (shadow entities),
and the overall number of entities corresponds to ai+si.

Since the overall incoming bandwidth of internal links
used for input actions, entity updates and forwarded actions
must be smaller or equal to the guaranteed bandwidth, we
formulate the following constraint:

input(ai)︸ ︷︷ ︸
client-server

comm. within
internal network

+ eu(si) + fa(ai , si , ai + si)︸ ︷︷ ︸
inter-server comm.

≤ ini

(3)
The outgoing internal links are used for the following

tasks:
• For ai active and si shadow entities of server i, band-

width update(ai , si) (as used in (2)) is used for sending
state updates to the clients that are controlling the active
entities.

• For ai active entities of server i, bandwidth eu(ai) is
used for sending entity updates to one other server in
order to update its shadow entities. While there are N−
1 other servers which require entity updates, we need to
take into account the overhead caused by adding a new
replication when one of the servers becomes overloaded.
In this case, entity updates need to be sent to N other
servers (including new replica).

• For interactions of active entities with shadow entities
of server i, bandwidth fa(si , ai , ai + si) is used on
server i for sending forwarded actions to the servers that
are responsible for these shadow entities. For modeling
outgoing bandwidth on server i, the number of potential
targets corresponds to si (shadow entities) and the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

number of potential initiators corresponds to ai (active
entities).

Since the overall outgoing bandwidth of internal links
used for state updates, entity updates and forwarded actions
must be smaller or equal to the guaranteed bandwidth, we
formulate the following constraint:

update(ai , si)︸ ︷︷ ︸
client-server

comm. within
internal network

+N · eu(ai) + fa(si , ai , ai + si)︸ ︷︷ ︸
inter-server comm.

≤ outi

(4)
With the previous information it is now possible to design

a model that allows the calculation of the maximum number
of clients per server. This is done by means of nonlinear
programming. However, in order to do so, some additional
constraints need to be added to the model. Since the complete
application state is fully replicated at each server, the sum of
shadow entities of any server must match the sum of active
entities of all other servers, i.e.:

si −
N∑

n=1,n6=i

an = 0 (5)

It is then possible to calculate the maximum number of
active and shadow entities nmax(N) for a given number of
N servers. This is done by maximizing the number of active
entities in the zone as shown in Equation (6):

nmax(N) = max{
N∑
i=1

ai | constraints (1)-(5) are satisfied}

(6)
Since the number of shadow entities is related to the number
of active entities, the former are indirectly maximized as
well.

B. Datacenter Topology

The datacenter topology is a common network architecture
for ROIA that are hosted in a single datacenter (Fig. 3). While
the core router is still used to connect the datacenter and
the external network, datacenters usually include multiple
routers that can be distributed arbitrarily throughout the entire
datacenter. This adds a substantial amount of new links to
the model. we regard the internal connections in this case as
logical rather than physical, since the servers are connected
through a network of various numbers of routers and links,
which is unknown. For this purpose, we denote the links that
are used for communication between two servers S1 and S2
as the path between S1 and S2 . A major challenge for this
topology is that, even though the incoming or outgoing link
to a server may have sufficient bandwidth, the path between
two servers may not, due to some insufficient links on that
path. In order to account for this, every path that connects a
server to another server needs to be taken into account.

While the previous constraints (1)–(5) for the external
and internal links must still hold true, we need to introduce
additional constraints in order to address the utilization of
logical links for communication (i) between the servers,
and (ii) between the servers and the core router. Since it
is possible that multiple paths between two servers exist,

Internet
out

ext

inext

Server 1 Server 2

Server 3Server 4

Datacenter

Physical link
Logical link
Logical link
(to Core Router)

Core
Router

in1
out

1

in2
out

2

in3

out
3

in4

out
4

Fig. 3. Datacenter topology.

every single path has to be assessed when considering inter-
server traffic. While one path between two servers may have
sufficient bandwidth, the required amount of entity updates
and forwarded actions can still not be exchanged if another
path with insufficient bandwidth between these servers is
chosen for communication. To account for this, we denote
the link with the smallest bandwidth of all paths between
two servers as tight link that determines the bandwidth for
these paths. In order to identify the tight link for every pair
of servers, we analyze all links that are part of paths between
these servers. We denote the bandwidth between the servers
i (sending) and j (receiving) as pathi,j . Let linkk

i,j be the
bandwidth of the k-th link between i and j and numi,j the
total number of links between i and j, then the bandwidth
between these servers is described as:

pathi,j = min
k=1,...,numi,j

linkk
i,j (7)

For modeling additional constraints related to the inter-
server communication, we have to consider entity updates
and forwarded actions. The bandwidth pathi,j must not be
exceeded by the bandwidth required for (a) sending updates
from server i to server j resulting in bandwidth eu(ai), and
(b) sending forwarded actions initiated by the active entities
of server i (denoted by ai) to the targets managed by server j
(denoted by aj), resulting in bandwidth fa(aj , ai , ai + si).
Since the outgoing traffic of server i is the incoming traffic
of server j on the same server-server path, it is sufficient to
focus on the outgoing traffic:

eu(ai) + fa(aj , ai , ai + si) ≤ pathi,j (8)

For modeling additional constraints related to the commu-
nication between the server and the core router, we have to
consider client inputs and state updates. The bandwidth be-
tween server i and the core router, denoted as inc,i (incoming
links) and outi,c (outgoing links), must not be exceeded by
the bandwidth required for (1) receiving client inputs for ai
active entities on server i (input(ai)) and (2) sending state
updates for ai active entities (update(ai , si)):

input(ai) ≤ inc,i (9)
update(ai , si) ≤ outi,c (10)

For the datacenter topology, our enhanced model maxi-
mizes (6) for the given constraints (1)–(5) and (8)–(10).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

TABLE I
THEORETICAL MAXIMUM NUMBER OF ACTIVE AND SHADOW ENTITIES

PER SERVER FOR UP TO 10 REPLICATION SERVERS.

Servers # max. Clients Active Shadow

1 385 385 0
2 543 272 271
3 665 222 443
4 766 192 574
5 855 171 684
6 939 156 780
7 1009 144 865
8 1080 135 945
9 1143 127 1016
10 1210 121 1089

IV. EVALUATION

As an application example for our experimental evalu-
ation, we use the RTFDemo application which is a fast-
paced action game from the domain of FPS (First-Person
Shooters), with all typical features of modern online games.
In RTFDemo, each user controls his own avatar (robot) in
the 3D virtual world, and users can interact by shooting at
(and thus damaging) other users avatars. For the sake of
comfortable experiments with RTFDemo, users are simulated
by so-called bot clients which are dedicated client processes
that autonomously trigger movement and attack actions. Our
experimental testbed uses the datacenter topology analyzed
in Section III-B.

We conducted several benchmarking experiments for the
determination of the different parameters of our model
(input , update, etc.) and we used the least squares ap-
proach [10] to find functions that approximate our mea-
surement data best. The least squares approach calcu-
lates the coefficients ci of a given function f(x) =∑m

i=0 ci · xi, such that the resulting function optimally ap-
proximates the data points (xi, yi) from our measurements,
i.e.,

∑m
i=0 (f(xi)− yi)

2 becomes minimal. We chose poly-
nomial functions of the second degree for approximation
since most parameters are not growing linearly and thus
using a polynomial of the first degree would lead to a large
mean squared error (MSE). Furthermore, the average values
have been used for the approximation of the data, so that the
bandwidth consumption is not overestimated by outliers.

The nonlinear program resulting from our model yields the
maximum number of active and shadow entities per server
for an arbitrary number of servers. The results for up to
10 servers are shown in Table I, where the first column
shows the number of servers replicating the zone, the second
column contains the maximum number of clients, and the
third and fourth column contain the maximum number of
active and shadow entities on each server, correspondingly.
The application servers are connected by 1 Gigabit network
links.

In our evaluation, we compare the predictions for the
maximum number of clients made using our model with
the number of clients that is reached in practice before
exceeding the network bandwidth. The bandwidth utilization
is measured in four different setups, where in each setup the
number of servers assigned to the zone is increased by one.
During each of these measurements, the number of bots is
increased at a constant rate of one bot every two seconds.
The bots are distributed evenly between the servers at any

TABLE II
COMPARISON OF THE THEORETICAL AND THE OBSERVED MAXIMUM

NUMBER OF CLIENTS.

Servers theo. max. Clients obs. max. Clients max. Deviation

1 385 380 1%
2 543 566 4%
3 665 696 4%
4 766 808 5%

point in time.
The practical values are determined by measuring the

bandwidth utilization for various numbers of servers. The
client count at which one of the servers reaches its bandwidth
limit is then compared to the results of Table I. For example,
we observed that a single server is able to process 380
clients without violating performance requirements at any
time. For 381 clients, we observed that performance require-
ments are violated infrequently due to the exceeded network
bandwidth. However, since the behaviour of the application
in that case is very application-specific we aim at avoiding
performance violations at any cost.

The observed and the theoretical values are shown in
Table II. The main reason for the observed deviation is
arguably the unpredictable behaviour of bots which move and
interact randomly. However, since the maximum deviation of
the results is only 5% for a large number of clients, our model
for the maximum number of clients and the use of nonlinear
programming provides reasonable values for the estimation
of the maximum number of clients.

V. RELATED WORK AND CONCLUSION

This paper develops a novel analytical model for Real-
Time Online Interactive Applications (ROIA) that analyzes
the application performance during runtime and predicts the
demand for load-balancing actions on distributed platforms
with multiple servers, like Grids and Clouds. We have shown
how our scalability model addresses network topologies
practically used for ROIA processing in datacenters. In a
practical case study of a dynamic multi-player online game,
we demonstrated the practical relevance of our scalability
model by showing that the deviation between the proposed
workload distribution and the optimal distribution is less than
5%.

There are other parallelization and load-balancing concepts
that aim at realizing a large number of users in a ROIA.
BHARAMBE2006 et al. propose that a server responsible for
an entity tries to predict which entities from other servers
it needs in order to serve its own clients, and only requests
these. To do so it uses the Area of Interest (AoI) of its entities
and a distributed hash table (DHT) shared across the servers.
By storing range-queries that describe the AoI of an entity,
servers can perform look-ups and predict the probability
of an interaction [11]. This is fundamentally different from
the RTF approach, where all entities are replicated to all
servers at all times. Another concept described in [12]
and [13] uses so-called microcells to distribute the load
between the servers. In this approach, a zone (or the virtual
environment as a whole) is divided into microcells, which
can be distributed arbitrarily to any server. Should a server
reach its performance limit, it migrates the clients of one

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

of its microcells to another server with sufficient bandwidth.
Approaches based on microcells are particularly suitable for
clustered user distributions, i.e., when few areas of the virtual
environment have very high user density while large parts
of the environment remain unattended by the users. The
replication approach targeted by our scalability model divides
the virtual environment into zones which are typically larger
areas, and it allows providers to use multiple application
servers for the computation of a single zone via its replica-
tion. Our approach is arguably more suitable for uniform user
distributions. While both approaches involve overhead for
inter-server communication, our scalability model enhances
the usability of the replication approach.

The first mathematical models for computer networks
developed in the 1960’s make use of queueing theory to
model the arrival rate of packets at network nodes using
stochastic processes; packets are then distributed among the
outgoing links of the nodes [14]. However, the cost of
acquiring new bandwidth is not growing linearly and the
network topology is often enormous, making it unfeasible to
only consider arrival rates. Therefore, models were extended
towards the use of nonlinear programming, with the aim of
minimizing the costs while providing sufficient bandwidth
for each link of the network [15].

KELLY et al. proposed a Utility function which represents
the utility of a single user of the network [16], in order to
allocate the available network resources in a fair, distributed
and stable manner among the clients. This is also known as
network utility maximzation (NUM) [17]. An extension of the
NUM approach is described in [18], where the original mas-
ter problem is decomposed into several smaller subproblems
which can then be solved on their own. To do so, the master
problem allocates a fraction of the existing resources to each
subproblem. In [19] the modeling of computer networks has
been separated into a macroscopic and a microscopic view.
The macroscopic view is also referred to as static routing
and aims at an efficient resource usage of the network as
well as an optimal flow of the data. An example of this level
of granularity are the Autonomous Systems of the Internet.
The microscopic view is also referred to as dynamic routing
and optimizes TCP windows sizes as well as the routing of
each individual packet at each hop.

More recently, these approaches have been extended from
a best-effort perspective to one that considers QoS require-
ments of different kinds of applications. For example, the
tolerance of sending an e-mail is much higher with regards to
delays and packet losses than real-time applications such as
ROIA or video-on-demand (VoD) services [20]. RAJKUMAR
et al. therefore propose a QoS-based Resource Allocation
Model (Q-RAM) that satisfies multiple requirements of these
applications, such as timeliness, reliable packet delivery and
simultaneous resource access [21]. These problems, which
are also relevant in the context of this paper, were analyzed
in [22] for a VoD service which also needs to ensure QoS
for the satisfaction of its customers. Nonlinear programming
is used there to obtain an optimal bandwidth reservation that
prevents under-provisioning, but also minimizes the over-
provisioning of system resources.

REFERENCES

[1] S. Gorlatch, F. Glinka, and A. Ploss, “Towards a Scalable Real-Time
Cyberinfrastructure for Online Computer Games,” in Proceedings of
the 15th International Conference on Parallel and Distributed Systems.
Shenzhen, China: IEEE Computer Society, Dec. 2009, pp. 722–727,
iSBN 978-0-7695-3900-3.

[2] D. Meiländer, S. Köttinger, and S. Gorlatch, “A Scalability Model for
Distributed Resource Management in Real-Time Online Applications,”
in 42nd International Conference on Parallel Processing (ICPP).
IEEE, 2013, pp. 763–772.

[3] “Amazon Web Services (AWS),” http://aws.amazon.com/game-
hosting, 2014.

[4] “Real-Time Framework (RTF),” http://www.real-time-framework.com,
2014.

[5] L. Valente, A. Conci, and B. Feijó, “Real Time Game Loop Models
for Single-Player Computer Games,” in SBGames ’05 – IV Brazilian
Symposium on Computer Games and Digital Entertertainment, 2005.

[6] F. Glinka, A. Ploss, S. Gorlatch, and J. Müller-Iden, “High-Level
Development of Multiserver Online Games,” International Journal of
Computer Games Technology, vol. 2008, no. 5, pp. 1–16, 2008.

[7] D. Luenberger and Y. Ye, Linear and Nonlinear Programming, ser.
International Series in Operations Research & Management Science.
Springer, 2008.

[8] “CHOCO Solver Library,” http://www.blaast.com, 2014.
[9] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth Esti-

mation: Metrics, Measurement Techniques, and Tools,” IEEE Network,
vol. 17, no. 6, pp. 27–35, 2003.

[10] C. R. Rao, H. Toutenburg, C. Heumann, T. Nittner, and S. Scheid,
Linear Models: Least Squares and Alternatives, 1999.

[11] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: A Distributed
Architecture for Online Multiplayer Games,” in NSDI’06 Proceedings
of the 3rd conference on Networked Systems Design & Implementation
- Volume 3, 2006, pp. 155–168.

[12] B. De Vleeschauwer, B. Van Den Bossche, T. Verdickt, F. De Turck,
B. Dhoedt, and P. Demeester, “Dynamic Microcell Assignment for
Massively Multiplayer Online Gaming,” in NetGames ’05 Proceedings
of 4th ACM SIGCOMM workshop on Network and system support for
games, 2005, pp. 1–7.

[13] J. Chen, M. Delap, and H. Lu, “Locality Aware Dynamic Load
Management for Massively Multiplayer Games,” in PPoPP ’05 Pro-
ceedings of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, 2005, pp. 289–300.

[14] L. Kleinrock, Communication Nets: Stochastic Message Flow and
Delay, 1972.

[15] ——, “On the Modeling and Analysis of Computer Networks,” Pro-
ceedings of the IEEE, vol. 81, no. 8, pp. 1179–1191, 1993.

[16] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, no. 3, pp. 237–252, 1998.

[17] R. Srikant and L. Ying, Communication Networks, 2011.
[18] D. P. Palomar and M. Chiang, “A Tutorial on Decomposition Methods

for Network Utility Maximization,” IEEE Journal on Selected Areas
in Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[19] A. Ephremides and S. Verdu, “Control and Optimization Methods in
Communication Network Problems,” IEEE Transactions on Automatic
Control, vol. 34, no. 9, pp. 930–942, 1989.

[20] S. Shenker, “Fundamental Design Issues for the Future Internet,” IEEE
Journal on Selected Areas in Communications, vol. 13, no. 7, pp.
1176–1188, 1995.

[21] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Resource
Allocation Model for QoS Management,” in RTSS ’97 Proceedings of
the 18th IEEE Real-Time Systems Symposium, 1997, pp. 298–307.

[22] D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-Assured Cloud Bandwidth
Auto-Scaling for Video-on-Demand Applications,” in Proceedings of
the IEEE INFOCOM 2012, 2012, pp. 460–468.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2015 Vol I,
IMECS 2015, March 18 - 20, 2015, Hong Kong

ISBN: 978-988-19253-2-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2015

