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Abstract—After bugs are detected, it is crucial to identify 

their severity levels to avoid any effects that may obstruct to the 

whole system. Unfortunately, only a small number of defected 

are reported along with their severity level (labeled data), while 

most of them do not have it (unlabeled data). All prior works 

employed tradition-al supervised learning techniques that just 

replied on this small amount of labeled data. Furthermore, they 

ignored a bias that is caused by an imbalanced issue since some 

severity levels may have defects much larger than others. In this 

paper, we aim to improve prediction accuracy of the defect 

severity categorization by proposing a novel algorithm called 

“OS-YATSI.” It employs semi-supervised learning to fully 

utilize all data and applies an oversampling strategy to tackle 

the imbalanced issue. The experiment was conducted on three 

public benchmarks of Java software. The results showed that 

our algorithm significantly outperformed all baseline classifiers, 

i.e., Decision Tree, Random Forest, Naïve Bayes, k-NN and 

SVM, on all data sets at an average of 28.79% improvement in 

terms of macro F1. 

 
Index Terms—software defect severity; defect severity 

categorization; semi-supervised learning; imbalanced issue  

I. INTRODUCTION 

OFTWARE defect is any flaw or imperfection in a 

software product or process. It is also referred to as a 

fault, bug, and error. Different defects have different impacts 

on the software. Some of them may only slow down the 

process, while others may be a cause of failures to the whole 

system. Therefore, it is important to categorize a severity 

level of each defect, which can help developers to prioritize 

the defects and prevent any serious damages to the whole 

system. 

There were many attempts to automatically classify defect 

severity. Almost all of them require a user feedback called 

“bug report” as an input. SEVERIS [1] is a software severity 

assessment system that utilize a textual description from 

reported issues. [2-4] applied classical data mining 

techniques to predict a severity level from user feedbacks. [5, 

6] employed a text mining algorithm along with a mechanism 

to select important keywords from bug reports. 

Unfortunately, these works heavily replied on the bug 

description, which means that users must already encounter 

errors and serious damages may already occur. Thus, it is 

better to capture all defects along with their severity level 

directly from a software metrics during the software 
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production stage. 

At the production stage, the number of reported defects is 

usually small. Moreover, only a small number of defects are 

described along with their severity level (known as “labeled 

data”), while most of them do not have it (denoted as 

“unlabeled data”). For example, the Eclipse PDE UI project 

[7] has 209 defective modules composing of 59 defects 

(28.23%) and 150 defects (71.77%) of known and unknown 

severity levels, respectively. Furthermore, 46 defects 

(77.97%) of defects with severity levels are defined as 

“moderate effects (Level 2)” out of 3 levels. This 

circumstance is referred as “imbalanced issue,” which the 

result tend to classify most defects belong to the majority 

level and tremendously drop prediction performance. 

Therefore, it is not a good idea to employ a supervised 

learning model that solely relies on just label data without 

concerning of imbalanced data. 

Semi-supervised learning is a technique that tries to 

improve a prediction accuracy by using both labeled data and 

unlabeled data for training. In a literature survey [8], 

traditional semi-supervised learning algorithms are divided 

into four main groups including Self-training, Co-training, 

Density-based, and Graph-based methods. The success of 

semi-supervised learning depends on underlying assumptions 

in each model. The self-training approach is the most popular 

semi-supervised learning technique, since it is simple and can 

be easily applied to almost all existing classifiers. 

In this paper, we present a novel defect severity 

categorization called “OS-YATSI,” that combines between 

YATSI [9], a self-training classifier, and SMOTE [10], an 

oversampling strategy. It improves a prediction accuracy by 

utilizing unlabeled data, while correcting imbalanced issue all 

together. The experiment was conducted based on three 

public benchmarks [7] and, then, the result was compared to 

the original YATSI and several supervised learning 

techniques: Decision Tree (DT), Random Forest (RF), Naïve 

Bayes (NB), k-NN and SVM. 

The rest of paper is organized as follows. Section II presents 

an overview of the related work. Section III describes the 

proposed method in details. Section IV shows the 

experimental results. Finally, this paper is concluded in 

Section V.  
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II. RELATED WORK 

A. Software Metrics 

In the field of software engineering, software metrics play 

an important role in describing the software. They are also 

known as “code features”. It is common to use them to control 

the software quality and to predict possible errors along with 

their severity levels. In this work, the code features of the 

experimental data sets are based on Chidamber and Kemerer 

(CK) metrics  and Object-Oriented (OO) metrics [11] as 

shown details in Table I. 

B. Related Work in Defect Severity Classification 

There were many trials that applied text mining and 

machine learning techniques in the area of software defect 

severity prediction. In 2008, [1] proposed a method named 

SEVERIS (SEVERITY Issue assessment) based on 

RIPPER, a rule learning algorithm, on the textual 

descriptions from issue reports. It was experimented on five 

nameless PITS projects consisting of 775 issue reports with 

about 79,000 words. By considering the top 100 terms, the 

F1-result was in the range of 65% - 98% only for cases with 

more than 30 bug reports. 

In 2010, [2] applied Naïve Bayes algorithm to predict 

severity levels based on textual description of defect reports. 

There was an investigation on the three open-source projects 

from Bugzilla. The result showed that it achieved a 

promising performance in terms of precision and recall. In 

addition, this study has been extended to compare with four 

classifiers [3]. The experiment concluded that Multinomial 

Naïve Bayes does not only show the highest accuracy, but it 

is also faster and requires a smaller training set than other 

classifiers. Another study, [4] compared six classical 

classifiers, but there was no conclusion on the winner method. 

In 2012, [5] aimed to improve an accuracy of severity 

prediction by investigating three feature selection schemes: 

Information Gain (IG), Chi-Square (CHI), and Correlation 

Coefficient (CC), on Naïve Bayes. The experiment was 

conducted on four open-source components from Eclipse and 

Mozilla. In 2014, [6] demonstrated that bi-grams and Chi-

Square feature selection can help to enhance an accuracy of 

the severity categorization task. 

As mentioned above, none of prior works have ever 

applied semi-supervised learning techniques to improve a 

prediction accuracy by utilizing unlabeled data. Moreover, all 

of them ignored an imbalanced issue resulting in a prohibited 

accuracy. 

 

C. Strategies to Handle Imbalanced Data Sets 

To tackle imbalanced issue, a sampling technique has 

received the most attention and is reported to be the best 

strategy. These techniques are mainly dividing into two 

approaches as follows. 

Undersampling approach tries to balance between two 

classes by removing examples in the majority class until the 

desired class ratio has been achieved. Unfortunately, it is not 

suitable for small training data and it cannot guarantee to keep 

all important examples. 

Oversampling approach is an opposite of the 

undersampling strategy. It helps to improve a balance 

between classes by replicating examples in the minority class; 

thus, it is suitable when there is a scarcity issue in the training 

data. However, a duplication of minority data can cause an 

overfitting issue, so it is common to generate new minority 

examples instead. SMOTE (Synthetic Minority Over-

sampling TEchnique) is chosen to use in this work and its 

details will be shown in Section III. 

 

D. Performance Measures 

 In the domain of binary classification problem, it is 

necessary to construct a confusion matrix, which comprises 

of 4 based quantities as shown in Table II. These four values 

are used to compute Precision (Pr) and Recall (Re) and Fβ-

measure introduced by [12] are shown in Table III. 

As mentioned earlier, there are two ways to combine those 

common measures [13]: macro-averaging and micro-

averaging as shown in Table IV. Macro-averaging gives an 

equal weight to each class, whereas micro-averaging gives an 

equal weights to each class based on a number of examples. 

In an imbalanced situation, it is appropriate to use macro-

averaging over micro-averaging in order to avoid a 

dominance of majority classes. 

 

 

TABLE I 

CLASS LEVEL SOFTWARE METRICS 

Symbol Description 

Chidamber and Kemerer Metrics 

WMC Weight Method per Class 
DIT Depth of Inheritance Tree 

RFC Response for a class 

NOC Number of Children 
CBO Coupling Between Object classes 

LCOM Lack of Cohesion in Methods 

 
Object-Oriented Metrics 

NOA Number of attributes 

NOPA Number of public attributes 
NOPM Number of public methods 

NOPRA Number of private attributes 
NOPRM Number of private methods 

NOMI Number of methods inherited 

NOAI Number of attributes inherited 
LOC Number of lines of code 

NOM Number of methods 

FanIn Number of other classes that reference the class 

FanOut Number of other classes referenced by the class 

 

TABLE II 
A CONFUSION MATRIX 

 Predicted Positive Predicted Negative 

Actual Positive TP FN 

Actual Negative FP TN 

 

TABLE III 

PREDICTION PERFORMANCE METRICS 

Metrics Definition Formula 

Precision 

a proportion of examples predicted as 

defective against all of the predicted 

defective 
FNTP

TP


 

Recall 

a proportion of examples correctly 

predicted as defective against all of the 

actually defective 
FNTP

TP


 

Fβ -
measure 

a weighted harmonic mean of precision 
and recall RePr

(Pr)(Re)2


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III. A PROPOSED METHOD 

In this section, we illustrate details of “OS-YATSI,” our 

proposed defect severity classification. Fig. 1 shows a process 

diagram of our method consisting of three main modules: (i) 

Oversampling, (ii) Semi-supervised Learning, and (iii) 

Unlabeled Selection Criteria. 

1) Oversampling 

This module aims to alleviate a bias from the majority 

severity level. SMOTE, an oversampling strategy, is chosen 

since the number of defects is scarce. It generates synthetic 

examples from the minority class. First, i-th minority 

example (𝑥𝑖) is randomly selected along with its nearest 

neighbor in the minority class (𝑥̂𝑖). Second, a new synthetic 

example (𝑥𝑛𝑒𝑤) is calculated following the equation below, 

where 𝑟 is a random number between 0 and 1. Finally, this 

process repeats until all minority examples are processed and 

generated their synthetic examples. 

𝑥𝑛𝑒𝑤 =  𝑥𝑖 + (𝑥̂𝑖 − 𝑥)(𝑟) (1) 

2) Semi-Supervised Learning 

In the bug repositories, some defects have severity levels 

reported (labeled data), while most of them do not have it 

(unlabeled data). This process focuses on utilizing unlabeled 

defects by employing a semi-supervised learning classifier 

called “Yet Another Two Stage Idea (YATSI),” which 

consists of two stages. 

In the first stage, an initial classifier is constructed only 

from the oversampling labeled data from Section 3.1. Then, 

it is used to predict a severity level for each unlabeled data. 

The output unlabeled data with predicted severity are called 

“pre-labeled data.” 

In the second stage, the nearest neighbor algorithm is 

applied on a combined data set between the labeled and pre-

labeled data to determine a predicted severity level of the 

unlabeled data. A weighting strategy is referred to as the 

amount of trust. It is applied to a distance during the process 

of finding a neighbor. As a default value, the weight of the 

labeled data is set to 1, while the weight of the unlabeled data 

is equal to F × (N/M), where N and M denote the number of 

labeled and unlabeled data, consecutively, and F denotes a 

user-defined parameter between 0 and 1 showing a trust on 

the unlabeled data.  

Finally, all unlabeled data are assign their actual severity 

level. The k-nearest neighbor is employed. It predicts the 

level that gives the largest total weighting score. 

 

3) Unlabeled Selection Criteria (USC) 

After Section 3.2, all unlabeled defects are already 

annotated and have their severity level, so an enhanced 

training data can be created by combining between the 

labeled and unlabeled data.  

For the labeled data, we choose to use the oversampling 

data from Section 3.1 to avoid the imbalanced issue. For the 

unlabeled data, the traditional semi-supervised classifier 

usually uses all of them without concerning the imbalanced 

issue. However, the preliminary experiment showed that 

there is still an imbalanced issue in the unlabeled data. 

Therefore, this module called “USC” is proposed as a 

criteria to select examples in the unlabeled data set to include 

in the training data set while maintaining the balance of data 

for each severity level as summarized below: 

1. Find the class with the smallest amount of example 

(also called minority class) and add all examples in 

that class to the training data. 

2. Select examples for each severity level equally to 

those in the minority class by their prediction score 

from module 2 (Semi-supervised Learning) 

The pseudo code for OS-YATSI is shown below. 

 

Fig. 1.  A process diagram of the proposed method 

1. Oversampling
2. Semi-supervised 

Learning

3. Unlabeled 
Selection Criteria 

(USC)

TABLE IV 

Macro-averaging and micro-averaging of precision, recall, and Fβ, i 

is a class index. 

Metrics Macro-averaging Micro-averaging 

Precision   

Recall   

Fβ-

measure 
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Algorithm   Pseudo code for OS-YATSI algorithm 

Input: A set of label 𝐿 = {𝑙1, 𝑙2, 𝑙3}, classifier 𝐶, labeled data 𝐷𝑙, 
unlabeled data 𝐷𝑢, oversampling ratio 𝑅𝑜𝑠, 
oversampling labeled data 𝐷𝑜𝑠𝑙, number of nearest 
neighbors 𝐾, 𝑁 = |𝐷𝑜𝑠𝑙|, 𝑀 = |𝐷𝑢|, unlabeled data 
example 𝑑𝑢 

Step1: Find the majority class 𝑙𝑀 with |𝐷𝑀| examples in the 
labeled data 𝐷𝑙 
Create a set of minority classes 𝐿𝑚 that excludes the 
majority class 𝑙𝑀 
While(𝐿𝑚 is not empty) 
    Find the class 𝑙𝑀 in 𝐿𝑚 with the least number of 
examples, |𝐷𝑚| 
    Compute the number of examples |𝐷𝑚

′ | if 
oversampling using SMOTE with 𝑅𝑜𝑠 
    If ( Diff(|𝐷𝑚

′ |, |𝐷𝑀|)  <   Diff(|𝐷𝑚|, |𝐷𝑀|)) Then 
     Oversampling the class using SMOTE with 𝑅𝑜𝑠 

             Add the new oversampled example into 𝐷𝑜𝑠𝑙 
    Else 
             Remove class 𝑙𝑀 from a set of classes 𝐿𝑚 

Step2: Use the classifier 𝐶 to construct the initial model 𝑀1 by 
using 𝐷𝑜𝑠𝑙 
Use the 𝑀1 to “pre-label” all the examples of 𝐷𝑢 
For(i=1 to 𝑁) 
        Weight = 1.0 
For(j=1 to 𝑀) 
        Weight = (𝑁/𝑀) ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝐹𝑎𝑐𝑡𝑜𝑟 𝐹  
Combine 𝐷𝑜𝑠𝑙 and 𝐷𝑢 to generate 𝐷 
For every example in 𝐷𝑢 

Find the 𝐾-nearest neighbors to the example from 
𝐷 to produce set 𝐷𝑘𝑁𝑁 

For i=1 to K 
        If(class of 𝐷𝑘𝑁𝑁 = 1)  sum weight1 of 𝐷𝑘𝑁𝑁 
        If(class of 𝐷𝑘𝑁𝑁 = 2)  sum weight2 of 𝐷𝑘𝑁𝑁  
        If(class of 𝐷𝑘𝑁𝑁 = 3)  sum weight 3of 𝐷𝑘𝑁𝑁  

Predict the actual class with the largest total 
weighting score 

Step3: For unlabeled data 𝐷𝑢 
Find the class with smallest amount of example and 

produce set 𝐶𝑠𝑚𝑎𝑙𝑙 
For another class 

Select examples equally to 𝐶𝑠𝑚𝑎𝑙𝑙 with their 
prediction score and produce set 𝐶𝑏𝑎𝑙𝑎𝑛𝑐𝑒 

Merge  𝐶𝑠𝑚𝑎𝑙𝑙 and 𝐶𝑏𝑎𝑙𝑎𝑛𝑐𝑒 to produce balance 
unlabeled data 𝐷𝑢

′  
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IV. EXPERIMENTS AND RESULTS 

A. Data Sets 

We use the public benchmark presented in [7]. The data set 

provides metrics that describes software artifacts from five 

open-source software systems. We selected three software 

system since there are enough training examples to predict 

the defect severity. The severity statistics is shown in Table 

V. From the statistics, it has shown that the data set suffers 

from the scarcity and imbalanced issue. An average 

percentage of the severity class is 35.77%, and the minimum 

percentage is only 1.22% of severity level 3 in Mylyn. 

B. Experimental Setup 

In this section, shows how to conduct the experiments in 

this paper. It is important to perform data preprocessing steps 

including numeric-to-nominal conversion and data scaling. 

Then, we compare the prediction performance among 

different methods as the following steps. Note that all 

experiments are based on 3-fold cross validation. 

 Step1: find the baseline method which is the winner 

of the standard classifiers: Decision Tree (DT), 

Random Forest (RF), Naïve Bayes (NB), k-NN and 

SVM 

 Step2: find the best setting for OS-YATSI whether 

or not USC is necessary 

 Step3: compare OS-YATSI (Step2) to the YATSI 

and baselines (Step1) along with a significance test 

using unpaired t-test at a confidence level of 95% 

C. Results and Discussion 

The comparison of the baseline methods. In order to get the 

baseline methods for each data set, five classifiers: Decision 

Tree (DT), Random Forest (RF), k-Nearest Neighbor (k-NN), 

Naïve Bayes (NB), and Support Vector Machine (SVM) were 

tested and compared in terms of Pr, Re, and F1 (Table VI). 

For each row in the table, the boldface method is a winner on 

that data set. From the result, k-NN showed the best 

performance in terms of macro and micro-average on Mylyn, 

while the remaining data has been effective from various 

methods. For F1-measure, we selected the winner as a 

baseline methods in both macro and micro-average as 

summarized in Table VII. 

The comparison of OS-YATSI with and without USC. In this 

section, we aim to give the best setting for OS-YATSI by 

testing whether or not the Unlabeled Selection Criteria can 

deal with the imbalanced issue and improve the prediction 

performance. The results in Table VIII demonstrate that the 

OS-YATSI with USC performs better than without USC all 

data sets. The results imply that all the unlabeled data is not 

always optimize the performance prediction. Moreover, the 

efficiency may be reduced as well. 

The comparison of OS-YATSI, YATSI and baseline 

methods. In this section, we compare OS-YATSI to the 

baseline methods which are obtain from the first experiment 

as shown in Table VI. Furthermore, we also compare to the 

original YATSI as well. In Table IX shows a comparison in 

terms of Pr, Re, and F1 both macro and micro-average. All of 

the measures give the same pattern that OS-YATSI 

outperforms the other method in all most all of the data sets. 

In macro-average, OS-YATSI significantly won 3, 1, and 2 

on Pr, Re, and F1, respectively. On average, macro F1 of OS-

YATSI outperforms that of the baselines for 28.79%, 

especially for the PDE UI data set showing 49.31% 

improvement. Consequently, this demonstrates that it is 

effective to apply OS-YATSI as a main mechanism to 

categorize defect severity of software modules. 

TABLE V 
SEVERITY STATISTICS FOR EACH DATA SET 

Data #modules 
Severity(Sev.) level  

%Sev. 
lv. 1 lv. 2 lv. 3 N/A 

Eclipse JDT Core 206 12 19 10 165 19.90 

Eclipse PDE UI 209 7 46 6 150 28.23 

Mylyn 245 127 15 3 100 59.18 

Average 220 48.67 26.67 6.33 138.33 35.77 

 

 

TABLE VI 

COMPARISON PREDICTION PERFORMANCE MEASURES OF THE CLASSICAL CLASSIFIERS 

Precision 

Data 
DT RF k-NN NB SVM 

Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro 

JDT Core 0.330 0.445 0.293 0.366 0.302 0.317 0.419 0.344 0.186 0.440 

PDE UI 0.263 0.630 0.257 0.746 0.261 0.679 0.255 0.546 0.258 0.763 

Mylyn 0.291 0.855 0.321 0.855 0.361 0.758 0.318 0.745 0.292 0.876 

Avg. 0.295 0.643 0.202 0.656 0.308 0.585 0.331 0.545 0.245 0.693 

SD 0.034 0.205 0.153 0.257 0.050 0.235 0.083 0.201 0.054 0.226 

Recall 

Data 
DT RF k-NN NB SVM 

Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro 

JDT Core 0.393 0.445 0.291 0.366 0.272 0.317 0.356 0.344 0.329 0.440 

PDE UI 0.318 0.630 0.319 0.746 0.290 0.679 0.233 0.546 0.326 0.763 

Mylyn 0.325 0.855 0.345 0.855 0.347 0.758 0.323 0.745 0.333 0.876 

Avg. 0.345 0.643 0.318 0.656 0.303 0.585 0.304 0.545 0.329 0.693 

SD 0.041 0.205 0.027 0.257 0.039 0.235 0.064 0.201 0.004 0.226 

F1-measure 

Data 
DT RF k-NN NB SVM 

Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro 

JDT Core 0.349 0.445 0.255 0.366 0.280 0.317 0.350 0.344 0.230 0.440 

PDE UI 0.275 0.630 0.285 0.746 0.275 0.679 0.241 0.546 0.288 0.763 

Mylyn 0.307 0.855 0.332 0.855 0.351 0.758 0.315 0.745 0.311 0.876 

Avg. 0.310 0.643 0.291 0.656 0.302 0.585 0.302 0.545 0.276 0.693 
SD 0.037 0.205 0.039 0.257 0.043 0.235 0.056 0.201 0.042 0.226 
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V. CONCLUSION 

Although it is an important task to classify software defect 

severity levels, an accuracy of existing techniques is still 

limited due to two major issues. First, it is a scarcity of defects 

that have severity levels labeled, while the remaining are left 

unlabeled. Second, defects of some severity levels outnumber 

the others causing an imbalanced issue.  

In this paper, an algorithm called “OS-YATSI” is proposed 

to tackle these issues by introducing a semi-supervised 

learning to solve the scarcity problem and oversampling 

defects in the minority class to alleviate the imbalanced issue. 

There are three modules in the system: (i) Oversampling, (ii) 

Semi-Supervised Learning, and (iii) Unlabeled Selection 

Criteria. First, we balance the number of defects for each 

severity level using an oversampling technique called 

SMOTE, so the initial classifier will not be biased by any 

majority severity levels. Second, the defects without severity 

levels (unlabeled data) are identified using a semi-supervised 

technique called YATSI. Finally, these unlabeled defects 

with predicted class are selected equally for each severity 

level by their prediction score. Then, they are combined with 

the oversampled labeled defects from the first process to 

build a final classifier. 

In the experiment, OS-YATSI was compared to five 

conventional classifiers: Decision Tree, Random Forest, 

Naïve Bayes, k-NN, and SVM, on three Java projects. The 

results revealed that our approach significantly surpassed all 

baselines on all data sets in terms of macro F1. In the future, 

we plan to propose a measure to rank defects within the same 

severity level. 
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TABLE VII 

THE WINNER OF THE BASELINE METHOD FOR EACH DATA SET  
IN TERMS OF F1-MEASURE 

Data Winner 
F1 

Macro Micro 

JDT Core NB 0.350 0.344 

PDE UI SVM 0.288 0.763 
Mylyn k-NN 0.351 0.758 

Avg. - 0.330 0.622 

SD - 0.036 0.240 

 

 
TABLE VIII 

A COMPARISON OF OS-YATSI  BETWEEN WITH AND WITHOUT USC  

IN TERMS OF F1-MEASURE 

Data 
With USC Without USC 

Macro Micro Macro Micro 

JDT Core 0.484 0.513 0.459 0.491 

PDE UI 0.430 0.746 0.290 0.629 

Mylyn 0.361 0.807 0.349 0.800 

Avg. 0.425 0.689 0.366 0.640 
SD 0.062 0.155 0.086 0.155 

 

 

TABLE IX 
COMPARISON PREDICTION PERFORMANCE MEASURES OF OS-YATSI, YATSI, 

AND BASELINE METHOD.  

THE BOLDFACE METHOD IS A WINNER ON THAT DATASET 

Precision 

Data 
Baseline YATSI OS-YATSI 

Macro Micro Macro Micro Macro Micro 

JDT Core 0.419 0.344 0.406 0.410 0.514* 0.513** 

PDE UI 0.263 0.630 0.297 0.730 0.436** 0.746 

Mylyn 0.361 0.758 0.329 0.759 0.426* 0.807* 

Avg. 0.348 0.577 0.344 0.633 0.459 0.689 

SD 0.079 0.212 0.056 0.194 0.048 0.155 

Recall 

Data 
Baseline YATSI OS-YATSI 

Macro Micro Macro Micro Macro Micro 

JDT Core 0.393 0.445 0.390 0.410 0.499 0.513* 

PDE UI 0.326 0.763 0.360 0.730 0.464* 0.746 

Mylyn 0.347 0.758 0.348 0.759 0.366 0.807* 
Avg. 0.355 0.655 0.366 0.633 0.443 0.689 

SD 0.034 0.182 0.022 0.194 0.069 0.155 

F1-measure 

Data 
Baseline YATSI OS-YATSI 

Macro Micro Macro Micro Macro Micro 

JDT Core 0.350 0.344 0.381 0.410 0.484* 0.513** 

PDE UI 0.288 0.763 0.324 0.730 0.430* 0.746 

Mylyn 0.351 0.758 0.330 0.759 0.361 0.807* 

Avg. 0.330 0.622 0.345 0.633 0.425 0.689 

SD 0.036 0.240 0.031 0.194 0.062 0.155 

* and ** represent a significant difference at a confidence level of 95% and 99%, 

respectively. 
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