


Abstract—Currently, software development has used

Business Process Model and Notation (BPMN) to explain
functional behaviors of a software. Mostly, instant services
from the third parties are used in software projects in order to
shorten the duration of software development. Previous
research[1] proposed an approach of test case generation from
BPMN. They have not focused on the instant services used in
software development and use a lot of time to assign boundary
values of inputs in BPMN diagram by users. This research
focuses on test case generating from a BPMN with a BPEL
diagram which is used to explain the service behaviors. Thus,
we proposed a tool to generate test cases from a BPMN with a
BPEL diagram and XSD Schema.

Index Terms—Software Testing, Test Case, BPMN, BPEL,
XSD schema

I. INTRODUCTION

usiness Process Model and Notation (BPMN)[2] is an
important diagram to explain business processes and

behaviors of a software. This diagram is usually designed
and created in the early stage of software development life
cycle. However, test case generation can be made parallel to
software development in order to reduce time and effort.
Thus, testers will have time to pay attention to test the
software before delivery.

In the previous studies on the test case generation from
BPMN[1] [3], The researches have intended to focus only
on test case generation from a BPMN diagram. Moreover,
boundary values and constraint language was use to
generate test cases from a BPMN diagram. These researches
have not concerned an instant service which is service task
in a BPMN diagram.

In this paper, we present a tool for generating test cases
from a BPMN with a BPEL diagram. The tool allows users
to import a BPMN diagram that explains functional
behaviors of software and how it process, and to import a
BPEL diagram that explains the functional behaviors of a
service task and its process, and to import a XSD Schema[4]
to define boundaries of input a BPMN diagram.

The rest of this paper is organized as follows: Section 2
describes background of this research. Section 3 describes
the tool which is developed by our approach. Finally,
section 4 provides the conclusion and a plan future work.

Manuscript received June XX, 20XX; revised July XX, 20XX.
C. Nonchot and T. Suwannasart are with the Department of Computer

Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok,
Thailand e-mail: Chaithep.N@student.chula.ac.th,Taratip.S@chula.ac.th

II. BACKGROUND

A. Business Process Model and Notation (BPMN)[2]

The BPMN is a diagram that conforms to OMG standard
for describing functional behaviors of a software to be
developed. The structure of BPMN diagram is saved in
XML format. Groups of notations in BPMN diagram [1]
consist of five main groups: Flow Object, Data, Connecting
Object, Swimlane, and Artifact.

B. Business Process Execution Language (BPEL)[5]

 BPEL is a diagram that conforms to Organization for the
Advancement of Structured Information Standards (OASIS)
for describing functional behaviors of services used in
software development based on the structure in XML
format. BPEL has procedure tags which describe functional
behaviors of instant services from a BPMN diagram as
follows:
1. <invoke>: it is used for calling another operation via

<porttype>.
2. <receive>: it is used for receiving a parameter from

client to use instant service.
3. <assign>: it is used to assign value of a variable which

involves instant service.
4. <reply>: it is used to send output of an instant service to

client.
5. <if>: it is used to define condition of an instant service

operation.

C. XSD Schema[4]

XSD Schema is a definition of syntax which stores in
XML format to provides definition of input data type and
input boundary value in a BPMN diagram as shown in Fig.
1. The XSD schema can define 3 definition types as
follows:

1. Default: it is used to define a default value of an input.
2. Fixed: it is used to define a constant value of an input.
3. Restriction: it is used to define a boundary of an input.

 Fig.1 An example of XSD schema in XML format

A Tool for Generating Test Case from BPMN
Diagram with a BPEL Diagram

Chaithep Nonchot and Taratip Suwannasart

B

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

III. DEVELOPMENT OF THE PROPOSED TOOL

This section describes our approach for developing a tool
to generate test cases from a BPMN with a BPEL diagram
Fig. 2 shows the schematic representation of our proposed
approach.

Fig. 2. Our approach for Test case generation

A. Extracting elements in a BPMN Diagram

 A user can import a BPMN file into a tool for extracting
BPMN elements. In Fig. 3 is a “check Permission” element
which is a part of a BPMN diagram. We use XML Parser to
extract the BPMN elements. After that, The BPMN
elements are stored in the structure that they will be used in
creating control flow graphs and test case. A BPMN
element structure is shown in Table 1 and Fig.4 are result of
BPMN elements that extracted by the tool.

 Fig. 3. An example of the BPMN element.

Table 1. A BPMN element structure

Node ID _17_0_4_2_fe4035d_1422165312113_32

1985_11745
Node Type task
Node Name check Permission
Input employeeCode
Incoming
Edge

_17_0_4_2_fe4035d_1422166147990_44
9711_12083

Outgoing
Edge

_17_0_4_2_fe4035d_1422165312113_32
1985_11745

From Table 1, BPMN elements are as follows:
1. Node ID: ID of the BPMN element.
2. Node Type: type of the BPMN element.
3. Node Name: name of the BPMN element.
4. Input: input data of the BPMN element.
5. Incoming Edge: connecting edge between a previous

BPMN element and this BPMN element.
6. Outgoing Edge: connecting edge between this BPMN

element and the target BPMN element.

Fig.4. A result of BPMN elements

B. Searching a service Used in a BPMN Diagram

 In this step, the tool uses BPMN elements from the
previous step in order to search a service used in the BPMN
diagram. The tool uses Node ID and Node Type to search a
service used in the BPMN diagram. If we find
“serviceTask”, there will be a service used in the BPMN
diagram. The output of this step is a service used in the
BPMN diagram in order to allow a user to import a BPEL
diagram. Fig. 5 shows an example service in XML format.
Fig. 6 is a screen of the tool after a service is found from the
BPMN diagram.

Fig. 5. An example service used

Fig.6. A screen of the tool display a service found

<task isForCompensation="false" startQuantity="1"
completionQuantity="1" name="check Permission"
id="_17_0_4_2_fe4035d_1422165312113_321985_11745">
<incoming>_17_0_4_2_fe4035d_1422165332896_680537_11
791</incoming>
<outgoing>_17_0_4_2_fe4035d_1422165698605_310292_11
917</outgoing>
 <property name="check Permission_pin_out"
id="_17_0_4_2_fe4035d_1422165312113_321985_11745_pin
_out"/>
 <dataInputAssociation
id="_17_0_4_2_fe4035d_1422166151447_45185_12107">
<sourceRef>_17_0_4_2_fe4035d_1422166147990_449711_1
2083</sourceRef>
<targetRef>_17_0_4_2_fe4035d_1422165312113_321985_11
745_pin_out</targetRef>
 </dataInputAssociation>
 </task>
<dataStoreReference
dataStoreRef="_17_0_4_2_fe4035d_1422166147990_449711
_12083" name="employeeCode"
id=" 17 0 4 2 fe4035d 1422166147996 493028 12089"/>

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

C. Extracting elements in a BPEL Diagram

 In this step, a user can import a BPEL diagram that
describes behaviors of the service used in the model. Fig. 7
is a “receiveID” element which is a part of a BPEL diagram.
The tool uses the service task id from step 2 and a target
namespace in the BPEL diagram to verify BPEL elements
extraction. If the service task id from step 2 and the target
namespace in BPEL diagram are both matched, the tool will
extract elements from the BPEL diagram. The BPEL
elements are stored in the structure that they will be used in
creating control flow graphs and test cases. A BPEL
element structure is shown in Table II. Fig. 8 is a result of
BPEL elements that are extracted by the tool.

Fig. 7. An example of a BPEL element

Table II. A BPEL element structure

Node Name receiveID
Node Type receive
Condition -

From Table II, the data of BPEL elements as follows:

1. Node Name: Name of the BPEL element.
2. Node Type: Type of the BPEL element.
3. Condition: Condition for the functioning of the
BPEL element.

Fig. 8. A result of BPEL elements

D. Control Flow Graph Creating

In this step, we use a list of elements from step 1 and step
3 to create a control flow graph.

To create of a control flow graph from a BPMN diagram,
we use a list of BPMN elements from step 1 to create a
graph. Each element will be represented by a node,
incoming edges, and outgoing edges. Fig. 9 is an example of
BPMN diagram that is used to create control flow graph as
shown in Fig. 10.

Fig. 9. An example a BPMN diagram

 From Fig. 9, we can create 8 nodes as follows:

1. startEvent
2. task check Permission
3. exclusiveGateway verifyLogin
4. task accessDenied
5. serviceTask calculateLoanLimit
6. exclusiveGateway verifyLoan
7. Task customerType
8. endEvent

Fig. 10. A control flow graph from BPMN

To create of a control flow graph from a BPEL

diagram, we use a list of elements from step 3 to create a
graph. Each BPEL element will be represented by a node
and a relationship between two nodes is represented with
a connection. Fig. 11 is an example of a BPEL diagram
that is used to create a control flow graph as shown in
Fig. 12

<bpel:receive name="receiveID"
partnerLink="client"
portType="tns:calculateLoanLimit"
operation="process"
inputVariable="ID"
createInstance="yes"></bpel:receive>

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Fig. 11. An example of a service used in a BPMN diagram

Fig. 12. A control flow graph created from a BPEL diagram

From Fig. 11, we can create 10 nodes as follows:

5.1 receiveID
5.2 creditBuro
5.3 officialAge
5.4 salaryRemain
5.5 depositMoney
5.6 creditBuro is true
5.7 Official Age is not enough
5.8 Salary remain is not enough
5.9 Account has not enough
5.10 can loan

E. Test Cases Generating

 In this step, we merge the control flow graphs crated from
the BPMN diagram and the BPEL diagram from the
previous steps in order to create test cases from the merged
graph. Fig 13 shows the result of graph merging from Fig
10 and Fig 12. The depth first search algorithm is used to
find paths that cover all edges to achieve branch coverage.
Fig 14 illustrates 11 paths that are derived from Fig 13 using
the depth first search algorithm. Considering node 5.1 from
Fig 13 using conditionExpression of the service element, we
find that not every path in Fig 14 is feasible. Fig 15 shows
the feasible paths.

Fig. 13. A merged graph between a BPMN diagram
and a BPEL diagram

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Path No. Scenario

1 Start, Check Permission, verifyLogin, accessDenied, End
2 Start, Check Permission, verifyLogin, calculateLoanLimit, receiveID, creditBuro, officialAge, salaryRemain,

depositMoney, can loan, verifyLoan, customerType, End
3 Start, Check Permission, verifyLogin, calculateLoanLimit, receiveID, creditBuro, officialAge, salaryRemain,

depositMoney, The depositMoney has not enough, verifyLoan, customerType, End
4 Start, Check Permission, verifyLogin, calculateLoanLimit, receiveID, creditBuro, officialAge, salaryRemain, The

salaryRemain has not enough, verifyLoan, customerType, End
5 Start, Check Permission, verifyLogin, calculateLoanLimit, receiveID, creditBuro, officialAge, The officialAge has not

enough, verifyLoan, customerType, End
6 Start, Check Permission, verifyLogin, calculateLoanLimit, receiveID, creditBuro, creditBuro is true, verifyLoan,

customerType, End
7 Start, Check Permission, verifyLogin, calculateLoanLimit, receiveID, creditBuro, officialAge, salaryRemain,

depositMoney, can loan, verifyLoan, End
8 Start, Check Permission, verifyLogin,

calculateLoanLimit, receiveID, creditBuro,
officialAge, salaryRemain, depositMoney, The depositMoney has not enough, verifyLoan , End

9 Start, Check Permission, verifyLogin,
calculateLoanLimit, receiveID, creditBuro,
officialAge, salaryRemain, The salaryRemain has not enough, verifyLoan, End

10 Start, Check Permission, verifyLogin,
calculateLoanLimit, receiveID, creditBuro,
officialAge, The officialAge has not enough,
verifyLoan, End

11 Start, Check Permission, verifyLogin,
calculateLoanLimit, receiveID, creditBuro,
creditBuro is true, verifyLoan, End

Fig. 14. Paths generated from the depth first search

Table III. A test case

Fig.15. A display showing feasible paths

To generate test cases, we use inputs that are defined
from the BPMN diagram and XSD schema file to generate
test input data for each feasible path. We consider boundary
values of each input and randomly generate test input data.
Table III is an example of a test case that is generated from
path 3 of Fig 15.

IV. CONCUSION AND FUTURE WORK

In this paper, we have presented the tool to generate test
case from BPMN diagram with BPEL diagram. Our
approach, an imported BPMN diagram is represented as a
software, an imported BPEL diagram is represented as a
service used in a software, and an imported XSD schema is
represented as boundary input data. As a result, test cases
will be generated. Finally, the benefit of this tool is to
reduce cost and time for generating test cases.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

REFERENCES
[1] P. Yotyawilai and T. Suwannasart, "Design of a tool for generating

test cases from BPMN," in Data and Software Engineering
(ICODSE), 2014 International Conference on, 2014, pp. 1-6.

[2] H. Völzer, An Overview of BPMN 2.0 and Its Potential Use, in
Business Process Modeling Notation, 2010.

[3] A. Jimenez-Ramirez, R. M. Gasca, and A. J. Varela-Vaca, "Contract-
based test generation for data flow of business processes using
constraint programming," in Research Challenges in Information
Science (RCIS), 2011 Fifth International Conference on, 2011, pp. 1-
12.

[4] W3Schools. “Introduction to XSD Schema.”.[Online]. Available:
http://www.w3schools.com/schema/default.asp

[5] OASIS. (2010). Web Services Business Process Execution Language
2.0[Online]. Organization for the Advancement of Structured
Information Standards. Available: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

