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Abstract—The main goal of radiotherapy is to destroy the
tumor while minimizing harm to nearby healthy tissue. In order
to achieve an effective and accurate treatment, motion of the
target, caused by respiration, should be taken into account when
positioning the beam. This paper presents a work-in-progress on
computational techniques for identifying tumor position from
an external marker during treatment session.

Index Terms—respiratory radiotherapy, respiratory tumor
motion, regression.

I. INTRODUCTION

RADIOTHERAPY aims at focused emission of radiation
dose to the target volume of tissue, while minimizing

exposure to radiation for the surrounding healthy tissue. A
number of accurate approaches to treatment already exists
[1], [2]; however, motion compensation during treatment
remains a challenging issue. Several alternative techniques
are analyzed in [3], overview of models for predicting
movement of tumor is given in [4].

In this paper we present a work–in–progress, which aims
at proposing a technique for predicting a tumor position
from the position of an external marker during a treatment
session. Our previous investigation [5] shows that a standard
linear regression can predict the motion of an internal target
with a reasonable accuracy, but a major limiting factor
for the performance is presence of autocorrelation of the
observations. In this study we present an approach for
dealing with the problem of autocorrelation using mod-
els with first–order autoregressive errors. Our experimental
results demonstrate that the proposed methodology solves
the problem of autocorrelation, but also decreases models
forecasting performance.

The paper is organized as follows. In section II problem
formulation, and computational methods are presented. Sec-
tion III discusses data collection, and provides an overview of
our previous approaches. Section IV discusses experimental
results. Section V presents concluding remarks, and discusses
future research.

II. METHODOLOGY

A. Problem Formulation
Suppose, we have two time series M = o1, o2, . . . , on

and T = p1, p2, . . . , pn consisting of n observations, where
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oi = (xmi , y
m
i ) is a two–dimensional vector indicating the

position of an external marker at time i while pi = (xti, y
t
i)

is a two–dimensional vector indicating the position of the
target at time i. Our goal is to find an expression of functional
relationship T = F(M) between the signals, separately for
each component:

xt = F1(x
m), (1)

yt = F2(y
m), (2)

where the relations F1 and F2 are assumed to have the same
functional form, but different values of the parameters.

B. Evaluation of performance

Suppose, we have a testing dataset consisting of n obser-
vations, where pi = (xti, y

t
i) is the true position of the tumor

at time i, and p̂i = (x̂ti, ŷ
t
i) is our prediction for the same

time i. To evaluate the accuracy of prediction we use two
different measures:

1) the mean absolute error, i.e. the average distance from
the predicted position to the true position of the tumor:

MAE =

∑n
i=1

√
(x̂ti − xti)2 + (ŷti − yti)2

n
. (3)

2) the root mean square error, i.e. the sample standard
deviation of the differences between predicted and
observed tumor position:

RMSE =

√∑n
i=1(x̂

t
i − xti)2 + (ŷti − yti)2

n
. (4)

C. Linear regression

A linear regression assumes that two variables are system-
atically linked by a linear relationship. The general form of
a linear regression is:

y = β0 + β1x+ ε, (5)

where x is the input variable, y is the response (predicted)
variable, (β0, β1) are model parameters, and ε is a random
error. Ordinary least squares method [6] is a typical approach
for estimating the unknown model parameters (β0, β1), given
a set of observations (x, y).

One of the key assumptions behind the linear regression
model is that the errors ε are independent from each other,
i.e. E(εtεs) = 0, when t 6= s and when t = s, E(εt)

2 = σ2,
where E(x) denotes the mean of x, and σ2 denotes the vari-
ance of εt. If E(εtεs) 6= 0, then the assumption is violated,
and the regression model has a problem of autocorrelation.
Mathematically first–order autocorrelation means that the
model errors satisfy a recursive relationship [7]:

εt = ρεt−1 + ut, (6)
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TABLE I
PREDICTION ERROR FOR SELECTED MODELS

Model
Standard linear regression Linear regression with AR(1) errors

MAE, mm RMSE, mm p–value R2
MAE, mm RMSE, mm p–value R2

x y x y x y x y
P4∼P0 0.55 0.69 0 0 0.96 0.89 0.56 0.7 0.82 0.96 0.97 0.93
P4∼P1 0.79 0.94 0 0 0.93 0.74 0.79 0.93 0.35 0.5 0.94 0.76
P4∼P2 0.89 1.04 0 0 0.87 0.81 0.84 0.97 0.36 0.9 0.91 0.83
P5∼P0 0.51 0.64 0 0 0.53 0.81 0.53 0.68 0.09 0.85 0.69 0.9
P5∼P1 0.61 0.73 0 0 0.55 0.7 0.61 0.73 0.10 0.85 0.68 0.74
P5∼P2 0.61 0.73 0 0.03 0.72 0.86 0.6 0.71 0.72 0.91 0.74 0.86
P7∼P0 0.62 0.77 0 0 0.82 0.88 0.62 0.77 0.30 0.7 0.86 0.9
P7∼P1 0.87 1.05 0 0 0.83 0.72 0.87 1.04 0.77 0.36 0.85 0.74
P7∼P2 0.95 1.12 0 0 0.66 0.8 0.91 1.05 0.34 0.82 0.77 0.82
P8∼P0 0.85 1.03 0.13 0 0.94 0.85 0.85 1.03 0.13 0.74 0.94 0.89
P8∼P1 1.04 1.26 0.03 0 0.91 0.68 1.04 1.26 0.91 0.37 0.91 0.7
P8∼P2 1.1 1.32 0 0 0.85 0.77 1.04 1.24 0.47 0.62 0.86 0.7

where {ut, t = 1, 2, ...n} is a sequence of independent
random variables, which are normally distributed with zero
mean and a constant variance, and ρ is the autoregressive
coefficient (|ρ| < 1). When ρ = 0, errors εt are uncorre-
lated. The most typical case is the first–order autoregressive
error. For determining whether the errors are following the
first–order autoregressive process, we use the Durbin–Watson
test [8].

If autocorrelation is found, we modify the model by
including the estimated first–order autoregressive coefficient
of the error term:

yi = β0 + β1xi + ei, (7)
ei = ρei−1 + εi, (8)

where ei are regression model residuals, ε random error and
ρ is autoregressive coefficient which can be computed using
residuals of initial model (equation (5)):

ρ̂ =

n∑
i=2

eiei−1

n∑
i=2

e2i−1

. (9)

III. DATA COLLECTION

Respiratory motion data was collected with MRT Achieva
XR (Philips Medical Systems) (with a 16–channel SENSE
XR Torso coil). We collected data of 8 different persons using
three external markers placed at different positions. Records
were produced in DICOM1. Time series from the records
were extracted using in–house tools, where several (6—10)
points–of–interest (POI) were tracked instead of tumors. The
duration of the records varied from 300 to 500 frames,
i.e. 150—400 sec. Overall, 87 signal–pairs were obtained.
However, some signals (6) were deemed useless, because
either target or marker did not move. All signals were defined
by two components: one part of the signals had lateral and
anterior-posterior directions (superior inferior direction was
ignored), and another part had anterior–posterior and superior
inferior directions (lateral direction was ignored).

Our previous research [5] showed that the majority of the
signals were linked by strong or medium relationships: data
correlation varied from 0.001 to 0.991 with the mean equal to

1Digital Imaging and Communications in Medicine (DICOM) is de facto
standard for handling, storing, printing, and transmitting information in
medical imaging.

TABLE II
PREDICTION ERROR OVER ALL MODELS

Standard lin. regression Lin. regression with AR(1)
MAE,mm RMSE, mm MAE,mm RMSE, mm

Average 1.069 1.245 1.074 1.252
Min 0.26 0.29 0.26 0.29
Max 3.44 4.01 3.76 4.28

0.492. The lowest degree of correlation were obtained using
markers with failed detection. Correlation analysis showed
that there is a linear relationship between two signals, based
on these results a linear model was chosen.

Data transformation was applied before further analysis,
i.e. each time series was normalized such that the minimum
value is zero, and the maximum is equal to max(Pi) −
min(Pi), as follows

x′ij = xij −min(xi1, xi2, . . . , xin), (10)
y′ij = yij −min(yi1, yi2, . . . , yin), (11)

where Pi = {pi1, pi2, . . . , pin} is a time series consisting of
n observations and pij = {xij , yij}.

IV. EXPERIMENTAL ANALYSIS

We randomly allocated 50% of the data to the training set,
and 50% to the test set. All possible pairs between external
markers and internal points–of–interest were analyzed. Each
coordinate of internal signal was predicted separately based
on the corresponding coordinate of the external marker. Part
of the results are provided in Table I.

The table shows that almost all the standard linear regres-
sion models suffer from the problem of autocorrelation, since
in most cases p–values of the Durbin–Watson test are lower
than 0.05. In order to solve this problem we used a modified
version of the regression model that takes into account the
first–order autoregressive errors. The results are reported in
the same Table I.

Comparing the results obtained by the linear regression
model with the first–order autoregressive errors we can see
that all p–values of Durbin–Watson test are greater than
0.05, which suggests that the problem of autocorrelation was
solved. Moreover, the proposed models have larger values
for the coefficient of determination (R2), i.e. models with
first–order autoregressive errors fit the data better.

In Table II we analyze the testing accuracies (MAE and
RMSE) over all the models. We can see that average values
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slightly increased due to taking into account the first-order
dependencies. More substantial changes are observed in
maximum values of accuracy measures. Since the main goal
is to find model with the best forecasting performance it
can be concluded that simple linear regression model are
more suitable for functional target tracking in comparison
with simple linear model with AR(1) errors.

Results in Table I suggest that the prediction accuracy
relates to the position of an external marker. More accurate
predictions are obtained using external markers placed in
position P0 –area of the abdomen. Also we can see that
models P4∼P0 show the best fit R2 (see fig. 1, fig 2), while
the minimum testing error is observed for relation P5∼P0
(see fig. 3, fig 4).

This difference can be due to the nature of evaluation crite-
ria: MAE is an average distance while RMSE is the standard
deviation from the predicted position to the true position of
the internal point, i.e. the prediction accuracy depends on the
range of the signal motion. However, relatively high values
of the coefficient of determination show that the predictive
power of the models is quite good.

V. CONCLUSION

We have demonstrated that the problem of autocorrelation
can be solved using a standard linear regression model
with first-order of autoregressive errors. Despite the fact
that this methodology improves the values of the coefficient
of determination, the slight decrease in testing accuracy
was observed. Furthermore, results show that more accurate
predictions are obtained using external markers placed in
the area of the abdomen. In the future we are going to use

other quality measures because in this research presented
loss functions (MAE , RMSE ) depend on the range of the
signal motion. Moreover, in the future we are planning to
perform experiments with more complex methods such as
multiple regression and nonlinear models. Furthermore, we
are planning to analyze respiratory motion prediction and
design cases of an overall system radiation therapy system
with respiratory motion compensation.
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Fig. 1. Forecast and error term of x from relation P4∼P0
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Fig. 2. Forecast and error term of y from relation P4∼P0
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Fig. 3. Forecast and error term of x from relation P5∼P0
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Fig. 4. Forecast and error term of y from relation P5∼P0
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