

Abstract— The UML (Unified Modeling Language) has its

base in mainstream software engineering and it is often used

informally by software designers. A limitation of UML is the

lack of precise semantics, which makes its application to safety

critical systems unsuitable. A safety critical system is one in

which any loss or misinterpretation of data could lead to injury,

loss of human lives and/or property. With the unrelenting use

of UML in the software industry, there is a need to improve the

informality of UML software models to remove ambiguity and

inconsistency during verification and validation. To overcome

this well-known limitation of UML, formal specification

techniques (FSTs), which are mathematically tractable, are

often used to represent these models. In this research, the

authors refine transformation rules for aspects of an informally

defined design in UML to one that is verifiable, i.e., a formal

specification notation. The specification language used is the Z

Notation. The rules are applied to UML class diagram

operation signatures iteratively, to derive Z schema

representations. This work was conducted as part of

developing an unmanned aerial systems (UAS) project that

complies with RTCA DO-178C specification.

Index Terms— Formal specification, Extended Bankus Naur

Form, model transformation, safety critical systems

I. INTRODUCTION

HE Unified Modeling Language (UML) is an ISO

standard for designing and conceptualizing graphical

models of software systems [1]. Since its development by

the Object Management Group (OMG) in the early 1990’s

its use has increased in industry and academia. Graphical

software models, such as UML models, possess simple

designs and promote good software engineering practices.

However, these models are not without limitation. Graphical

software models are often imprecise and ambiguous. In

addition, they are not directly analyzable by type checkers

and proof tools. This makes it difficult to evaluate the

integrity and correctness of its models; therefore, valid

assertions cannot be made with regard to meeting user

requirements.

Manuscript received January 19, 2016. This work was supported in

part by the University of North Dakota, Faculty Research Seed Grant

Program, May 2014.

Emanuel S. Grant, Ph.D. is an associate professor with the Department

of Computer Science, University of North Dakota, North Dakota, USA

phone: 701-777-4133; fax: 701-777-3330; (e-mail: grante@cs.und.edu.)

Tamaike Brown is a graduate research student with the Department of

Computer Science, University of North Dakota, North Dakota, USA.

(email: tamaike.brown@my.und.edu.)

Similar to other software development aids, UML has its

limitations. These informal models have an advantage, such

as expressiveness – which makes them easily conveyed to

both technical and nontechnical stakeholders the objective of

the system. However, UML lacks precise formal semantics,

which results in its models being subject to multiple

interpretations. This issue is aggravated by the use of

natural language annotations – as a means of clarification

and explanation of the modeling techniques adopted.

Because of UML's inherent flexibility, developers are given

much scope when designing models. This freedom enables

the developer to describe system requirements based on the

modeling technique they have adopted. However, problems

arise when these models are circulated among the

development team and each developer interprets the models

in a different way – which could affect the latter stages of

the software development life cycle (SDLC) [2]. This result

in software maintenance being difficult as the UML models

are often inconsistent with the source code and its

significance is lost [3].

In some systems, the disadvantages of UML and the

challenge of deriving precise models may not have a

significant impact on the quality of software produced. In

safety critical systems, any inadequacy could result in the

loss of property or be harmful to life. The high cost during

the implementation and early test phases are often times

caused by errors at the specification and design phases [4].

Since UML is widely accepted, there is a need for methods

to test the correctness of its models. This can be achieved

with the use of formal specification techniques.

Formal Specification Techniques (FST) have been

advocated as a supplementary approach to amend the

informality of graphical software models [5, 6]. They

promote the design of mathematically tractable systems

through critical thinking and scientific reasoning. FSTs use

a specification language, for instance Z notation, to describe

the components of a system and their constraints [7]. Unlike

graphical models, formal models can be analyzed directly by

a proof tool – which checks for errors and inconsistencies.

Critics of FSTs claim, they increase the cost of development,

require highly trained experts, and are not used in real

systems [8]. Yet, FST have been used in case studies that

unveiled that facilitate a greater understanding of the

requirements and their feasibility [9, 10]. Although the use

of FSTs is sometimes controversial, their benefits to critical

systems offset the disadvantages.

This work documents the transformation rules for UML

Towards Rigorous Transformation Rules for

Converting UML Operation Signatures to Z

Schema

Emanuel S. Grant, Member, IAENG, Tamaike Brown

T

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

class operation signature to an analyzable representation

using formal specification techniques. Equally, the specific

advancement that this works encourages is to provide a

means by which these transformation rules can be

automated. Automation is necessary because of the high

volume involve in such work – manual interventions can be

monotonous and inaccurate. Such process will reduce the

introduction of human errors when applying transformation

rules.

II. BACKGROUND

A. Motivation

The University of North Dakota (UND) – UAS Risk

Mitigation Project
1
 was awarded a contract to develop a

proof-of-concept air truth system, which monitors the

operation of UAS in the US National Airspace (NAS).

Unmanned Aircraft Systems (UASs) have been in existence

for many years. UAS is define as a system, whose

components include the unmanned air vehicles (UAV) and

corresponding hardware that do not involve an onboard

human operator but instead maneuver autonomously or are

remotely piloted, as well as the necessary software for

operation of the UAV. UAS must be considered in a system

context, which encompasses the command, control and

communications systems, and personnel necessary to control

the unmanned aircraft [11, 12]. Recently the use of UASs

has experienced immense growth and plays a central role in

scientific research, defense, and in certain industries [11,

13].

UAS technologies are categorized as safety critical

systems. This is due to them being utilized in high-risk tasks

that require thorough development methodologies to

guarantee its integrity. A system that is defined as safety

critical can have serious ramifications if a fault occurs.

These implications include the risk of injury, loss of life,

data, and property. Therefore, designing these systems

requires: 1) thorough understanding of their requirements, 2)

precise and unambiguous specifications, and 3) metrics to

verify and validate the quality of software produced.

In order for safety critical aviation systems to be accepted

by the United States Federal Aviation Administration (FAA)

and other interested parties, it must adhere to standards such

as the RTCA DO-178C [14]. The DO-178C is an

airworthiness compliance standard, which governs the

development and certification of avionic systems. DO-178C

also addresses object-oriented development concepts and

model-driven techniques.

B. Model-Driven Approach

The focus of Model Driven Engineering (MDE) is to

transform, refine, and integrate models into the software

development life cycle to support system design, evolution,

and maintenance [15]. Models serve many purposes and

their use varies from investors to investors. The purpose of

modeling, from a developer’s standpoint, is to represent the

proposed system by showing: 1) the flow of data between

objects and individual components of the system as wells as

1 www.uasresearch.com/home.aspx

how they can interact with other software components, 2)

Communication between internal entities and external

components, and 3) how the system’s behaves to stimuli.

In model-driven engineering, the purposes and uses of

graphical software models are multifaceted. They represent

the structural design of the system, and the flow of data, and

communication and control between the various systems and

subsystems. Its use is not only suited for astute stakeholders

but also non-technical stakeholders such as customers – to

convey how their requirements are being met. Graphical

software models are often imprecise and ambiguous. In

addition, they are not directly analyzable by type checkers

and proof tools. This makes it difficult to evaluate the

integrity and correctness of its models; therefore, valid

assertions cannot be made with regard to meeting user

requirements.

C. Model Transformation

Model transformation and refinement is a process that lies

at the heart of model driven engineering (MDE), where

platform independent models (PIM) are translated into

platform specific models (PSM) utilizing formal rules –

additionally referred to as transformation rules [16]. The

focus of MDE is to create and exploit domain models (that

is, transform, refine, and integrate models), which are

conceptual models into the software development life cycle

to fortify system design, evolution and maintenance [16].

The benefits of MDE was recognized and embraced by

many organizations, including the OMG. There are many

categories of model transformations such as, text-to-model

transformation, model-to-code transformation, and model-to-

model transformation [15]. This work focuses on the latter;

however, it will also highlight the process of deriving the

platform independent models. The platform independent

models will be the UML class diagrams and the platform

specific models will be their representative Z schemata.

This research seeks to derive a set of manual

transformation rules for a real world unmanned aerial system

that are applicable to all problem domains. The outcome of

this activity is to define a standard processes for yielding

formal models from informal UML models for the problem

domain. Manually transforming these models is tedious; and

as such, it is prone to human errors. Consequently, if

standard processes were established, it would prove

advantageous to automate them in future work.

III. METHODOLOGY

This research is based on efforts of previous work done

[9]. The work focused on formalizing UML software

models of safety critical systems, and validating and

verifying functional design for complex safety critical

systems. In addition, rules for transforming UML graphical

models to Z notation were defined. This research completes

the transformation rule by defining a set of rules that must be

followed for defining operations in a class. Fig. 1 shows an

example of a class diagram base on the Unmanned Aircraft

Systems (UAS) [9].

What follows in this report is a description of a series of

sequential steps that will be carried out in transforming

UML operations to Z representation. As each step is

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

defined, it will be demonstrated by applying the rules to the

operations shown in Fig. 1.

Fig. 1. Example of a UAS Class diagram

The UML model represents operation signature as textual,

this work is more understandable if a textual meta-model

representation is utilize. The scope of this meta-model is a

class diagram. The textual description that is appropriate for

this work is Extended Backus-Naur Form (EBNF) [17].

EBNF is a syntactic meta-language notation for expressing

context-free grammars, in computer science. It often used

where clear formal description and definition is required to

describe the syntax of languages used in computing

including computer programming languages [17]. The

following EBNF grammar rules shown in Table 1 are

adhered to when converting UML operations to EBNF.

The operations that the rules will be applied to are:

•

•

•

A. Operation Transformation Rule

1) Defining Operation Basic Types Schemata

Declare all data types before schema definitions. Data

types in Z are referred to as Basic Type or given sets of the

specification. A feature of the Z notation is that it offers a

calculus for building large specifications from smaller

components [6] – and basic types facilitate this. The

importance of basic types and given sets is that it allows one

to categorize real world entities into sets. These sets are an

essential part of Z schemas because they are used to

represent objects and their respective attributes. In this

work, basic types will be represented in capitalized letters so

that they can be easily identified.

The developer must examine the attributes of each UML

class to identify types that do not have an equivalent

representation in Z. Presently; the Z Mathematical Toolkit

only directly supports integers [33]. Therefore, other data

types needs to be defined. Any string that is not of the type

INTEGER (ℤ), a basic type will be created for it in the Z

specification. The process of declaring basic types is not

entirely automatable, because some data types will require

manual intervention to ensure that they are representative of

the parameters. However, the process of extracting the name

of the data type and declaring them in the Z specification can

be automated.

TABLE 1. RULES FOR CONVERTING UML OPERATIONS TO EBNF

<operation_signature> :: =

<return_type><operation_name>“(“<parameters>”)” <constraint>

<return_type> :: = <z_type> |<user_defined_type>

<z_type> :: = ℤ|ℕ

<user_defined_type> :: = void | char | string | short | long | float | double |

signed | unsigned | char_string

<char_string> :: = <letter><more_letter>

<letter> :: = <upper_letter>|<lower_letter>

<upper_letter> :: = A | B | C | D | E | F| G | H | I | J | K | L | M | N | O | P | Q |

R | S | T | U | V | W | X | Y | Z

<lower_letter> :: = a | b | c | d | e | f | g | h | I | j | k | i | m | n| o | p| q | r | s | t |

u | v | w | x | y| z

<more_letter> :: =<letter><more_letter> | _<more_letter> |

<digit><more_letter> | <digit> | <letter>

<digit> :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<operation_name> :: = <char_string>

<parameters> :: = <parameter_pair> “,”<parameters> | <parameter_pair>

<parameter_pair> :: = <return_type>< char_string>

<constraint> :: = < pre_condition><post_condition> | <pre_condition> |

<post_condition>

<pre_condition> :: = PRE<const_string>

<post_condition> :: = POST<const_string>

<const_string> :: = <char_string> | <special_char><const_string> |

<special_char>

<special_char> :: = ∀ | ∃ | ∧ | ∨ | ¬ | ⊢ | ∃1 | ∅ | ∈ | ∉ | ∪ | ∩ | ⇒ | ⇔ | ≠ | ⇸

| ⤔ |⤀ | ⤗ | → |↣ |↠ |⤖ |⇻ |⤕ | λ | μ

If parameters do not have an associated data type, the

name of the parameter will be declared and used as a Z basic

type [10]. Examples of declaring an operation basic type

schemata based on the class diagram and operations of Fig.

1 is: .

B. Define Parameter List Schemata

This step encompasses the description of the Z schema

that will contain parameter of each operation. Each UML

operation may contain zero or more parameters. For

operations with no parameter this step is not executed,

otherwise:

The parameter of each operation is declared in a

parameter type schema. This step is performed successively

on each parameter of the UML operation, in two stages, to

determine: 1) the name of the parameter and the data type

associated with the parameter; and 2) any constraints

(values) associated with the parameters. Initially, a one-to-

one mapping must be established between parameter/(s) and

one of the previously defined basic types or a data type that

exist in the Z mathematical toolkit. For the latter phase,

parameters along with their respective values will be

determined. Constraints that are either domain-specific or

operational will be depicted in the schema predicate section.

The naming convention used for parameter list schemata is

the name of the parameter followed by the keyword

‘ ’. For differentiating purpose, each parameter

will have an associated index/counter since the same

parameter may appear in multiple operations. For future

work, a format for expressing constraints can be developed,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

for instance . An example

is given for the convert_heading operation in the Aircraft

class diagram of Fig. 1, which contains one parameter.

Their equivalent parameter type schema is shown in Fig. 2.

Fig. 2. An Example of a Parameter List Schemata

C. Define Parameter Configuration Schemata

Operations in a class may contain parameters as an item

of their execution. This step will be conducted only if an

operation accepts parameters. The configuration schema

includes all previously define parameter type. When

creating these configuration schemata, each item in the

parameter list of an operation is included as the definition of

the parameter type. Each parameter will be identified by its

name and corresponding basic type, thus mapping each

parameter name to a Z data type or a basic type. These steps

should be repeated for each operation that utilizes

parameters in their operation implementation. The naming

convention used for parameter configuration schemata is the

name of the operation followed by the keyword

‘ ’. Currently, there is no automation of the pre-

or post- conditions, comments will be utilized. An Example

of defining parameter configuration schemata based on the

 operation found in Fig. 1

class is depicted in Fig. 3.

Fig. 3. An Example of a Parameter Configuration Schemata

D. Define Operation Schemata

After defining the parameter configuration schemata, the

operation schema is declared. It is mandatory for all

methods to have a name. A method that does not have a

name will result in compilation error. Making use of schema

inclusion, an operation schema is defined by incorporating

the associated parameter schema. Additionally, any other

variables local to an operation are declared and where

necessary constraints on variables or parameter values are,

defined in the predicate part of the schemata. Operations

with the same name may appear in different classes;

therefore, a counter/index is utilized to identify each

operation. The naming convention used for operation

schemata is the name of the operation followed by the

keyword ‘ ’. Key notational conventions are

used in the operation schema definition, which indicates if

the execution of a specific operation changes the state of the

system. Δ means that there is a change in the

state of the schema after the execution of an operation. An

Example of defining operation schema based on the

 operation is found in Fig. 4.

E. Transformation Rules Algorithms

The algorithms of Fig. 5 illustrate the transformation rules

that were described in the previous section. The algorithm

illustrates the steps corresponding to defining operation

basic type schemata in Z. Each operation must be associated

with a basic type in Z, if the basic type is not found in Z then

one is define and is refer to as a user define type.

Operations that have no associated type are assigned a basic

type, that is, the operation name. All basic types are

represented in block letter. This process is repeated until all

basic types are defined.

Fig. 4. An Example of an Operation Schemata

Fig. 6 illustrates the process for defining one or more

parameters found within an operation. A counter value is

ascribed to a parameter name as an index. This index value

differentiates each parameter in an operation, since more

than one operation within a class may have the same

parameter name. Any constraints relating to a parameter are

also defined in the schema.

To define a parameter configuration schema, the

following steps outlined in Fig. 7 must be followed. The

schemata incorporate all previously define parameter

schemata that are associated with the operation. An index is

also attached to each schema name.

Fig. 8 depicts the process for defining operation schemata.

An operation schema is defined by incorporating the

begin

int count= 0

for all class in the class diagram

for all operation in the class

for each parameter in the operation

create schema name "parameter

name_Parameter_[count++]"

create parameter schema

if constraints presents

add constraints

endif

endfor

endfor;

endfor;

endbegin

Fig. 6. Parameter Algorithm

begin

for all class in the class diagram

for all operation in the class

for each type

if type! =ℤ

if type! =blank

basic_type is USER_DEFINE_TYPE

else

basic_type is OPERATION

endif

endif

create basic type schema

endfor

endfor;

endfor;

endbegin

Fig. 5. Basic Type Algorithm

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

parameter configuration schemata with an index value join

to the name of the schema. Any constraint that is placed on

the operation is added also.

F. Application of Methodology

In this section, the transformations rules that were

developed will be applied to Fig. 1.

These transformation rules include:

Step 1: Defining basic types

Step 2: Defining Parameter Schemata

Step 3: Defining Parameter Configuration Schemata

Step 4: Defining Operation Schemata

The collection of schemas in Fig 9 illustrates the formal

representation of the class diagram in Fig. 1. These models

were manually transformed and adhered to the rules outlined

earlier in the methodology. The schemas of Fig. 10 were

created manually and do verification of validation of them

were conducted. Consequently, the correctness of the

schemas is not assured in this report.

IV. CONCLUSION

In many software applications such as in the safety critical

areas it is important to have correct and bug free software.

Formal specification is one such approach to produce good

quality, correct and error free software. The purpose of

using notation like Z is to produce an accurate specification

from initial client requirements. The notation has a restricted

syntax so it is precise but still abstract enough so as not to

constrain how a developer will go on to design application.

This study supports the need for reliable development

methodologies for safety critical systems and for avionic

system development to comply with industry standard, DO-

178C specification. This work is an extension of previous

work of Clachar and Grant that concentrated on formalizing,

and verifying and validating UML software models for

safety critical systems [9].

[DOUBLE]

 Speed_Parameter_01

speed: ℙ DOUBLE

∀ s: speed ⦁ 0 ≤ s ≤ 250 knots

 Convert_to_internal_speed_Parameter_01

Speed_Parameter_01

 Convert_to_Internal_Speed_Operation_01

ΔAircraft

Convert_to_Internal_Speed_Parameter_01

speed′, speed: ℙ DOUBLE

speed′ = speed

 Speed_Parameter_02

speed: ℙ DOUBLE

∀ s: speed ⦁ 0 ≤ s ≤ 250

 Convert_to_External_Speed_Operation_02

Speed_Parameter_02

Fig. 9. UAS Aircraft Z Schema

One of the principal concerns with amalgamating

unmanned aircraft into national air space is their lack of

ability to robustly sense and avoid other aircraft. Systems

such as these must adhere to industry standard, for instance

RTCA-DO178C, because they are classified as been safety

critical. To ensure that catastrophic events (for example,

loss life) do not occur, accuracy in safety critical systems is

necessary.

Unified Modeling Language is the ISO standard for

modeling systems. The class diagram is one type of UML

model used to express systems requirements of stakeholders

and to discover additional systems requirements. However,

UML lacks precision when expressing design decisions.

Textual descriptions are used to express characteristics of

the system, which cannot be captured by UML. This further

introduces another level of ambiguity in the models – since

they are usually expresses in natural language. Hence, the

begin

int count= 0

for all class in the class diagram

for each operation in the class

create operation schema name "operation

name_operation_[count++]"

if parameter exist

schema include parameter configuration schema

endif

if constraints exist

add operation constraints

endif

endfor;

endfor;

endbegin

Fig. 8. Operation Schemata

begin

int count = 0

for all class in the class diagram

for each operation in the class

if parameter exist {

create configuration schema name "operation

name_Parameter_ [count++]"

schema include all operations parameter schema }

endif

endfor

endfor

endbegin

Fig.7. Parameter Configuration Schemata

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

need for a meta- model (EBNF) that would bring more

formatting and understanding to the work conducted in this

research. One method that is used to remove ambiguity in

models is to transform UML models into an analyzable

representation using formal specification techniques (FSTs).

FSTs are based on mathematical logics, which makes use of

first order logics and set notation. Adopting such approach

to system development plays an important role in safety

critical system.

FSTs have been in existence prior to the beginning of

UML. However, unlike UML it does not have a high level

of simplicity that makes its models easily communicated to

stakeholders. Currently, the formalization process is

conducted manually. To make research on FSTs more

worthy, some degree of automation is imperative.

Therefore, conducting a case study in the area of automated

tools for FSTs in safety critical systems will be beneficial in

enlightening researchers on the complexity, advantages, and

possible use of such software.

This case study supports research that identify the benefits

of the application of formal methods to industries such as

Formal specification of an oscilloscope (Tektronix) and

Formal methods in safety-critical railway systems. In the

former study, the researcher adopted formal methods to gain

insight into system architecture. In the latter work, the B

formal method was used in the development of platform

screen door controllers. Both investigations concluded that

the application of formal specification appears to be precise,

efficient, and well suited to address projects requiring high

level of safety [18, 19].

The value of this research contribution may be extended

to automotive control systems (for example, factory, marine,

space exploration, robotics, and other specialist areas) where

formalism is a necessity. The use of formal methods is an

effective means to improve complex systems reliability and

quality. Benzadri et. al. adopted a formal method that

utilized modeling interactions between cloud services and

customers. The researchers combined Cloud customers’

bigraph and Cloud services bigraph to specify formally

Cloud services structure. This study is applicable to

formalizing Cloud computing concepts and to overcome one

of Cloud computing main obstacles, specifically bugs in

large scale Distributed Systems – “one of the difficult issues

in Cloud computing is removing errors in these very large

scale distributes systems” [20, 21]. The main issue that still

needs to be addressed is the crucial absence of an

appropriate model for Cloud computing. This research

might be able to support major Cloud computing concepts

specification and allow formal modeling of high-level

services provided over Cloud computing architecture.

REFERENCES

[1] ISO/IEC 19501, Information Technology - Open Distributed

Processing, Unified Modeling Language (UML) Version 1.4.2

(2005).

[2] Sommerville, I, Software Engineering 9th Ed. Addison Wesley,

Boston, Massachusetts, 2010..

[3] Berkenkotter, K., “Using UML 2.0 in Real-Time Development: A

Critical Review” in Proc SVERTS Workshop, 2003.

[4] Potter, B., Sinclair J.: An Introduction to Formal Specification and Z.

2nd ed. Prentice Hall (1996).

[5] France, R. B., Evans, A., Lano, K., Rumpe, B.: The UML as a Formal

Modeling Notation. In Computer Standards & Interfaces, vol 19,

issue 7, 325--334 (1998).

[6] Hall, A.: Using Z as a Specification Calculus for Object-Oriented

Systems. In Proc of the 3rd International Symposium of VDM Europe

on VDM and Z - Formal Methods in Software Development, 290--

318 (1990).

[7] ISO/IEC 13568, Information Technology: Z Formal Specification

Notation - Syntax, Type System and Semantics. 1st. ed. ISO/IEC

2002)

[8] Hall, A.: Seven myths of formal methods, Software, IEEE , vol.7,

no.5, 11--19, (1990).

[9] Clachar, S., Grant E. A Case Study in Formalizing UML Software

Models of safety Critical Systems. Annual International Conference

on Software Engineering. Phuket, Thailand (2010).

[10] France, R.B., Bruel, J., Larrondo-Petrie, M.M.: An Integrated Object-

Oriented and Formal Modeling Environment. In Proceedings of

JOOP. 25--34. (1997).

[11] U.S. Dept. of Defense: FY2009-2034: Unmanned Systems Integrated

Roadmap, 2009.

[12] Gupta, S.G., Ghonge, M.M., Jawandhiya, P.M.: Review of

Unmanned Aircraft Systems (UAS). International Journal of

Advanced Research in Computer Science Engineering & Technology

(IJARCET), Volume 2, Issue 4, April 2013.

[13] Filter Implementation for Unmanned Aerial Vehicles Navigation

Developed with a Graduate Course. Institute of ASE at Faculty of EE

(2005) St. Cyril and Methodius University, MK-1000, Skopje,

Republic of Macedonia.

[14] RTCA, Inc, EUROCAE: DO-178B, Software Considerations in

Airborne Systems and Equipment. SC-167 (1992) RTCA,

Washington DC, USA.

[15] Mens, T., Van Gorp, P.: A Taxonomy of Model Transformation,

Electronic Notes in Theoretical Computer Science, vol 152, In

Proceedings of the International Workshop on Graph and Model

Transformation (GraMoT 2005), 125-142, ISSN 1571-0661 (2006).

[16] Sendall, S.; Kozaczynski, W., “Model Ttransformation: The Heart

and Soul of Model-Driven Software Development Software”, IEEE ,

vol.20, no.5, pp. 42-45, Sept.-Oct. 2003.

[17] [31] ISO/IEC 14977:1996 International Standard. Information

Technology – Syntactic metalanguage – Extended BNF.

[18] Delisie, N., Garlan, D.: A Formal Specification of an Oscilloscope.

IEE Software, Volume 7, Number 5, September 1990.

[19] Leconte, T., Servat, T., Pouzancre, G.: Formal Methods in Safety-

Critical Railway Systems. ClearSy, Aix en Provence, France.

[20] Armbrust, M., Fox, A., Grith, R., Joseph, A.D., Katz., Konwinski, A.,

Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above

the clouds: A Berkeley View of Cloud Computing. Technical Report

UCB/EECS-2009-28, EECS Department, University of California,

Berkeley (2009).

[21] Benzadri, Z., Belala, F., Bouanaka, C.: Towards a Formal Model for

Cloud Computing. Service-Oriented Computing – ICSOC 2013

Workshops. Volume 83777, 2014, pp 381-393.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

