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cussed. We consider decompositions of formulas and
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formulas. Further we investigate specific base hyper-
graphs of formulas recalling the fibre perspective.
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1 Introduction

A fundamental problem in mathematics is the NP ver-
sus P problem which is attacked within the theory of
NP-completeness. The genuine and one of the most im-
portant NP-complete problems is the propositional sat-
isfiability problem (SAT) for conjunctive normal form
(CNF) formulas [5]. More precisely, SAT is the natu-
ral NP-complete problem and thus lies at the heart of
computational complexity theory. Moreover, SAT plays
a fundamental role in the theory of designing exact algo-
rithms, and it has a wide range of applications because
many problems can be encoded as a SAT problem via re-
duction [11, 9] due to the rich expressiveness of the CNF
language. Important areas where SAT plays a vital role
are formal verification [18], bounded model checking [4],
and artificial intelligence. In industrial applications most
often the modelling CNF formulas are of a specific struc-
ture. And therefore it would be desirable to have fast
algorithms for such instances. The applicational area
is pushed by the fact that meanwhile several powerful
solvers for SAT have been developed (cf. e.g. [13, 17] and
references therein). Also from a theoretical point of view
one is interested in classes for which SAT can be solved
in polynomial time. There are known several classes, for
which SAT can be tested efficiently, such as quadratic
formulas, Horn formulas, matching formulas, nested for-
mulas etc. [1, 3, 7, 12, 14, 10, 16, 19]. So, the structure of
the set of all CNF formulas is of great importance. There-
fore, in the present paper several structural approaches
regarding CNF-SAT are proposed and discussed. The in-
tention is to find new directions for SAT solving. More
concretely we consider several decompositions of formulas
and subclasses defined through that. Moreover we define
the monotonicity index yielding a decomposition of the
class of unsatisfiable formulas. Moreover, we recall the
fibre view on clause sets and investigate the structure of
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specific base hypergraphs in this framework.

2 Preliminaries

A Boolean variable x taking values from {0, 1} induces a
positive literal (variable x) or a negative literal (negated
variable x). A clause c is a disjunction of different literals,
and is represented as a set c = {l1, . . . , l|c|}. Setting a lit-
eral to 1 means to set the corresponding variable accord-
ingly. A formula C is a conjunction of different clauses
and is considered as a set of its clauses C = {c1, . . . , c|C|}.
Let CNF denote the set of formulas (free of duplicate
clauses) in conjunctive normal form over. For a formula
C (clause c), by (V (C) (V (c)) denote the set of variables
occurring in C (c). For convenience we allow the empty
set to be a formula ∅ ∈ CNF which is satisfiable in any
sense. A clause containing no negated literal is called pos-
itive monotone. A clause containing only negated vari-
ables is called negative monotone. Let CNF+ (CNF−)
denote the collection of all positive (negative) monotone
clause sets, which are defined as those containing only
positive (negative) monotone clauses. For a finite set M ,
let 2M denote its powerset. Given C ∈ CNF, SAT asks
whether there is a truth assignment t : V (C) → {0, 1}
such that there is no c ∈ C all literals of which are set
to 0. If such an assignment exists it is called a model
of C, and M(C) denotes the collection of all models of
C. For any t and X ∈ 2V (C), let tX denote the assign-
ment obtained from t by tX(x) := 1 − t(x) for every
x ∈ X and tX(x) := t(x) for the remaining variables.
Let SAT ⊆ CNF denote the collection of all clause sets
for which there is a model, and UNSAT := CNF \ SAT.
Clauses containing a complemented pair of literals are
always satisfied. Hence, it is assumed throughout that
clauses only contain literals over different variables. Ex-
actly those clauses c of a formula C ∈ CNF which all
have the same variable set b = V (c) ⊆ V (C) yield the
fibre Cb = {c ∈ C : V (c) = b} of C over b [15]. The
base hypergraph H(C) = (V (C), B(C)) of C is given by
the hyperedge set B(C) := {V (c) : c ∈ C} ∈ CNF+.
Conversely, we can start with a fixed arbitrary hyper-
graph H = (V,B) serving as a base hypergraph if its
vertices x ∈ V are regarded as Boolean variables such
that for every x ∈ V there is a b ∈ B containing x. By
Wb := {c : V (c) = b} denote the collection of all possible
clauses over a fixed b ∈ B. The set of all clauses over H is
KH :=

⋃
b∈B Wb. A H-based formula is a subset C ⊆ KH

such that Cb := C ∩ Wb �= ∅, for every b ∈ B.
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3 Decomposing Formulas

First let us consider a mapping on CNF defined as follows.
For C ∈ CNF and a subset X ⊆ V (C) let CX ∈ CNF
denote the formula that is obtained from C by flipping,
i.e. complementing, all variables in X. We say that
CX is the result of flipping C by X. Obviously, for
C = {c1, . . . , cr} we have CX = {cX

1 , . . . , cX
r }, where

cX is obtained from c by complementing all literals over
variables in X ∩ V (c) Flipping C first by X ∈ 2V (C)

and then independently by Y ∈ 2V (C) obviously yields
(CX)Y = CX⊕Y , meaning that the composition is com-
mutative. Clearly, the effect of flipping any formula by
∅ equals the identity: C∅ = CX⊕X = C. For short we
write Cγ := CV (C), in case that all variables are flipped,
similarly cγ := cV (c). Observe that a formula C ∈ CNF
can be split into a maximal symmetric S(C) and a maxi-
mal anti-symmetric part A(C), C := A(C) ∪ S(C). Here
the components are defined as A(C) := {c ∈ C : cγ �∈ C}
and S(C) := {c ∈ C : cγ ∈ C} which is the comple-
ment clause set of A(C) in C. Motivated hereby let
S := {C ∈ CNF : C = Cγ} be the set of symmetric for-
mulas and let A := {C ∈ CNF : C = A(C)} denote the
set of anti-symmetric formulas in CNF. For convenience,
we define ∅ ∈ S, ∅ �∈ A. An arbitrary C ∈ CNF can
also be split into three disjoint parts (any or all of which
might be empty) C = C+ ∪ C− ∪ C± where C+ ∈ CNF+

(resp. C− ∈ CNF−) is the collection of all positive (resp.
negative) monotone clauses in C, and C± is the remain-
ing subformula. Observe that C is satisfiable if C− = ∅

or C+ = ∅. Regarding the connection of both types of
decompositions of a formula C ∈ CNF a first observation
is that C = C+ or C = C− implies C = A(C).

Lemma 1 For C ∈ CNF and X ⊆ V (C) holds C ∈ SAT
if and only if CX ∈ SAT. Moreover M(C) is in 1:1-
correspondence to M(CX).

Proof. It suffices to prove that the set M(C) of mod-
els of C is in 1:1-correspondence to the set M(CX)
of models of CX . Since this particularly implies C �∈
SAT ⇔ M(C) = ∅ ⇔ M(CX) = ∅ ⇔ CX �∈ SAT, the
first assertion is implied by the second. To verify the sec-
ond assertion, it is not hard to see that flipping the values
of X in a model t of C yields the unique model tX of CX

and vice versa. Hence the assertion follows. �

A characterization of the class SAT appears as follows.

Theorem 1 C ∈ CNF is satisfiable if and only if there
is an X ⊆ V (C) (which may be empty) such that CX

+ = ∅

or CX
− = ∅.

Proof. If there is an X with CX ∈ SAT then also
C ∈ SAT according to Lemma 1. For the other direction
assume that C ∈ CNF is satisfiable with model t, and let

Xα containing those variables that are assigned by t to
α, for α ∈ {0, 1}. Assume that Cε �= ∅, for ε ∈ {+,−},
(otherwise we are done). It follows that X1 �= ∅, because
otherwise X0 = V (C) meaning C− = ∅. Now we claim
that flipping the variables in X1 leads to a formula with
vanishing positive monotone part. Indeed, suppose that
all variables in X1 are flipped. Then clearly each c ∈ C+

after flipping contains at least one negated variable. Let
c ∈ C− then c is satisfied by a variable set to 0 by t hence
c contains at least one literal that is not flipped after flip-
ping the variables in X1. Hence, each c ∈ C− contains
after flipping at least one negated variable. Finally, let
c ∈ C± and assume that c is satisfied by a variable set
to 1 by t then this variable must be unnegated in c and
thus is flipped. Hence, such a clause after flipping still
contains at least one negated variable. In the remain-
ing case, c ∈ C± is satisfied by t through a variable set
to 0. Therefore this variable occurring negated is not ad-
dressed by the flipping process. In summary we have that
CX1

+ = ∅. �

Lemma 2 S and A are invariant subsets of CNF more
precisely
(i) For C ∈ S, holds CX ∈ S, ∀X ⊆ V (C),
(ii) For C ∈ A, holds CX ∈ A,∀X ⊆ V (C).

Proof. First observe that

(cX)γ = cX⊕V (C) = (cγ)X

Next, by definition we always have c ∈ C iff cX ∈ CX , for
every X ⊆ V (C). Hence for C ∈ S we have that cX ∈ CX

implies c ∈ C implies cγ ∈ C implies (cγ)X = (cX)γ ∈
CX , thus (i). Similarly, for C ∈ A, cX ∈ CX implies
c ∈ C implies cγ �∈ C implies (cγ)X = (cX)γ �∈ CX , thus
(ii). �

Lemma 3 SAT and UNSAT both are invariant when
variables are flipped.

Proof. Let C ∈ CNF and X ⊆ V (C) be arbitrary. For
C ∈ SAT we have CX ∈ SAT according to Lemma 1.
For C ∈ UNSAT we have C /∈ SAT implying CX /∈ SAT
according to Lemma 1 hence CX ∈ UNSAT. �

We shall call a set X such that CX contains no positive-
or negative monotone part a sat-flipping set. For C ∈
CNF, let Eε(C) be the collection of all sets X ⊆ V (C)
with CX

ε = ∅, ε ∈ {+,−}, and E(C) = E−(C) ∪ E+(C).
Clearly, C ∈ UNSAT iff E(C) = ∅. Observe that in
general E−(C)∩E+(C) �= ∅ because there can occur sat-
flipping sets X such that CX contains no monotone part
at all.

Lemma 4 For C ∈ S we have E−(C) = E+(C).
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Proof. In case C ∈ UNSAT we have E−(C) = ∅ =
E+(C). Now let C ∈ SAT. For C symmetric and
X ∈ E+(C) meaning CX

+ = ∅, assume that CX
− �= ∅.

Due to Lemma 2 we have CX ∈ S therefore every c ∈ CX
−

yields cγ ∈ CX
+ ⊆ CX . Hence CX

+ �= ∅ implying a con-
tradiction, so X ∈ E−(C) and E+(C) ⊆ E−(C). The
converse inclusion follows likewise exchanging the roles
of E+(C), E−(C). �

Relaxing the assumption from above to arbitrary in-
stances yields equality with respect to the cardinalities
as stated next.

Lemma 5 For C ∈ CNF we have |E−(C)| = |E+(C)|.

Proof. The claim follows from X ∈ E−(C) if and only
if V (C) \X ∈ E+(C). The latter relation is true because
X ∈ E−(C) iff

∅ = CX
− = (CX

+ )γ = C
X⊕V (C)
+ = C

V (C)\X
+

which is equivalent with V (C) \ X ∈ E+(C). �

From the proof of Theorem 1 we can deduce the connec-
tion between sat-flipping sets and models.

Theorem 2 Let C ∈ SAT then
(i) for every t ∈ M(C) one has t−1(1) ∈ E+(C) and
t−1(0) ∈ E−(C),
(ii) every X ∈ E+(C) defines t ∈ M(C) through t−1(1) =
X and Y ∈ E−(C) defines t ∈ M(C) t−1(0) = Y .

Proof. From the proof of Theorem 1 it follows that
t−1(1) ∈ E+(C), therefore as shown in the proof of
Lemma 5 we have V (C) \ t−1(1) = t−1(0) ∈ E−(C) yield-
ing (i). Since C ∈ SAT, an X ∈ E+(C) exists meaning
CX

+ = ∅. Thus setting all variables to 0 satisfies CX ,
let s ∈ M(CX) be this model. Hence due to Lemma 1,
t := sX ∈ M(C) and t−1(1) = X. The last part of (ii)
can be deduced analogously. �

The fibre-view as introduced in [15] regards a clause set C
as composed of fibres over a hypergraph as mentioned in
the preliminaries. Actually this approach yields another
decomposition of formulas, namely C appears as the dis-
joint union of all its fibres C =

⋃
b∈B(C) Cb. We shall

return to this decomposition in Section 5.

4 The Monotonicity Index

An equivalence relation on CNF is defined as follows.
C ∼ C ′ if ∃X ⊆ V (C) such that C ′ = CX . Obviously
we then have V (C) = V (C ′) and |C| = |C ′|. This indeed
defines an equivalence relation since reflexivity is given
through X = ∅. Symmetry can be concluded from

C ∼ C ′ ⇒ C ′ = CX ⇒ (C ′)X = CX⊕X = C ⇒ C ∼ C ′

for an appropriate X ∈ 2V (C) as V (C) = V (C ′) is
guaranteed. Finally, transitivity is implied as follows,
if C ∼ C ′ via X and C ′ ∼ C ′′ via Y then we have
V (C) = V (C ′′) and C ∼ C ′′ via X ⊕ Y .

For C ∈ CNF denote by [C] its class corresponding to
the above defined equivalence relation.

Definition 1 Let C ∈ CNF then μ(C) :=
min{min{|C ′

+|, |C ′
−|} : C ′ ∈ [C]} is called the monotonic-

ity index of C.

Theorem 3 C ∈ SAT if and only if μ(C) = 0.

Proof. By Theorem 1 C ∈ SAT if and only if there is
C ′ ∈ [C] with C ′

+ = ∅ or C ′
− = ∅ which is equivalent to

μ(C ′) = 0 for an appropriate C ′ ∈ [C]. Since μ(C) ≥ 0
for every C ∈ CNF, the latter is equivalent to μ(C) = 0
finishing the proof. �

As a direct consequence we obtain the following result.

Corollary 1 C ∈ UNSAT if and only if μ(C) > 0.

That means if there is no sat-flipping set for a formula
C eliminating exactly one monotone part from C then
C ∈ UNSAT. Since μ(C) must always be a non-negative
integer we are lead to a classification as follows.

Definition 2 Set UNSATk := {C ∈ CNF : μ(C) = k},
for every fixed integer k > 0.

Lemma 6 A decomposition of the class of unsatisfiable
formulas is given via UNSATi ∩ UNSATj = ∅, for i �= j
and UNSAT =

⋃
k>0 UNSATk. Moreover UNSATk is

invariant when variables are flipped.

Proof. Only the last assertion needs an argument. Let
C ∈ UNSATk and X ⊆ V (C) then as CX ∈ [C] we have
μ(CX) = μ(C) = k �

Consider formulas C such that (∗) : CX = C, for every
X ⊆ V (C). Specifically, such formulas are necessarily
symmetric, because flipping all variables yields the same
formula, too.

Definition 3 A non-empty formula having property (∗)
is called perfectly symmetric; the class of exactly such
instances is denoted as P ⊆ S.

A perfectly symmetric formula C obviously represents a
unit class [C] = {C}.

Lemma 7 Wb ∈ P and μ(Wb) = 1, for every set b of
variables. Moreover for C,C ′ ∈ P it holds that C ∪ C ′ ∈
P.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016



Proof. First observe that property (∗) for a formula C
is equivalent with that c ∈ C implies cX ∈ C for an
arbitrarily chosen X ⊆ V (C) and c ∈ C. Indeed, then we
have c ∈ C ⇒ cX ∈ C ⇒ c ∈ CX hence C ⊆ CX . Then
it follows that C = CX because |CX | = |C|. The reverse
direction is obvious. To prove the lemma, let c ∈ Wb

and X ∈ 2b be chosen arbitrarily. Since V (cX) = V (c)
we have cX ∈ Wb implying Wb = WX

b yielding the first
claim. Since |Wb+| = |Wb−| = 1 it follows that μ(Wb) =
1. Next assume that C,C ′ ∈ P then c ∈ C ∪ C ′ means
c ∈ C implying cX ∈ C or it means c ∈ C ′ implying
cX ∈ C ′ hence cX ∈ C ∪ C ′, for every X ⊆ V (C). �

Theorem 4 A non-empty formula C ∈ CNF is perfectly
symmetric if and only if WV (c) ⊆ C for every c ∈ C.
Moreover one explicitly has μ(C) = |B(C)| for every C ∈
P, where H(C) = (V (C), B(C)) is the base hypergraph of
C. Finally P ⊂ UNSAT.

Proof. Let C ∈ CNF and assume that WV (c) ⊆ C for
every c ∈ C then C =

⋃
b∈B(C) Wb. According to Lemma

7 it follows that C ∈ P. Conversely, let C ∈ P and
assume there is c ∈ C and c′ ∈ WV (c) \C. Clearly V (c) =
V (c′) hence there is X ∈ 2V (c) such that cX = c′ /∈
C yielding a contradiction to (∗) valid for C, thus one
obtains WV (c) ⊆ C.

By the previously shown result one has for C ∈ P that
C =

⋃
b∈B(C) Cb as disjoint union where Cb = Wb. Since

min{Wb+|, |Wb−|} = 1, for every b ∈ B(C), one obtains
min{|C ′

+|, |C ′
−|} = μ(C) = |B(C)|. The last part imme-

diately follows from Corollary 1 and the previous claim
because for C ∈ P we have C �= ∅ hence B(C) �= ∅ thus
μ(C) = |B(C)| ≥ 1. �

A direct consequence of the characterization above is the
next complexity result.

Corollary 2 It can be recognized in polynomial time in
the size ‖C‖ of C whether C ∈ CNF is perfectly symmet-
ric.

Proof. For every c ∈ C determine V (c) and sort the re-
sults lexicographically. Thereby update a counter NV (c)

for each c with the same V (c). Finally check for each
counter whether NV (c) = 2V (c). If the latter is true for
all counters output C ∈ P else C /∈ P. The correctness
is given by Theorem 4. �

5 Specific Base Hypergraphs

Let H = (V,B) be a fixed but arbitrary base hypergraph
with total clause set KH. As defined in [15] a fibre-
transversal of KH is a H-based formula F ⊂ KH such
that |F ∩Wb| = 1, for every b ∈ B, this clause is denoted
as F (b). For X ⊆ V we define FX via FX(b) := (F (b))X ,

for every b ∈ B. A compatible fibre-transversal has the
property that

⋃
b∈B F (b) ∈ WV . Fcomp(KH) is the set of

all such fibre-transversals of KH. We can define a (com-
patible) fibre-transversal of a H-based formula C ⊂ KH
as a (compatible) fibre-transversal KH that is contained
in C. A diagonal fibre-transversal is defined through
the property that for each F ′ ∈ Fcomp(KH) one has
F ∩ F ′ �= ∅. Let Fdiag(KH) be the collection of all di-
agonal fibre-transversals of KH. As for the total clause
set KH we can define fibre-transversals for a H-based
formula C ⊂ KH as follows. A fibre-transversal F of
C contains exactly one clause of each fibre Cb of C.
The collection of all fibre-transversals of C is denoted
as F(C). We also define compatible and diagonal fibre-
transversals of C via Fcomp(C) := F(C) ∩ Fcomp(KH),
and Fdiag(C) := F(C) ∩ Fdiag(KH). Observe that ev-
ery fibre-transversal F ∈ F(KH) belongs to A, one even
obtains stronger results as follows.

Theorem 5 For H = (V,B) with V �= ∅ �= B, one has
(i) F ∈ F(KH) implies FX ∈ F(KH) for all X ⊆ V ,
(ii) FX �= F for every F ∈ F(KH) and every ∅ �= X ⊆ V
specifically F(KH) ⊆ A,
(iii) Fcomp(KH) = [F ], for any fixed F ∈ Fcomp(KH).

Proof. For proving (i) let F ∈ F(KH) and X ⊆ V then
FX(b) = (F (b))X ∈ Wb thus 1 = |F ∩ Wb| = |FX ∩ Wb|,
for every b ∈ B, implying FX ∈ F(KH). Regarding (ii)
suppose there are F ∈ F(KH) and X ⊆ V such that
FX = F which makes sense because according to (i)
FX ∈ F(KH) is guaranteed. Then we have FX(b) =
(F (b))X = F (b) for every b ∈ B. Thus the permuta-
tion induced by X is the identity map implying X = ∅.
Considering (iii) let two members F, F ′ ∈ Fcomp(KH)
be chosen arbitrarily. We claim that there is X ∈ 2V

such that FX = F ′ implying (iii). Indeed, by definition⋃
b∈B F (b) =: c and

⋃
b∈B F ′(b) =: c′ both are clauses in

WV ∈ P. Hence there must be X ∈ 2V with cX = c′

implying that the restrictions to b of both are equal, thus
FX(b) = cX |b = c′|b = F ′(b) for every b ∈ B meaning
FX = F ′. �

The following result proved in [15] characterizes satis-
fiability of a formula C in terms of compatible fibre-
transversals in its based complement formula C̄ := KH \
C.

Theorem 6 [15] For H = (V,B), let C ⊂ KH be a
H-based formula such that C̄ is H-based, too. Then C
is satisfiable if and only if C̄ admits a compatible fibre-
transversal F . Moreover, the union of all clauses in F γ

is a model of C.

One can establish the existence of formulas for which no
diagonal fibre-transversal of the total clause set exists,
but unsatisfiable formulas C ⊂ KH can exist although.
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So we conclude that in general C ∈ UNSAT is not equiv-
alent to Fdiag(C) �= ∅. However, things may be differ-
ent if H is structured such that Fdiag(KH) �= ∅. So,
we next pose the question whether under this assump-
tion holds C ∈ UNSAT iff Fdiag(C) �= ∅. Observe that
the implication ⇐ holds because if C admits a diagonal
fibre-transversal then C̄ cannot have a compatible fibre-
transversal therefore C ∈ UNSAT due to Theorem 6.

Definition 4 Let H = (V,B) be a base hypergraph. H is
called strictly diagonal if Fdiag(KH) �= ∅ and for every
C ⊂ KH such that B(C) = B = B(C̄) it holds that

C ∈ UNSAT ⇔ Fdiag(C) �= ∅

We have the following characterization.

Theorem 7 Let H = (V,B) be strictly diagonal. Then
a fibre-transversal F ∈ F(KH) of H is compatible if and
only if it satisfies F ∩ F ′ �= ∅ for every diagonal fibre-
transversal F ′ ∈ Fdiag(KH) of H.

Proof. If F ∈ Fcomp(KH) then by definition for every
diagonal transversal F ′ there is b ∈ B such that F ′(b) =
F (b) yielding the claim. Conversely, let F ∈ F(KH)
meeting all members of Fdiag(KH). First we claim that
F cannot be diagonal which follows because then also F γ

was diagonal and there is no b ∈ B such that F has a
non-empty intersection with F γ . So it remains to ver-
ify that F ′ diagonal implies that F ′γ is diagonal, a prop-
erty obviously valid for compatible fibre-transversals. For
F ′ ∈ Fdiag(KH), suppose there exists F̃ ∈ Fcomp(KH)
with F̃ (b) �= F ′γ(b), for all b ∈ B. The latter is equiv-
alent with F̃ γ(b) �= F ′(b), for all b ∈ B, contradicting
that F ′ is diagonal, therefore F ′γ is diagonal, too. Next,
if F is compatible we are done. Finally, assume that
F is neither compatible nor diagonal, then specifically
F̄ ∈ UNSAT according to Theorem 6. Since H is strictly
diagonal it is implied that Fdiag(F̄ ) �= ∅ meaning there
is F ′ ∈ Fdiag(KH) such that F ∩ F ′ = ∅. �

6 Open Problems

A specific class of formulas is given by C ∈ S such that
C± = ∅. SAT restricted to such instances remains NP-
complete which can be shown by reduction from SET
SPLITTING [8] respectively hypergraph bicolorability
[2]. However it is not clear whether the complexity de-
creases if one requires C ∈ A instead. An interesting
question arises whether there are fixed-parameter algo-
rithms [6] recognizing members in UNSATk with respect
to parameter k. A natural question is whether there are
formulas for which it is sufficient only to check for the ex-
istence of a monotone part for an eliminating set. In other
words, it would be comfortagble to characterize those
satisfiable formulas which can be tested only regarding

a monotone part. Observe that in case that the mono-
tone parts are of different sizes we can always achieve by
flipping all variables that the positive monotone part is
smaller. Perfectly symmetric formulas admit unit classes.
It might be interesting to investigate how the classes with
exactly, two, three, respectively k elements can be char-
acterized for fixed positive integer k. The recognition of
members of P even in linear time, might be attacked by
designing appropriate data structures. Finally, the ques-
tion whether there exist strictly diagonal hypergraphs is
open.
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