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Abstract—In this paper, we address the problem of tolerating
the adverse effects of input faults on the operation of a class
of asynchronous sequential machines. Occurring to either the
external input or the control input generated by the controller,
input faults can cause unauthorized changes of the input value.
In the framework of corrective control, we present the necessary
and sufficient condition for the existence of an appropriate
controller that invalidates the effects of input faults, while
controlling the considered machine so as to match the stable
state behavior of the closed-loop system to a reference model. An
illustrative example is provided for demonstrating the proposed
control scheme.

I. Introduction

As a novel automatic control theory for asynchronous
sequential machines, corrective control has been successfully
utilized to amend the stable state behavior of asynchronous
machines with various deficiencies [1]–[3]. Whereas the
structure of the corrective control system bears resemblance
to traditional automatic control, its control law is somewhat
different. Discrete mathematics and automata theory are
involved in generating control inputs of corrective controllers
and especially, asynchronous mechanisms [4] are used to
materialize compensation of the closed-loop system in a
desirable manner.

Among subjects of corrective control, fault tolerance is
a major accomplishment that has been validated both in
theoretical analysis and experimental studies. In rough terms,
fault-tolerant corrective control is classified according to
the type of considered faults. [5] and [6] generalize the
preview work on the elimination of critical races [1] so as to
control nondeterministic asynchronous machines. [7] and [8]
present corrective controllers that detect and tolerate transient
faults causing unwanted state transitions in asynchronous
machines. The result of [8] is applied to controlling FPGA-
based asynchronous digital systems in [9]. [7]–[9] tackle fault
tolerance against transient faults for which the influence of
faults lasts only for an instantaneous moment. In [10], [11],
by contrast, the corrective controllers invalidate the adverse
effects of permanent faults in which the characteristic of
the faulty transition remains indefinitely. In [12], intermittent
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faults are considered in which unauthorized state transitions
occur by fault and the effect of a fault persists for finite time
after the initial occurrence. Finally, [13] presents a corrective
control law that invalidates the influence of pre-programmed
adversarial software agents. Other approaches on corrective
control schemes including fault tolerance are found in [14]–
[16] and the references therein.

In this paper, we propose a fault-tolerant corrective con-
trol scheme to tolerate input faults that cause unauthorized
changes of input values. We suppose that not only the exter-
nal input to the controller but also the control input generated
by the controller is influenced by the input fault. Unless
counteracted immediately, further change of the input would
violate the desired behavior. Based on the corrective control
scheme for model matching, we present necessary and suf-
ficient conditions for the existence of a corrective controller
that invalidates any input fault occurring to the asynchronous
machine. The closed-loop system will be driven to follow a
reference model as if no input fault occurs. Note that all
the prior works on fault-tolerant corrective control [7]–[12]
focus on state transition faults and do not consider detection
and tolerance methodologies for input faults.

We first represent a modeling formalism for a class of
asynchronous machines with input faults, and describe the
basic control configuration. Then we address the reachability
analysis on the considered machine and present the existence
condition for a corrective controller that achieves fault toler-
ance against any input fault. The proposed controller adjusts
the stable state behavior of the machine so as to match it to
a reference model, while invalidating all the occurrences of
unauthorized switches of input values. The proposed notion
and examination of the controller existence are demonstrated
in a case study using a synthetic asynchronous machine.

II. Modeling and Problem Statement

A. Asynchronous Machines with Input Faults

The considered asynchronous sequential machine is in-
put/state type in which the output is equal to the present state
of the machine. We represent an input/state asynchronous
machine Σ as the following deterministic finite state machine.

Σ :“ pA, X, x0, f q

where A is the input set, X is the set of n states, x0 P X is
the initial state, and f : X ˆ A Ñ X is the state transition
function.

A state–input combination px, vq P X ˆA is termed valid if
f px, vq is defined in Σ. A valid combination px, vq is divided
into stable and transient combinations. If f px, vq “ x, px, vq

is a stable combination with x a stable state. On the other
hand, if f px, vq , x, it is a transient combination with x a
transient state. x can be either stable or transient depending
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on the present input value. Since no global synchronizing
clock exists in asynchronous machines, Σ responds with only
the change of the external input and Σ stays at a stable
combination indefinitely unless the input value changes. In
this paper, we assume that f is a total function on X ˆA, that
is, every input in A makes a valid combination with every
state in X. This assumption does not lose much generality
since if an input v that is not valid with the present state x
is received, Σ would be unresponsive. Hence we can regard
px, vq as a stable combination. To elucidate this, define for
x P X the following two subsets of A.

Upxq :“ tv P A| f px, vq “ xu

T pxq :“ tv P A| f px, vq , xu.

Upxq and T pxq denote, respectively, the set of inputs that
make stable and transient combinations with x. Clearly, Upxq

and T pxq satisfy the following relations.

Upxq X T pxq “ H

Upxq Y T pxq “ A.

Assume that Σ has been staying at a stable state x when the
input changes to v P T pxq that makes a transient combination
with x. Σ then initiates a chain of transient transitions, say,

f px, vq “ x1, f px1, vq “ x2, . . .

during which the input v remains unchanged. Assuming no
infinite cycles, Σ reaches a stable state xk such that

xk “ f pxk´1, vq “ f pxk, vq, Dk ă 8,

i.e., v P Upxkq. xk is called the next stable state of px, vq.
Due to the absence of a synchronizing clock, the transient
transitions lapse away instantaneously. Hence, from outer
users’s viewpoint, only stable states are perceptible in the
operation of Σ. To characterize this feature, we define the
stable recursion function s by [1]

s : X ˆ A Ñ X

spx, vq :“ xk

where xk is the next stable state of px, vq. A chain of tran-
sitions from one stable combination to another, as described
by s, is called a stable transition. It is convenient to extend
the domain of s from X ˆ A to X ˆ A` recursively, where
A` is the set of non-empty strings made of characters in A.
For x P X and v1v2 ¨ ¨ ¨ vk P A`, we define

spx, v1v2 ¨ ¨ ¨ vkq :“ spspx, v1q, v2 ¨ ¨ ¨ vkq.

For two states x, x1 P X, x1 is said to be stably reachable
from x [1] if an input sequence t P A` is found such that
x1 “ spx, tq and |t| ď n ´ 1 where |t| is the length of t and
n “ #X is the cardinality of X.

The input fault is modeled by a relation that maps an input
value to a collection of faulty ones. In formal terms, we
define a set Fpvq Ă A for an input v P A as follows (see also
[17]).

Definition 1. Given Σ “ pA, X, x0, f q, the input fault for
v P A is an unauthorized switch of the input value from v
to an element of Fpvq Ă A. If Fpvq “ H, v is a fault-free
character.

Slightly abusing the terminology, we will use Fpvq when
referring to the input fault happening at v. The input fault
is attributed to a variety of malfunctions of the system. For
instance, in the case of digital systems working in space,
radiation-related errors such as single event upsets (SEU)
[18] may switch the logic value of memory bits, which in
turn may cause abrupt change of the input. Other reports on
input faults and the modeling formalisms for fault events are
found in the literature [19]–[21].

B. Problem Statement

C

Σr

v

Σ
u x

xr

Σc

Fig. 1. Corrective control system for tolerating input faults.

Fig. 1 illustrates the structure of the corrective control
system accommodating input faults. Σ is the considered
asynchronous machine and C is the corrective controller
that is implemented also as an asynchronous machine. The
closed-loop system consisting of C and Σ is denoted by Σc.
Σr, a reference model whose behavior must be matched by
Σc, is described as

Σr “ pA, X, x0, srq

where sr is the stable recursion function of Σr. C receives the
external input v P A and state feedback values x and xr from
Σ and Σr, respectively, to generate the control input u P A.
The control objective of C is two folds as follows.

First, C achieves model matching between Σc and Σr. Here,
matching means that the stable state input/ouput behavior of
Σc equals that of Σr. If Σc and Σr stay at the same stable state
and if an identical external input enters each machine, they
must transfer to the same next stable state. A key aspect
is that the control behavior is validated only in terms of
the stable states since the transient states are meaningless in
asynchronous machines. For this reason, the input and state
set and the initial state of Σr must be the same as those of
Σ and only the stable recursion function sr of the reference
model Σr is given with no loss of generality.

Next, C overcomes the effects of any input fault occurring
to Σ. As marked in Fig. 1, the input fault may occur to
either v or u. In other words, the value of v or u may
undergo unauthorized changes in the operation of Σc from
v to one of Fpvq and from u to one of Fpuq, respectively
(assuming both Fpvq and Fpuq are non-empty). If the fault is
not recovered instantaneously, further change of the external
input will drive Σc to incorrect next stable states, thus vio-
lating matching between Σc and Σr. By employing corrective
control laws, we design C so that Σc can seem to maintain
the desired input/state behavior despite occurrences of input
faults.
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To prohibit asynchronous machines from falling into un-
predictable behaviors, the machines have to be constructed
such that they comply with the principle of the fundamental
mode operation [22], an operating policy that forbids the
simultaneous change of two or more system variables. This
policy helps to prevent uncertainties arising from simulta-
neous changes in two or more variables in the behavior of
asynchronous machines. For Σc to operate in fundamental
mode, the following condition must be always valid. Note
that this result is taken from the former studies [1], [7].

Condition 1. The closed-loop system Σc of Fig. 1 operates
in fundamental mode when all the following conditions are
valid:
(i) Among C and Σ, when one machine goes on transient

transitions, the other must stay at a stable state.
(ii) The external input v changes only while C and Σ are

both at stable states.
(iii) The input fault occurs only when both C and Σ are at

stable states.

Conditions (i) and (ii) are the design specifications that
must be satisfied in the construction of the closed-loop
system Σc. (iii) imposes a restriction on the occurrences
of input faults, which are independent adversarial entities.
One must suppose that input faults never happen when Σc

are in the middle of transient transitions. Nevertheless, as
transient transitions of asynchronous machines occur very
quickly, (iii) is not a burdensome requirement. Throughout
this paper, we assume that Σc always preserves the principle
of the fundamental mode operation.

III. ModelMatching
Let us first address the existence condition and design

procedure for a corrective controller for model matching
between Σc and Σr. We temporarily assume that no input
fault occurs in the operation of Σc. In the former results
[1]–[3], it is found that the existence condition is described
by certain reachability properties of the machine and model.
These properties can be characterized in terms of a numerical
matrix, called the skeleton matrix, defined as follows.

Definition 2. Given Σ “ pA, X, x0, f q, let X “ tx1, . . . , xnu.
The skeleton matrix KpΣq of Σ is an n ˆ n matrix of zeros
and ones whose pi, jq entry is

Ki jpΣq “

"

1 Dt P A` such that spxi, tq “ x j

0 otherwise

where i, j P t1, . . . , nu.

KpΣq shows in a compact way the stable reachability
between any pair of states in Σ. The skeleton matrix KpΣrq

for Σr is similarly defined. The existence condition for a
corrective controller that realizes model matching between
Σc and Σr is written as [1]–[3]

KpΣrq ď KpΣq

where the inequality is valid entry by entry. The above
relation means that the stable reachability of Σ must be
greater than or equal to that of Σr for ensuring model
matching corrective control.

We outline the process of corrective control for model
matching provided that KpΣrq ď KpΣq is valid. This process

will be also applied to constructing the module of the fault-
tolerant controller. Referring to Fig. 1, we formulate C as the
following finite state machine; note that Σ is the input/state
machine whereas C is the input/output machine that provides
the output value which differs from the present state.

C “ pX ˆ X ˆ A, A,Ξ, ξ0, ϕ, ηq

where X ˆ X ˆ A is the input set, A is the output set, Ξ is
the state set, and ξ0 P Ξ is the initial state. ϕ and η are the
recursion function and output function, respectively, with the
mappings

ϕ : Ξˆ X ˆ X ˆ A Ñ Ξ

η : ΞÑ A.

In the beginning, C is at the initial state ξ0. Assuming that
model matching has been successful so far, suppose that both
Σ and Σr reach the same stable state xi for which there exists
a non-empty set Dpxi, x jq Ă A such that

Dpxi, x jq :“ ta P A|srpxi, aq “ x j and srpxi, aq , spxi, aqu.

Any input in Dpxi, x jq would cause model mismatch in the
transition from xi to x j. Upon receiving the state feedback
xi, C transfers to ξt, termed the transition state [3]. In the
fundamental mode operation, an input change can occur only
when the machine stays at a stable combination. Anticipating
that an input character in Dpxi, x jq may enter the system, C
prepares the correction behavior at ξt. In order to realize the
latter functionality, we assign ϕ and η at ξ0 and ξt as follows.

ϕpξ0, x, x, vq “ ξ0 @px, x, vq P X ˆ X ˆ Aztpxi, xiqu ˆ Upxiq

ϕpξ0, xi, xi, vq “ ξt @v P Upxiq. (1)

Note that the first character in the input variables of ϕ
denotes the state feedback from Σ. Since no actual control
is conducted at either ξ0 or ξt, C relays the external input v
to the control input u without modification:

ηpξ0q “ v

ηpξtq “ v. (2)

If the external input v changes to a character that invokes
no model mismatch, C will go back to ξ0. On the other hand,
if v changes to a character a P Dpxi, x jq, the next behavior
of Σ would violate the desired input/state specification if not
corrected. By Definition 2, srpxi, aq “ x j implies Ki jpΣrq “

1. Since KpΣrq ď KpΣq by assumption, Ki jpΣrq “ 1 leads
to Ki jpΣq “ 1 (every entry of the skeleton matrix is either
zero or one) and hence there exists an input sequence t :“
u1u2 ¨ ¨ ¨ uk P A` (k ď n ´ 1) such that x j “ spxi, tq. We
denote by z1, . . . , zk´1 P X all the intermediate stable states
Σ passes through with t, that is,

zi “ spzi´1, uiq

zi “ spzi, uiq, i “ 1, . . . , k (3)
z0 :“ xi

zk :“ x j.

Note that between the adjacent stable states zi and zi`1, Σ
may pass through some transient states. Asynchrony and fun-
damental mode operations of Σc make these stable transitions
pz0, u1q, pz1, u2q, . . . , pzk´1, ukq show transient characteristics
temporarily by inserting k auxiliary states of the controller,
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termed ξ1, . . . , ξk P Ξ, into the correction trajectory. As soon
as C receives the external input a, it transfers to ξ1, the first
auxiliary state, and provides Σ with the first control input
character u1. To this end, set ϕ and η as

ϕpξt, xi, xi, aq “ ξ1 @a P Dpxi, x jq

ϕpξ1, xi, xi, aq “ ξ1 @a P Dpxi, x jq. (4)
ηpξ1q “ u1.

In response to u1, Σ moves from xi to z1 “ spxi, u1q, the
first intermediate stable state. Receiving the state feedback
z1, C in turn transfers to the second auxiliary state ξ2 and
generates the second control input u2. In response to u2, Σ
moves to the second intermediate stable state z2 “ spz1, u2q,
and so on. This iterative procedure continues for k steps. The
following assignment of ϕ and η realizes this operation.

ϕpξh, xi, zh, aq “ ξh`1

ϕpξh`1, xi, zh, aq “ ξh`1 (5)
ηpξhq “ uh

h “ 1, . . . , k ´ 1.

Finally, at ξk, Σ reaches the desired next stable state x j.
To preserve the principle of the fundamental mode operation,
we design C so that it receives the state feedback from Σr

only after reaching the final state ξk. Receiving x j from Σr,
C returns to ξ0.

ϕpξk, xi, x j, aq “ ξk

ϕpξk, x j, x j, aq “ ξ0 (6)
ηpξkq “ uk.

Due to the lack of no global synchronizing clock, all
stable transitions and the interactions between C and Σ can
be executed very fast. Therefore, the closed-loop system Σc

seems to transfer from xi directly to x j in response to any
input a P Dpxi, x jq. Note that the foregoing design solves
model matching only for the stable transition from xi to x j.
The controller modules for other stable transitions can be
made in a similar way. The overall model matching controller
is accomplished by combining each controller module.

IV. Fault-Tolerant Corrective Control
A. Faults at the External Input

We now consider the problem of tolerating input faults
occurring to the external input v. It is supposed that the
reachability condition KpΣrq ď KpΣq is valid so that the
model matching corrective controller C is implemented in
front of Σ as shown in Fig. 1.

Assume that Σ (and Σr) has been staying at a stable
combination pxi, vq where v P Upxiq and Fpvq ,H, i.e., v is
not fault-free, and that C has been staying at the transition
state ξt. Assume further that an input fault happens to v,
causing an unauthorized switch to a character v1 P Fpvq.
Since C is not equipped with any fault detection module, it
cannot discriminate between an occurrence of the input fault
and the normal transmission of a new input character. In this
study, we propose a policy that every change of the external
input is first interpreted as the transmission of a new input
character. Note that this policy is preferable because the rate
of fault occurrences is usually much less than that of the
inflow of input characters.

The next behavior of C is determined by v1. First, assume
v1 P Upxiq. Since model matching between Σc and Σr is
supposed to be maintained, the present state of Σr is also xi.
In this case, the switched input v1 does not violate the desired
specification. Hence C delivers v1 to the control input u and
no state transition is induced either in C or Σ.

ϕpξt, xi, xi, v1q “ ξt

ηpξtq “ v1 @v1 P Fpvq X Upxiq.

Next, assume v1 P T pxiq. With no knowledge of the fault
occurrence, C must determine the next operation only in
terms of whether or not v1 would cause model mismatch. If
spxi, v1q “ srpxi, v1q, v1 < Dpxi, x jq for all j P t1, . . . , nu. Thus
C does not execute any control action; it just relays v1 to the
control input channel, i.e., u “ v1 as before. When Σ reaches
the next stable state spxi, v1q, spxi, v1q is delivered to C as the
state feedback. C then compares it with the state feedback xr

coming from Σr. Since v1 occurs by fault, the external input
to Σr is still v and Σr stays at xi. When the two state feedback
values are found to be different, an occurrence of the input
fault is perceived, and C should initiate another correction
procedure from spxi, v1q to xi immediately to maintain model
matching. The condition for making a correction trajectory
from spxi, v1q to xi is similar to the case of model matching
and is described as follows.

If v P Upxiq, v1 P T pxiq and spxi, v1q “ srpxi, v1q,

Dt1 P A` such that spspxi, v1q, t1q “ xi, (7)

namely, the original state xi must be stably reachable from
the deviated state spxi, v1q in Σ.

On the other hand, if spxi, v1q , srpxi, v1q, v1 is an input
character that causes model mismatch at the state xi. Let
srpxi, v1q :“ x j. Then v1 P Dpxi, x jq and Ki jpΣrq “ 1. Since
KpΣrq ď KpΣq by assumption, Ki jpΣrq “ 1 leads to Ki jpΣq “

1 and C already materializes a correction trajectory from xi

to x j using an input sequence t P A` such that spxi, tq “

x j. Upon receiving v1, C initiates the correction procedure
that takes Σ toward the goal state srpxi, v1q. When Σ reaches
srpxi, v1q, C compares the two state feedback values from Σ
and Σr. The rest of the procedure equals the former case. C
executes another correction procedure from srpxi, v1q to xi.
The reachability condition needed to realize this control is
written as

If v P Upxiq, v1 P T pxiq and spxi, v1q , srpxi, v1q,

Dt1 P A` such that spsrpxi, v1q, t1q “ xi. (8)

The design procedure is almost identical to (1)–(6). In fact,
if Dpx j, xiq ,H, C already has the corresponding correction
trajectory from x j to xi. It is efficient to use this trajectory
instead of adding another one. To this end, let ξ11 P Ξ be the
first auxiliary state of C that makes the correction trajectory
from x j to xi. We assign ϕ and η as follows.

ϕpξt, xi, x j, v1q “ ξ11

v1 P Fpvq X T pxiq and x j “ srpxi, v1q.

After reaching ξ11, C continues the recursive operation as
described in (5) and (6).
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Note that for all v1 P Fpvq X T pxiq, conditions (7) and (8)
can be combined into

If v P Upxiq,@v1 P Fpvq X T pxiq,

Dtpv1q P A` such that spsrpxi, v1q, tpv1qq “ xi. (9)

B. Faults at the Control Input

Let us consider the problem of tolerating input faults
occurring to the control input u. Unlike the case of input
faults occurring to the external input v, C can diagnose the
occurrence of this fault since the unauthorized state transition
is easily detected by observing the change of the state
feedback x while the external input v remains unchanged.

More specifically, assume that both Σ and Σr have been
staying at a stable combination pxi, uq with Fpuq ,H when
the input fault occurs to u, causing an unwanted switch of
the control input from u to u1 P Fpuq. The fault occurrence
is identified when the state feedback is observed to change
from xi to spxi, u1q while the external input and the state
feedback from Σr remain fixed. Of course, if u1 P Upxiq, the
state feedback remains the same. In this case, the fault is
latent in that it does not incur any change to the input or
state.

Assume now u1 P T pxiq. The condition for counteracting
the unauthorized state transition from xi to spxi, u1q is similar
to that used in tolerating the faults to the external input. The
original state xi must be stably reachable from the deviated
state spxi, u1q. In formal terms, the latter is written as

If u P Upxiq,@u1 P Fpuq X T pxiq,

Dtpu1q P A` such that spspxi, u1q, tpu1qq “ xi. (10)

Using the results (9) and (10), we now address the
condition for the existence of the fault-tolerant controller
that achieves model matching with respect to Σ as well as
counteracts any input fault in Σ that occurs to either the
external input v or the control input u. The following theorem
is the main result of this paper.

Theorem 1. Given Σ “ pA, X, x0, f q with X “ tx1, . . . , xnu,
let Σr “ pA, X, x0, srq be the reference model, and let KpΣq

and KpΣrq be the skeleton matrix of Σ and Σr, respectively.
Suppose that A has at least one character v such that Fpvq ,
H. Then, there exists a corrective controller C of Fig. 1 that
matches the stable state behavior of Σc to that of Σr while
invalidating the influence by any input faults if and only if
the following conditions are held true.
(a) KpΣrq ď KpΣq.
(b) @xi, i “ 1, . . . , n, and @v P A with v P Upxiq and Fpvq ,

H,

@v1 P Fpvq X T pxiq,

Dtpv1q P A` such that spsrpxi, v1q, tpv1qq “ xi

Dt1pv1q P A` such that spspxi, v1q, t1pv1qq “ xi.

The above theorem means that if an input fault occurs to
a stable state, fault tolerance against the fault is possible if
and only if the original state is stably reachable from the
deviated state in both Σ and Σr, as described in (b). If this
condition and that of model matching (item (a)) are valid,
we can design a corrective controller that materializes both
fault tolerance and model matching. Employing the basic

corrective controller module for model matching described in
(1)–(6), we can construct a corrective controller that realizes
fault tolerance against the fault input occurring to each
combination pxi, vq, namely Cpxi, vq. The overall controller C
is obtained by adding all the controller modules Cpxi, vq’s to
C using join operation (refer to [3] for a detailed algorithm
for assembling corrective controller modules).

V. Example

Consider an input/state asynchronous sequential machine
Σ “ pA, X, x0, f q whose state flow diagram is shown in Fig. 2.
Here, A “ ta, b, c, du, X “ tx1, x2, x3, x4u, and x0 “ x1.
An examination of Fig. 2 shows that the corresponding
stable state behavior of Σ is given by Fig. 3. Since the next
stable state of the pair px3, dq is x1, spx3, dq “ x1 and the
corresponding stable transition is marked in Fig. 3. px4, bq

is another transient pair for which the stable transition is
different from the transient transition ( f px4, bq “ x1 but
spx4, bq “ x2). Among the input alphabet A, we assume the
following fault scenario.

Fpbq “ ta, du

Fpvq “ H, @v “ ta, c, du,

that is, the input b may be switched to one of a and d by the
input fault Fpbq and the other input characters are fault-free.
The reference model Σr “ pA, X, x0, srq that must be matched
by the closed-loop system Σc is shown in Fig. 4.

Let us first investigate the possibility of model matching
between Σc and Σr. The skeleton matrices KpΣq and KpΣrq

are derived as

KpΣq “

¨

˚

˚

˝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

˛

‹

‹

‚

KpΣrq “

¨

˚

˚

˝

1 1 1 1
1 1 1 1
0 0 1 0
1 1 1 1

˛

‹

‹

‚

Refer to the former works on corrective control [1], [3], [5]
for the formal steps of computing the skeleton matrix. Since
KpΣrq ď KpΣq, a model matching corrective controller C
exists in the structure of Fig. 1.

Next, we examine the possibility of fault-tolerant control
against Fpbq. In Fig. 3, b makes a stable combination with
x2 and x3, that is, b P Upx2q and b P Upx3q. Further, we
have

Fpbq X T px2q “ tau

Fpbq X T px3q “ tdu.

We first investigate the pair px2, bq. As FpbqXT px2q “ tau,
the only deviated state Σ may reach from x2 as a result of
the input fault is spx2, aq “ x1. But we already know that x2
is stably reachable from x1, i.e., K12pΣq “ 1. Hence, fault
tolerance against Fpbq at the state x2 is possible. Secondly,
we consider the pair px3, bq. From Fpbq X T px3q “ tdu,
it follows that the deviated state is spx3, dq “ x1. Since
K13pΣq “ 1, fault tolerance against Fpbq at the state x3 is also
possible. This analysis implies that condition (b) of Theorem
1 is satisfied by Σ. Thus, a fault-tolerant controller exists
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that invalidates the input faults Fpbq, while realizing model
matching between Σc and Σr.

x2 x3

x1

a,d

a,b,c

c

b,d

x4

c

c

b aa d

b,d

Fig. 2. State flow diagram of Σ.

x2 x3

x1

a,d

a,b,c

c

b,d

x4

c

c

b aa

d

d

b

Fig. 3. State flow diagram of Σ in the stable states.

x2 x3

x1

b,c

a,b,c,d

a

c,d

x4

a,d

a

d b

c

b

Fig. 4. State flow diagram of Σr .

VI. Summary

We have presented a corrective control scheme for asyn-
chronous sequential machines with input faults. We have
focused our concern on proposing a fault-tolerant control
law for input faults using only state feedback values from
the machine and the model. No observer is employed in
the proposed control architecture. Necessary and sufficient

conditions for the existence of the controller are presented.
It has been found that to tolerate any input fault, both the
machine and the model must be able to reach the original
state from the deviated state. The design procedure for a
controller has been outlined based on the basic corrective
controller module. To demonstrate the applicability of the
proposed scheme, the procedure of checking the controller
existence is addressed in the illustrative example. An appli-
cation of the proposed fault-tolerant control scheme to real-
world asynchronous sequential machines is under way as a
further study.
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