



Abstract—After bugs are detected, it is crucial to identify

their severity levels to avoid any effects that may obstruct to the

whole system. Unfortunately, only a small number of defected

are reported along with their severity level (labeled data), while

most of them do not have it (unlabeled data). All prior works

employed tradition-al supervised learning techniques that just

replied on this small amount of labeled data. Furthermore, they

ignored a bias that is caused by an imbalanced issue since some

severity levels may have defects much larger than others. In this

paper, we aim to improve prediction accuracy of the defect

severity categorization by proposing a novel algorithm called

“OS-YATSI.” It employs semi-supervised learning to fully

utilize all data and applies an oversampling strategy to tackle

the imbalanced issue. The experiment was conducted on three

public benchmarks of Java software. The results showed that

our algorithm significantly outperformed all baseline classifiers,

i.e., Decision Tree, Random Forest, Naïve Bayes, k-NN and

SVM, on all data sets at an average of 28.79% improvement in

terms of macro F1.

Index Terms—software defect severity; defect severity

categorization; semi-supervised learning; imbalanced issue

I. INTRODUCTION

OFTWARE defect is any flaw or imperfection in a

software product or process. It is also referred to as a

fault, bug, and error. Different defects have different impacts

on the software. Some of them may only slow down the

process, while others may be a cause of failures to the whole

system. Therefore, it is important to categorize a severity

level of each defect, which can help developers to prioritize

the defects and prevent any serious damages to the whole

system.

There were many attempts to automatically classify defect

severity. Almost all of them require a user feedback called

“bug report” as an input. SEVERIS [1] is a software severity

assessment system that utilize a textual description from

reported issues. [2-4] applied classical data mining

techniques to predict a severity level from user feedbacks. [5,

6] employed a text mining algorithm along with a mechanism

to select important keywords from bug reports.

Unfortunately, these works heavily replied on the bug

description, which means that users must already encounter

errors and serious damages may already occur. Thus, it is

better to capture all defects along with their severity level

directly from a software metrics during the software

Manuscript received December 8, 2015; revised January 6, 2016.
T. Choeikiwong and P. Vateekul are with the Department of Computer

Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok,

Thailand e-mail: Teerawit.Ch@student.chula.ac.th, Peerapon.V@chula.ac.th

production stage.

At the production stage, the number of reported defects is

usually small. Moreover, only a small number of defects are

described along with their severity level (known as “labeled

data”), while most of them do not have it (denoted as

“unlabeled data”). For example, the Eclipse PDE UI project

[7] has 209 defective modules composing of 59 defects

(28.23%) and 150 defects (71.77%) of known and unknown

severity levels, respectively. Furthermore, 46 defects

(77.97%) of defects with severity levels are defined as

“moderate effects (Level 2)” out of 3 levels. This

circumstance is referred as “imbalanced issue,” which the

result tend to classify most defects belong to the majority

level and tremendously drop prediction performance.

Therefore, it is not a good idea to employ a supervised

learning model that solely relies on just label data without

concerning of imbalanced data.

Semi-supervised learning is a technique that tries to

improve a prediction accuracy by using both labeled data and

unlabeled data for training. In a literature survey [8],

traditional semi-supervised learning algorithms are divided

into four main groups including Self-training, Co-training,

Density-based, and Graph-based methods. The success of

semi-supervised learning depends on underlying assumptions

in each model. The self-training approach is the most popular

semi-supervised learning technique, since it is simple and can

be easily applied to almost all existing classifiers.

In this paper, we present a novel defect severity

categorization called “OS-YATSI,” that combines between

YATSI [9], a self-training classifier, and SMOTE [10], an

oversampling strategy. It improves a prediction accuracy by

utilizing unlabeled data, while correcting imbalanced issue all

together. The experiment was conducted based on three

public benchmarks [7] and, then, the result was compared to

the original YATSI and several supervised learning

techniques: Decision Tree (DT), Random Forest (RF), Naïve

Bayes (NB), k-NN and SVM.

The rest of paper is organized as follows. Section II presents

an overview of the related work. Section III describes the

proposed method in details. Section IV shows the

experimental results. Finally, this paper is concluded in

Section V.

Improve Accuracy of Defect Severity

Categorization Using Semi-Supervised

Approach on Imbalanced Data Sets

Teerawit Choeikiwong and Peerapon Vateekul

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

II. RELATED WORK

A. Software Metrics

In the field of software engineering, software metrics play

an important role in describing the software. They are also

known as “code features”. It is common to use them to control

the software quality and to predict possible errors along with

their severity levels. In this work, the code features of the

experimental data sets are based on Chidamber and Kemerer

(CK) metrics and Object-Oriented (OO) metrics [11] as

shown details in Table I.

B. Related Work in Defect Severity Classification

There were many trials that applied text mining and

machine learning techniques in the area of software defect

severity prediction. In 2008, [1] proposed a method named

SEVERIS (SEVERITY Issue assessment) based on

RIPPER, a rule learning algorithm, on the textual

descriptions from issue reports. It was experimented on five

nameless PITS projects consisting of 775 issue reports with

about 79,000 words. By considering the top 100 terms, the

F1-result was in the range of 65% - 98% only for cases with

more than 30 bug reports.

In 2010, [2] applied Naïve Bayes algorithm to predict

severity levels based on textual description of defect reports.

There was an investigation on the three open-source projects

from Bugzilla. The result showed that it achieved a

promising performance in terms of precision and recall. In

addition, this study has been extended to compare with four

classifiers [3]. The experiment concluded that Multinomial

Naïve Bayes does not only show the highest accuracy, but it

is also faster and requires a smaller training set than other

classifiers. Another study, [4] compared six classical

classifiers, but there was no conclusion on the winner method.

In 2012, [5] aimed to improve an accuracy of severity

prediction by investigating three feature selection schemes:

Information Gain (IG), Chi-Square (CHI), and Correlation

Coefficient (CC), on Naïve Bayes. The experiment was

conducted on four open-source components from Eclipse and

Mozilla. In 2014, [6] demonstrated that bi-grams and Chi-

Square feature selection can help to enhance an accuracy of

the severity categorization task.

As mentioned above, none of prior works have ever

applied semi-supervised learning techniques to improve a

prediction accuracy by utilizing unlabeled data. Moreover, all

of them ignored an imbalanced issue resulting in a prohibited

accuracy.

C. Strategies to Handle Imbalanced Data Sets

To tackle imbalanced issue, a sampling technique has

received the most attention and is reported to be the best

strategy. These techniques are mainly dividing into two

approaches as follows.

Undersampling approach tries to balance between two

classes by removing examples in the majority class until the

desired class ratio has been achieved. Unfortunately, it is not

suitable for small training data and it cannot guarantee to keep

all important examples.

Oversampling approach is an opposite of the

undersampling strategy. It helps to improve a balance

between classes by replicating examples in the minority class;

thus, it is suitable when there is a scarcity issue in the training

data. However, a duplication of minority data can cause an

overfitting issue, so it is common to generate new minority

examples instead. SMOTE (Synthetic Minority Over-

sampling TEchnique) is chosen to use in this work and its

details will be shown in Section III.

D. Performance Measures

 In the domain of binary classification problem, it is

necessary to construct a confusion matrix, which comprises

of 4 based quantities as shown in Table II. These four values

are used to compute Precision (Pr) and Recall (Re) and Fβ-

measure introduced by [12] are shown in Table III.

As mentioned earlier, there are two ways to combine those

common measures [13]: macro-averaging and micro-

averaging as shown in Table IV. Macro-averaging gives an

equal weight to each class, whereas micro-averaging gives an

equal weights to each class based on a number of examples.

In an imbalanced situation, it is appropriate to use macro-

averaging over micro-averaging in order to avoid a

dominance of majority classes.

TABLE I

CLASS LEVEL SOFTWARE METRICS

Symbol Description

Chidamber and Kemerer Metrics

WMC Weight Method per Class
DIT Depth of Inheritance Tree

RFC Response for a class

NOC Number of Children
CBO Coupling Between Object classes

LCOM Lack of Cohesion in Methods

Object-Oriented Metrics

NOA Number of attributes

NOPA Number of public attributes
NOPM Number of public methods

NOPRA Number of private attributes
NOPRM Number of private methods

NOMI Number of methods inherited

NOAI Number of attributes inherited
LOC Number of lines of code

NOM Number of methods

FanIn Number of other classes that reference the class

FanOut Number of other classes referenced by the class

TABLE II
A CONFUSION MATRIX

 Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

TABLE III

PREDICTION PERFORMANCE METRICS

Metrics Definition Formula

Precision

a proportion of examples predicted as

defective against all of the predicted

defective
FNTP

TP



Recall

a proportion of examples correctly

predicted as defective against all of the

actually defective
FNTP

TP



Fβ -
measure

a weighted harmonic mean of precision
and recall RePr

(Pr)(Re)2



Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

http://dict.longdo.com/search/appropriate

III. A PROPOSED METHOD

In this section, we illustrate details of “OS-YATSI,” our

proposed defect severity classification. Fig. 1 shows a process

diagram of our method consisting of three main modules: (i)

Oversampling, (ii) Semi-supervised Learning, and (iii)

Unlabeled Selection Criteria.

1) Oversampling

This module aims to alleviate a bias from the majority

severity level. SMOTE, an oversampling strategy, is chosen

since the number of defects is scarce. It generates synthetic

examples from the minority class. First, i-th minority

example (𝑥𝑖) is randomly selected along with its nearest

neighbor in the minority class (𝑥̂𝑖). Second, a new synthetic

example (𝑥𝑛𝑒𝑤) is calculated following the equation below,

where 𝑟 is a random number between 0 and 1. Finally, this

process repeats until all minority examples are processed and

generated their synthetic examples.

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + (𝑥̂𝑖 − 𝑥)(𝑟) (1)

2) Semi-Supervised Learning

In the bug repositories, some defects have severity levels

reported (labeled data), while most of them do not have it

(unlabeled data). This process focuses on utilizing unlabeled

defects by employing a semi-supervised learning classifier

called “Yet Another Two Stage Idea (YATSI),” which

consists of two stages.

In the first stage, an initial classifier is constructed only

from the oversampling labeled data from Section 3.1. Then,

it is used to predict a severity level for each unlabeled data.

The output unlabeled data with predicted severity are called

“pre-labeled data.”

In the second stage, the nearest neighbor algorithm is

applied on a combined data set between the labeled and pre-

labeled data to determine a predicted severity level of the

unlabeled data. A weighting strategy is referred to as the

amount of trust. It is applied to a distance during the process

of finding a neighbor. As a default value, the weight of the

labeled data is set to 1, while the weight of the unlabeled data

is equal to F × (N/M), where N and M denote the number of

labeled and unlabeled data, consecutively, and F denotes a

user-defined parameter between 0 and 1 showing a trust on

the unlabeled data.

Finally, all unlabeled data are assign their actual severity

level. The k-nearest neighbor is employed. It predicts the

level that gives the largest total weighting score.

3) Unlabeled Selection Criteria (USC)

After Section 3.2, all unlabeled defects are already

annotated and have their severity level, so an enhanced

training data can be created by combining between the

labeled and unlabeled data.

For the labeled data, we choose to use the oversampling

data from Section 3.1 to avoid the imbalanced issue. For the

unlabeled data, the traditional semi-supervised classifier

usually uses all of them without concerning the imbalanced

issue. However, the preliminary experiment showed that

there is still an imbalanced issue in the unlabeled data.

Therefore, this module called “USC” is proposed as a

criteria to select examples in the unlabeled data set to include

in the training data set while maintaining the balance of data

for each severity level as summarized below:

1. Find the class with the smallest amount of example

(also called minority class) and add all examples in

that class to the training data.

2. Select examples for each severity level equally to

those in the minority class by their prediction score

from module 2 (Semi-supervised Learning)

The pseudo code for OS-YATSI is shown below.

Fig. 1. A process diagram of the proposed method

1. Oversampling
2. Semi-supervised

Learning

3. Unlabeled
Selection Criteria

(USC)

TABLE IV

Macro-averaging and micro-averaging of precision, recall, and Fβ, i

is a class index.

Metrics Macro-averaging Micro-averaging

Precision

Recall

Fβ-

measure

1

1
i

L

i
MaPr Pr

L 
  1

1
()

L

ii

L

i ii

tp
MiPr

tp fp













1

1
i

L

i
MaRe Re

L 
  1

1
()

L

ii

L

i ii

tp
MiRe

tp fn













,1

1
i

L

i
MaF F

L
 
 

2

2

(1) MiPr MiRe
MiF

MiPr MiRe






  


 

Algorithm Pseudo code for OS-YATSI algorithm

Input: A set of label 𝐿 = {𝑙1, 𝑙2, 𝑙3}, classifier 𝐶, labeled data 𝐷𝑙,
unlabeled data 𝐷𝑢, oversampling ratio 𝑅𝑜𝑠,
oversampling labeled data 𝐷𝑜𝑠𝑙, number of nearest
neighbors 𝐾, 𝑁 = |𝐷𝑜𝑠𝑙|, 𝑀 = |𝐷𝑢|, unlabeled data
example 𝑑𝑢

Step1: Find the majority class 𝑙𝑀 with |𝐷𝑀| examples in the
labeled data 𝐷𝑙
Create a set of minority classes 𝐿𝑚 that excludes the
majority class 𝑙𝑀
While(𝐿𝑚 is not empty)
 Find the class 𝑙𝑀 in 𝐿𝑚 with the least number of
examples, |𝐷𝑚|
 Compute the number of examples |𝐷𝑚

′ | if
oversampling using SMOTE with 𝑅𝑜𝑠
 If (Diff(|𝐷𝑚

′ |, |𝐷𝑀|) < Diff(|𝐷𝑚|, |𝐷𝑀|)) Then
 Oversampling the class using SMOTE with 𝑅𝑜𝑠

 Add the new oversampled example into 𝐷𝑜𝑠𝑙
 Else
 Remove class 𝑙𝑀 from a set of classes 𝐿𝑚

Step2: Use the classifier 𝐶 to construct the initial model 𝑀1 by
using 𝐷𝑜𝑠𝑙
Use the 𝑀1 to “pre-label” all the examples of 𝐷𝑢
For(i=1 to 𝑁)
 Weight = 1.0
For(j=1 to 𝑀)
 Weight = (𝑁/𝑀) ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝐹𝑎𝑐𝑡𝑜𝑟 𝐹
Combine 𝐷𝑜𝑠𝑙 and 𝐷𝑢 to generate 𝐷
For every example in 𝐷𝑢

Find the 𝐾-nearest neighbors to the example from
𝐷 to produce set 𝐷𝑘𝑁𝑁

For i=1 to K
 If(class of 𝐷𝑘𝑁𝑁 = 1) sum weight1 of 𝐷𝑘𝑁𝑁
 If(class of 𝐷𝑘𝑁𝑁 = 2) sum weight2 of 𝐷𝑘𝑁𝑁
 If(class of 𝐷𝑘𝑁𝑁 = 3) sum weight 3of 𝐷𝑘𝑁𝑁

Predict the actual class with the largest total
weighting score

Step3: For unlabeled data 𝐷𝑢
Find the class with smallest amount of example and

produce set 𝐶𝑠𝑚𝑎𝑙𝑙
For another class

Select examples equally to 𝐶𝑠𝑚𝑎𝑙𝑙 with their
prediction score and produce set 𝐶𝑏𝑎𝑙𝑎𝑛𝑐𝑒

Merge 𝐶𝑠𝑚𝑎𝑙𝑙 and 𝐶𝑏𝑎𝑙𝑎𝑛𝑐𝑒 to produce balance
unlabeled data 𝐷𝑢

′

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

IV. EXPERIMENTS AND RESULTS

A. Data Sets

We use the public benchmark presented in [7]. The data set

provides metrics that describes software artifacts from five

open-source software systems. We selected three software

system since there are enough training examples to predict

the defect severity. The severity statistics is shown in Table

V. From the statistics, it has shown that the data set suffers

from the scarcity and imbalanced issue. An average

percentage of the severity class is 35.77%, and the minimum

percentage is only 1.22% of severity level 3 in Mylyn.

B. Experimental Setup

In this section, shows how to conduct the experiments in

this paper. It is important to perform data preprocessing steps

including numeric-to-nominal conversion and data scaling.

Then, we compare the prediction performance among

different methods as the following steps. Note that all

experiments are based on 3-fold cross validation.

 Step1: find the baseline method which is the winner

of the standard classifiers: Decision Tree (DT),

Random Forest (RF), Naïve Bayes (NB), k-NN and

SVM

 Step2: find the best setting for OS-YATSI whether

or not USC is necessary

 Step3: compare OS-YATSI (Step2) to the YATSI

and baselines (Step1) along with a significance test

using unpaired t-test at a confidence level of 95%

C. Results and Discussion

The comparison of the baseline methods. In order to get the

baseline methods for each data set, five classifiers: Decision

Tree (DT), Random Forest (RF), k-Nearest Neighbor (k-NN),

Naïve Bayes (NB), and Support Vector Machine (SVM) were

tested and compared in terms of Pr, Re, and F1 (Table VI).

For each row in the table, the boldface method is a winner on

that data set. From the result, k-NN showed the best

performance in terms of macro and micro-average on Mylyn,

while the remaining data has been effective from various

methods. For F1-measure, we selected the winner as a

baseline methods in both macro and micro-average as

summarized in Table VII.

The comparison of OS-YATSI with and without USC. In this

section, we aim to give the best setting for OS-YATSI by

testing whether or not the Unlabeled Selection Criteria can

deal with the imbalanced issue and improve the prediction

performance. The results in Table VIII demonstrate that the

OS-YATSI with USC performs better than without USC all

data sets. The results imply that all the unlabeled data is not

always optimize the performance prediction. Moreover, the

efficiency may be reduced as well.

The comparison of OS-YATSI, YATSI and baseline

methods. In this section, we compare OS-YATSI to the

baseline methods which are obtain from the first experiment

as shown in Table VI. Furthermore, we also compare to the

original YATSI as well. In Table IX shows a comparison in

terms of Pr, Re, and F1 both macro and micro-average. All of

the measures give the same pattern that OS-YATSI

outperforms the other method in all most all of the data sets.

In macro-average, OS-YATSI significantly won 3, 1, and 2

on Pr, Re, and F1, respectively. On average, macro F1 of OS-

YATSI outperforms that of the baselines for 28.79%,

especially for the PDE UI data set showing 49.31%

improvement. Consequently, this demonstrates that it is

effective to apply OS-YATSI as a main mechanism to

categorize defect severity of software modules.

TABLE V
SEVERITY STATISTICS FOR EACH DATA SET

Data #modules
Severity(Sev.) level

%Sev.
lv. 1 lv. 2 lv. 3 N/A

Eclipse JDT Core 206 12 19 10 165 19.90

Eclipse PDE UI 209 7 46 6 150 28.23

Mylyn 245 127 15 3 100 59.18

Average 220 48.67 26.67 6.33 138.33 35.77

TABLE VI

COMPARISON PREDICTION PERFORMANCE MEASURES OF THE CLASSICAL CLASSIFIERS

Precision

Data
DT RF k-NN NB SVM

Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro

JDT Core 0.330 0.445 0.293 0.366 0.302 0.317 0.419 0.344 0.186 0.440

PDE UI 0.263 0.630 0.257 0.746 0.261 0.679 0.255 0.546 0.258 0.763

Mylyn 0.291 0.855 0.321 0.855 0.361 0.758 0.318 0.745 0.292 0.876

Avg. 0.295 0.643 0.202 0.656 0.308 0.585 0.331 0.545 0.245 0.693

SD 0.034 0.205 0.153 0.257 0.050 0.235 0.083 0.201 0.054 0.226

Recall

Data
DT RF k-NN NB SVM

Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro

JDT Core 0.393 0.445 0.291 0.366 0.272 0.317 0.356 0.344 0.329 0.440

PDE UI 0.318 0.630 0.319 0.746 0.290 0.679 0.233 0.546 0.326 0.763

Mylyn 0.325 0.855 0.345 0.855 0.347 0.758 0.323 0.745 0.333 0.876

Avg. 0.345 0.643 0.318 0.656 0.303 0.585 0.304 0.545 0.329 0.693

SD 0.041 0.205 0.027 0.257 0.039 0.235 0.064 0.201 0.004 0.226

F1-measure

Data
DT RF k-NN NB SVM

Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro

JDT Core 0.349 0.445 0.255 0.366 0.280 0.317 0.350 0.344 0.230 0.440

PDE UI 0.275 0.630 0.285 0.746 0.275 0.679 0.241 0.546 0.288 0.763

Mylyn 0.307 0.855 0.332 0.855 0.351 0.758 0.315 0.745 0.311 0.876

Avg. 0.310 0.643 0.291 0.656 0.302 0.585 0.302 0.545 0.276 0.693
SD 0.037 0.205 0.039 0.257 0.043 0.235 0.056 0.201 0.042 0.226

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

V. CONCLUSION

Although it is an important task to classify software defect

severity levels, an accuracy of existing techniques is still

limited due to two major issues. First, it is a scarcity of defects

that have severity levels labeled, while the remaining are left

unlabeled. Second, defects of some severity levels outnumber

the others causing an imbalanced issue.

In this paper, an algorithm called “OS-YATSI” is proposed

to tackle these issues by introducing a semi-supervised

learning to solve the scarcity problem and oversampling

defects in the minority class to alleviate the imbalanced issue.

There are three modules in the system: (i) Oversampling, (ii)

Semi-Supervised Learning, and (iii) Unlabeled Selection

Criteria. First, we balance the number of defects for each

severity level using an oversampling technique called

SMOTE, so the initial classifier will not be biased by any

majority severity levels. Second, the defects without severity

levels (unlabeled data) are identified using a semi-supervised

technique called YATSI. Finally, these unlabeled defects

with predicted class are selected equally for each severity

level by their prediction score. Then, they are combined with

the oversampled labeled defects from the first process to

build a final classifier.

In the experiment, OS-YATSI was compared to five

conventional classifiers: Decision Tree, Random Forest,

Naïve Bayes, k-NN, and SVM, on three Java projects. The

results revealed that our approach significantly surpassed all

baselines on all data sets in terms of macro F1. In the future,

we plan to propose a measure to rank defects within the same

severity level.

REFERENCES

[1] T. Menzies and A. Marcus, "Automated severity assessment of

software defect reports," in Software Maintenance, 2008. ICSM

2008. IEEE International Conference on, 2008, pp. 346-355.

[2] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals,

"Predicting the severity of a reported bug," in Mining Software

Repositories (MSR), 2010 7th IEEE Working Conference on,

2010, pp. 1-10.

[3] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck,

"Comparing Mining Algorithms for Predicting the Severity of

a Reported Bug," in Software Maintenance and Reengineering

(CSMR), 2011 15th European Conference on, 2011, pp. 249-

258.

[4] K. K. Chaturvedi and V. B. Singh, "Determining Bug severity

using machine learning techniques," in Software Engineering

(CONSEG), 2012 CSI Sixth International Conference on, 2012,

pp. 1-6.

[5] Y. Cheng-Zen, H. Chun-Chi, K. Wei-Chen, and C. Ing-Xiang,

"An Empirical Study on Improving Severity Prediction of

Defect Reports Using Feature Selection," in Software

Engineering Conference (APSEC), 2012 19th Asia-Pacific,

2012, pp. 240-249.

[6] N. K. Singha Roy and B. Rossi, "Towards an Improvement of

Bug Severity Classification," in Software Engineering and

Advanced Applications (SEAA), 2014 40th EUROMICRO

Conference on, 2014, pp. 269-276.

[7] M. D'Ambros, M. Lanza, and R. Robbes, "An extensive

comparison of bug prediction approaches," in Mining Software

Repositories (MSR), 2010 7th IEEE Working Conference on,

2010, pp. 31-41.

[8] X. Zhu, "SemiSupervised classification learning survey,"

Computer Sciences TR 1530 , University of Wisconsin-

Madison 1530, Dec. 2005 2005.

[9] K. Driessens, P. Reutemann, B. Pfahringer, and C. Leschi,

"Using Weighted Nearest Neighbor to Benefit from Unlabeled

Data," in Advances in Knowledge Discovery and Data Mining.

vol. 3918, W.-K. Ng, M. Kitsuregawa, J. Li, and K. Chang,

Eds., ed: Springer Berlin Heidelberg, 2006, pp. 60-69.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, "SMOTE: synthetic minority over-sampling

technique," J. Artif. Int. Res., vol. 16, pp. 321-357, 2002.

[11] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object

oriented design," Software Engineering, IEEE Transactions on,

vol. 20, pp. 476-493, 1994.

[12] C. J. V. Rijsbergen, Information Retrieval, 2 ed. London:

Butterworths, 1979.

[13] Y. Yang, "An Evaluation of Statistical Approaches to Text

Categorization," Inf. Retr., vol. 1, pp. 69-90, 1999.

TABLE VII

THE WINNER OF THE BASELINE METHOD FOR EACH DATA SET
IN TERMS OF F1-MEASURE

Data Winner
F1

Macro Micro

JDT Core NB 0.350 0.344

PDE UI SVM 0.288 0.763
Mylyn k-NN 0.351 0.758

Avg. - 0.330 0.622

SD - 0.036 0.240

TABLE VIII

A COMPARISON OF OS-YATSI BETWEEN WITH AND WITHOUT USC

IN TERMS OF F1-MEASURE

Data
With USC Without USC

Macro Micro Macro Micro

JDT Core 0.484 0.513 0.459 0.491

PDE UI 0.430 0.746 0.290 0.629

Mylyn 0.361 0.807 0.349 0.800

Avg. 0.425 0.689 0.366 0.640
SD 0.062 0.155 0.086 0.155

TABLE IX
COMPARISON PREDICTION PERFORMANCE MEASURES OF OS-YATSI, YATSI,

AND BASELINE METHOD.

THE BOLDFACE METHOD IS A WINNER ON THAT DATASET

Precision

Data
Baseline YATSI OS-YATSI

Macro Micro Macro Micro Macro Micro

JDT Core 0.419 0.344 0.406 0.410 0.514* 0.513**

PDE UI 0.263 0.630 0.297 0.730 0.436** 0.746

Mylyn 0.361 0.758 0.329 0.759 0.426* 0.807*

Avg. 0.348 0.577 0.344 0.633 0.459 0.689

SD 0.079 0.212 0.056 0.194 0.048 0.155

Recall

Data
Baseline YATSI OS-YATSI

Macro Micro Macro Micro Macro Micro

JDT Core 0.393 0.445 0.390 0.410 0.499 0.513*

PDE UI 0.326 0.763 0.360 0.730 0.464* 0.746

Mylyn 0.347 0.758 0.348 0.759 0.366 0.807*
Avg. 0.355 0.655 0.366 0.633 0.443 0.689

SD 0.034 0.182 0.022 0.194 0.069 0.155

F1-measure

Data
Baseline YATSI OS-YATSI

Macro Micro Macro Micro Macro Micro

JDT Core 0.350 0.344 0.381 0.410 0.484* 0.513**

PDE UI 0.288 0.763 0.324 0.730 0.430* 0.746

Mylyn 0.351 0.758 0.330 0.759 0.361 0.807*

Avg. 0.330 0.622 0.345 0.633 0.425 0.689

SD 0.036 0.240 0.031 0.194 0.062 0.155

* and ** represent a significant difference at a confidence level of 95% and 99%,

respectively.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

	I. INTRODUCTION
	II. Related Work
	A. Software Metrics
	B. Related Work in Defect Severity Classification
	C. Strategies to Handle Imbalanced Data Sets
	D. Performance Measures

	III. A Proposed Method
	1) Oversampling
	2) Semi-Supervised Learning
	3) Unlabeled Selection Criteria (USC)

	IV. Experiments and Results
	A. Data Sets
	B. Experimental Setup
	C. Results and Discussion

	V. Conclusion
	References

