

Abstract— Software defined networking (SDN) is a new

networking paradigm which provides the separation between

data plane and control plane. There is a centralized controller

which controls the packet flows and instruct switches regarding

its flow rules. The separation between data plane and control

plane makes easy for the management of centralized network. It

gives flexibility to the system administrator to control the

different network functionality dynamically. Network topology is

an important issue for any SDN controller, since it represents the

central view of the network infrastructure. The topology helps in

controlling the data path and provides flow entries for different

switches to handle arrival packets. Link failure is a common issue

for any network and it is needed to find alternative paths. This

paper focuses on representation of network topology, loops

finding and alternate path finding during link failures. The

proposed approach designed using POX controller as SDN

controller and Mininet emulator as network infrastructure in

linux based Ubuntu 14.04 operating system platform.

Index Terms— Software defined networking, Topology

discovery, Link failure, Alternative path, POX controller.

I. INTRODUCTION

oftware defined networking (SDN) is a network model in

which the data planes and control planes are decoupled

from each other. There is a SDN controller, which controls the

forwarding of packets and provides flow entries to every

switch. The SDN switch has less functionality and these

switches perform forwarding of packets based on the match in

its flow tables. The instruction comes from SDN controller to

every switch and these switches perform forwarding of

packets accordingly. If there is no match found in switch’s

flow table, then these switches communicate to its controller

regarding the arrived packet. The controller then instructs

flow entries to every switches from source to destination and

provide path for the communication. SDN is centralized,

programmable, dynamic network architecture. SDN

controllers performed as network operating system and

different applications can run on its platform. There are three

types application programming interface (API) in SDN. These

Manuscript received July 20, 2015; revised October 7, 2015.

Anish Kumar Saha is with the National Institute of Technology, Arunachal

Pradesh, District: Papumpare, State: Arunachal Pradesh, Pin: 791112, India.

(phone number: +919862216460; fax: +91360-2284972; e-mail:

anishkumarsaha@gmail.com).

Koj Sambyo is with the National Institute of Technology, Arunachal

Pradesh, District: Papumpare, State: Arunachal Pradesh, Pin: 791112, India.

(e-mail: sambyo.koj@gmail.com).

C.T. Bhunia is with the with the National Institute of Technology,

Arunachal Pradesh, District: Papumpare, State: Arunachal Pradesh, Pin:

791112, India. (e-mail: ctbhunia@vsnl.com).

interfaces are North Bound interface, South Bound interface

and East-West interface. The interface between application

programs & the controller, controller & network infrastructure

and communication between multiple controllers named as

North Bound API, South Bound API and East-West API

respectively. The communications between a SDN controller

to switches is done through secure channel communication.

Transport Layer Security (TLS) is used for establish

communication. Examples of well-known South Bound API

are OpenFlow, Forwarding & Control Element Separation

(ForCES). In [1-4], authors present surveys and futures on

SDN.

Due to dynamic architecture and programmable

functionality, SDN provides an easy implementation in

different application areas of on-demand networking, energy

efficient networking, secure networking from intruder,

efficient traffic engineering, load balancing in server, smart

grid etc [5-8].

Examples of different well-known controllers are NOX,

POX, Beacon, OpenDay light, Floodlight, Ryu, Trema,

ONOS, Junpier Contrail etc [9]. The objective of our paper is

to emphasize on how to represent network topology, discover

the shortest path possible and identify an alternative path

during link down. The proposed approach designed using

POX controller and mininet emulator as network infrastructure

in linux based Ubuntu 14.04 operating system platform.

II. RELATED WORKS OF TOPOLOGY DISCOVERY IN SDN

Discovering the network topology is an important issue in

software defines networking. One of the well-known loop

free techniques is spanning tree topology. Jmal et al. [10]

explained shortest path routing mechanism using POX

controller. Pakzad et al. [11] proposed efficient topology

discovery with minimum number of Packet-Out events from

the controller to the switches. Link failure is a common

phenomenon in any networks. In [12] [13], authors presented

to handle link failure and provide failure recovery in

OpenFlow protocol in SDN networks.

Here we proposed table driven based topology discovery,

loops finding and alternate path finding in network. The path

with least intermediate switches is selected for

communication. When any link failure occurs, the algorithm

finds alternate path for communication and update its

adjacency matrix of network topology. Adjacency matrix of

topology update accordingly with respect to changes occurs in

topology.

Topology Discovery, Loop Finding and

Alternative Path Solution in POX Controller

Anish Kumar Saha, Koj Sambyo, and C.T. Bhunia

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

mailto:nitap@gmail.com
mailto:nitap@gmail.com

III. PROPOSED APPROACH OF TOPOLOGY DISCOVERY

The proposed model has segmented into different

algorithms. Each algorithm has functionality and in together

performed topology discovery, loop finding and failure

recovery. These algorithms are design to performed as

applications in controller. Here we used POX controller as

SDN controller. POX controller worked as publish-subscribe

model. There are some objects which generate events and

there are some subscribers which subscribe event through

event handler. The communication between switch to

controller is coordinated through events. There are collections

of events and each events will fired under certain condition.

POX controller uses OpenFlow protocol for South Bound API.

OpenFlow protocol has different events and the events are

named as Packet-In, Packet-Out, Port-Status, Flow-Removed,

Connection-Up, Connection-Down, Error-In etc. The

proposed algorithms usage different notations and these

notations are listed in Table 01.

TABLE 1

LIST OF NOMENCLATURES

Different nomenclature

S : Set of all switches in the network

Si ∈ S : A Switch in the network.

Pi ∶ Set of all ports in Switch Si

Pij ∈ Pi ∶ A port in the switch Si

𝑀 : Set of all machines in the network

𝑀𝑖𝑗 ∈ 𝑀: IPaddress of a machine attached to 𝑃𝑖𝑗 port of Switch 𝑆𝑖 .

Pi
′SiPi ∶ Pi

′ is ingress port & Pi is egress port of Si

On startup, all switches raise Connection-Up event and

communicate to its controller through specified ip-address &

port number. The controller gets details of data path identity

(DPID) of different switches through Connection-Up event.

DPID is a unique identity number to identify a switch.

Controller can get other details of MAC address (network

interface) of switch ports, attached machine’s ip-address &

MAC address etc through other events eg. Packet-in event.

Algorithm 1: SwitchPort-MachineIPaddress mapping

 module at controller

Output: Map_Table (𝑆𝑖 → 𝑃𝑖𝑗 𝑀𝑖𝑗)

{

 For all Si in S, do

records 𝑆𝑖 → 𝑃𝑖𝑗 𝑀𝑖𝑗 map

}

The purpose of the Algorithm 1 is to map between switch Si

to machine Mij through switch Port no Pij. This mapping helps

in finding where a particular machine Mij attached to which

switch Si and its port number Pij. Algorithm 1 is an event

handler for Connection-Up & Packet-In events and will

execute whenever events raise from a switch. The data

structure of Map_Table(𝑆𝑖 → 𝑃𝑖𝑗 𝑀𝑖𝑗)is shown in Fig. 1.

There are two important events namely Packet-In, Packet-

Out. Packet_In event raise from a switch and the controller

subscribe the event through its event handler. The Packet-In

event is raised when a switch gets a packet and do not have

any match entry in its flow table and thus forward the packet

to the controller. Conversely the event Packet-Out will rise

when a controller wants to send messages to switches. Switch

will receives message from controller through Packet-Out

event. There is a link layer protocol called Link Layer

Discovery Protocol (LLDP) for advertising identity,

capabilities and neighbor of a network. Two events Packet-In,

Packet-Out and Link Layer Discovery Protocol (LLDP) are

needed to discover links in a network.

In Fig. 2, switch Si gets a LLDP packet via Packet-Out

event from the controller. Switch Si then flood the received

LLDP packet to all its ports except ingress port. Switch S2

receives the LLDP packet from switch S1 through its port j.

Then switch S2 forwards the LLDP packet to the controller via

Packet-In event. From the contents of LLDP packet, controller

come to know the link between (S1, Port i) & (S2, Port j). This

process of link finding continues for all the switches exist in a

network. Algorithm 2 is an application for the controller to

send LLDP packets to every switch and receives all returned

LLDP packets from switches. All discovered links are saved

in adjacency table(A).

Algorithm 2: Generate and process LLDP-packet

 at controller

Output: Adjacency Table (A)

{

For all Switch 𝑆𝑖 𝑖𝑛 𝑆 do

Send LLDP-packet via Packet-Out event to switch

𝑆𝑖 from Controller

For all received LLDP-packet via Packet-in event do

 Insert Link of Si & Sj in A with

 𝐴 𝑖, 𝑗 = (𝑃𝑜𝑟𝑡𝑖 , 𝑃𝑜𝑟𝑡𝑗)

 where 𝑃𝑜𝑟𝑡𝑖 ∈ 𝑃𝑖 & 𝑃𝑜𝑟𝑡𝑗 ∈ 𝑃𝑗

}

Algorithm 3: Forward LLDP-Packet at switch.

{

For all incoming LLDP-Packet do

If LLDP-Packet.inPort = Controller then

 Flood LLDP-Packet to all ports except ingress port

Else
 Send LLDP-Packet to the Controller Via Packet-In

 event

}

Fig. 2. Packet-In and Packet-Out Events generation

Si Pi1 Mi1 Pi2 Mi2 Pi3 Mi3 Pi4 Mi4 … Pin Min

Fig. 1.Data structure of Map_Table(𝑆𝑖 → 𝑃𝑖𝑗 𝑀𝑖𝑗)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Algorithm 3 is a task for every switch. All switches will

accept all LLDP packets and floods if the sender is controller

(except ingress port) else forward it to the controller via

Packet-In event as shown in Fig 2.

Let us take an example of a network in Fig 3. After

discovering of all links using Algorithm 2 & Algorithm 3, the

contents of adjacency table (A) shown in Table 2.

A value Si , Sj = (Porti,Portj) means Si is connected to Sj

via the Porti and Portj, where Porti ∈ Pi & Portj ∈ Pj .

Assume the structure of the network shown is in fig 3.

The next step is to find a path between every switch to

every other switch in a network. Algorithm 4 finds path to

every switch to every other switches and it also identify list of

loops in a topology. This list of loops will help in finding

alternative paths during link failure.

Algorithm 4: Path Finding at Controller

Data Structure: Input: Adjacency Table (A)

 Output: Adjacency Table(A), Loop Table (L)

For all values of Si in S do

 For all connection exist between 𝑆𝑖 , 𝑆𝑗 & 𝑖 ≠ 𝑗 do

 For all Connection exist in (Sj,Sk) & 𝑖, 𝑗 ≠ 𝑘 do

 𝑇𝑒𝑚𝑝 = 𝐴 𝑖, 𝑗 ∪ 𝑆𝑗 ∪ 𝐴 𝑗, 𝑘

 If A[i, k] = Null then

 𝐴 𝑖, 𝑘 = 𝑇𝑒𝑚𝑝

 Else

 Loop=𝑃𝑜𝑟𝑡𝑖 ∪ 𝑆𝑖 ∪ 𝑇𝑒𝑚𝑝 ∪ 𝑆𝑘 ∪

 {𝑟𝑒𝑣𝑒𝑟𝑠𝑒_𝑝𝑎𝑡ℎ 𝐴[𝑖, 𝑘] − 𝑃𝑜𝑟𝑡𝑖}

 If Loop not exist in L then

 Record Loop in L

 If no. of intermediate Switch in A[i,k] > No. of

 intermediate Switch(Temp) then

 𝐴 𝑖, 𝑘 = 𝑇𝑒𝑚𝑝

Let us take an example, how Algorithm 4 works for the

network in Fig. 3.

Pass 1: For Si=S1, Sj=S2, Sk=S5,

𝐴 1,5 = 𝐴 1,2 ∪ 𝑆2 ∪ 𝐴 2,5
 = 𝑃2, 𝑃1 ∪ 𝑆2 ∪ 𝑃2𝑃2

 = 𝑃2, 𝑃1𝑆2𝑃2, 𝑃2

New entry: (S1, S5) = P2, P1S2P2, P2

After pass 1, the content of adjacency table (A) is shown in

Table 3.

Pass 2: For Si=S1, Sj=S3, Sk=S4,

12331

12331

3

,,

,,

]4,3[]3,1[]4,1[

PPSPP

PPSPP

ASAA

New entry (S1, S4) = P1, P1S3P2, P1 and the adjacency table’s

(A) content shown in Table 4.

 Pass 03: For Si=S1, Sj=S4, Sk=S5,

Similarly if we continue pass 03 steps for Algorithm 4, we get

1,241,231,1

1,241,231,1

]5,4[4]4,1[

PPSPPSPP

PPSPPSPP

ASATemp

Since the content of A[1,5] is not null, means there is a

presence of loop between S1 to S5.

122,251,241,231,112

}
2

)
2

,122,2{(51,241,231,112

}2)2,
221,2(_{

51,241,231,112

}1])5,1[(_{511Port

PSPPSPPSPPSPPSP

PPPSPPSPPSPPSPPSP

PPPSPPpathreverse

SPPSPPSPPSP

PortApathreverseSTempSLoop

The value of loop is identified and placed in loop table as

shown in Table 6. Again path (P1,P1S3P2,P1S4P2,P1) contains

two intermediate switch S3 & S4 and the path (P2, P1S2P2, P2)

contain one intermediate switch S2. Here we use least

intermediate node path, hence the value of (S1,S5) in adjacency

table is (P2, P1S2P2, P2). After Pass 03, the adjacency table(A)

is shown in Table 5.

TABLE 4

ADJACENCY TABLE(A) AFTER PASS2
 S1 S2 S3 S4 S5

S1 - P2,P1 P1,P1 P1, P1S3P2, P1 P2,P1S2P2,P2

S2 P1,P2 - - - P2, P2

S3 P1,P1 - - P2, P1 -

S4 - - P1,P2 - P2, P1

S5 P2,P2 P1, P2 -

TABLE 3

ADJACENCY TABLE(A) AFTER PASS 1

 S1 S2 S3 S4 S5

S1 - P2,P1 P1,P1 - P2, P1S2P2, P2

S2 P1,P2 - - - P2, P2

S3 P1, P1 - - P2, P1 -

S4 - - P1,P2 - P2, P1

S5 P2, P2 P1, P2 -

Fig. 3. Network contains five OpenvSwitch (S1,S2,S3,S4 & S5)

TABLE 2

 ADJACENCY TABLE(A) OF SWITCH-TO-SWITCH CONNECTION

 S1 S2 S3 S4 S5

S1 - P2, P1 P1,P1 - -

S2 P1,P2 - - - P2, P2

S3 P1, P1 - - P2, P1 -

S4 - - P1,P2 - P2, P1

S5 P2, P2 P1,P2 -

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

If we continue our steps, the final adjacency table is shown in

Table 7 and Loop table will be same as shown in Table 6.

IV. ROUTING AND FAILURE RECOVERY USING ADJACENCY

MATRIX TABLE & LOOP TABLE

Let us take a machine Mi attached to switch Si wants to

communicate with the machine Mj attached to switch Sj. When

packets from Mi arrived at switch Si, switch Si searches the

flow match for the destination address Mj in its flow table. At

initial condition, there is no flow entry in its flow tables in

switch Si for the destination machine Mj and therefore

forwarded to the controller via Packet-In event. From the

IPaddress Map Table(𝑆𝑖 → 𝑃𝑖𝑗 𝑀𝑖𝑗), controller get the DPID

and port number of destination switch for Mj. The

communication path between source switch to destination

switch can get from adjacency table (A). Finally controller

instructs flow entry for every switch from Si to Sj via Packet-

Out event.

For instance, path between S1 to S5 is S1P2→P1S2P2→P2S5.

The meaning of S1P1 is P2 is the egress port of S1 switch and

the meaning of P2S5 is P2 ingress port of S5. In addition, the

intermediate switch S2 has ingress port P1 & egress port P2.

Controller give flow entry for switch S1,S2 and S5 for the

communication between Mi to Mj. All packets for the said

communication will follow the path S1→S2→S5.

Now assume, link Si→Sj goes down. The controller comes

to know that the link (Si,Si) is down via PortStatus event raised

from the switches Si & Sj. Henceforth the controller need to

find alternate path for the link (Si,Si). For such case, the loop

table (L) will helps for alternative path. Controller first

searches a loop contained both switches Si & Sj in loop table

(L). If there is a loop available, then alternate path can get

from loop by reading it in the reverse direction from Si to Sj

and converts all ingress port to egree port & vice versa for all

switches Si to Sj. The same is shown in Fig. 4. The changes are

updated in its adjacency table (A) and in loop table (L).

Algorithm 5: Alternate path at Controller

Data Structure:

Input: Down Link (𝑆𝑖 , 𝑆𝑗)

 Loop Table (L)

Output: Alternate_Path of down Link (𝑆𝑖 , 𝑆𝑗)

For all loop in L do

 if loop contained edge (𝑆𝑖 , 𝑆𝑗) then

 𝑇𝑒𝑚𝑝 = 𝑅𝑒𝑣𝑒𝑟𝑠𝑒_𝑅𝑒𝑎𝑑_𝑃𝑎𝑡ℎ(𝑙𝑜𝑜𝑝 𝑓𝑟𝑜𝑚 𝑆𝑖 𝑡𝑜𝑆𝑗)

 for all value Si in S do

 for all value Sj in S and 𝑖 ≠ 𝑗 do

 if A[i,j] path contain edge (Si, Sj) then

 Replace (Si,Sj) in A[i,j] with Temp as below

 𝐴 𝑖, 𝑗 = 𝑃𝑎𝑡ℎ (𝑃𝑖 …𝑇𝑒𝑚𝑝…𝑃𝑗)

 Delete Entry L in loop

Algorithm 5 shows to find an alternative path during any link

down. Assume, Pm
′ Sm Pm , …… Pi

′SiPi , Pj
′SjPj , …… , Pn

′ Sn Pn be a

loop contain both (Si,Si). So, the Reverse_Read_Path will be

PiSiPi
i …… Pm Sm Pm

′ , Pn Sn Pn
′ , …… PjSjPj

′

For instance,

Assume down Link: (S3,S4).

Loop contained (S3,S4) link in L is,

P2S1P1, 𝐏𝟏𝐒𝟑𝐏𝟐, 𝐏𝟏𝐒𝟒𝐏𝟐, P1S5P2,P2S2P1

Earlier value of A[1,4]= P1, P1S3P2, P1

Temp= Reverse_Read_Path(L from S3 to S4)

 = 𝑃2𝑆3𝑃1,𝑃1𝑆1𝑃2, 𝑃1𝑆2𝑃2, 𝑃2𝑆5𝑃1, 𝑃2𝑆4𝑃1

New Entry A[1,4]= Path(S1P1, Temp, P1S4)

=Path(S1P1, P2S3P1,P1S1P2, P1S2P2, P2S5P1, P2S4P1, P1S4)

= (S1P2, P1S2P2, P2S5P1, P2S4)

=(P2, P1S2P2, P2S5P1, P2)

Fig.5. The network architecture with POX controller and its

applications

Fig. 4. Alternative path after down link (S3 to S4)

TABLE 7

 ADJACENCY TABLE(A) AFTER ALL PASS COMPLETED
 S1 S2 S3 S4 S5

S1 - P2, P1 P1,P1 P1,P1S3P2,P1 P2,P1S2P2

,P2

S2 P1,P2 - P1,

P2S1P1, P1

P2,P2S5P1,P2 P2, P2

S3 P1,P1 P1,P1S1P2

,P1

- P2, P1 P2,P1S4P2

,P1

S4 P1,P2S3P1

,P1

P2,P1S5P2

, P2

P1,P2 - P2, P1

S5 P2,P2S2P1

,P2

P2, P2 P1,

P2S4P1,P2

P1, P2 -

TABLE 6

LOOP TABLE AFTER PASS 04

Index Loop

1 P2S1P1, P1S3P2, P1S4P2, P1S5P2,P2S2P1

TABLE 5

ADJACENCY TABLE(A) AFTER PASS 04

 S1 S2 S3 S4 S5

S1 - P2,P1 P1,P1 P1, P1S3P2, P1 P2, P1S2P2, P2

S2 P1,P2 - - - P2, P2

S3 P1,P1 - - P2, P1 -

S4 - - P1,P2 - P2, P1

S5 P2,P2 P1, P2 -

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

We used here POX controller as SDN controller and mininet

emulator as network infrastructure respectively. Network

architecture and placement of different algorithms are shown

in Fig. 5.
V. CONCLUSION

For any SDN architecture, topology discovery is an

important issue. The proposed algorithms are work as event

handler for the controller. We maintained adjacency table and

loop table to find path and alternative paths. We used

minimum intermediate node path for communication. Our

next plan is to design north bound applications for energy

efficient resource control, load balancing and traffic

engineering in SDN paradigm.

REFERENCES

[1] Nunes, B.A.A.; Mendonca, M.; Xuan-Nam Nguyen; Obraczka, K.;

Turletti, T., "A Survey of Software-Defined Networking: Past, Present,

and Future of Programmable Networks," Communications Surveys &

Tutorials, IEEE , vol.16, no.3, pp.1617,1634, Third Quarter 2014

[2] Kreutz, D.; Ramos, F.M.V.; Esteves Verissimo, P.; Esteve Rothenberg,

C.; Azodolmolky, S.; Uhlig, S., "Software-Defined Networking: A

Comprehensive Survey," Proceedings of the IEEE , vol.103, no.1,

pp.14,76, Jan. 2015

[3] Jarraya, Y.; Madi, T.; Debbabi, M., "A Survey and a Layered Taxonomy

of Software-Defined Networking," Communications Surveys &

Tutorials, IEEE , vol.16, no.4, pp.1955,1980, Fourthquarter 2014

[4] Fei Hu; Qi Hao; Ke Bao, "A Survey on Software-Defined Network and

OpenFlow: From Concept to Implementation," Communications Surveys

& Tutorials, IEEE , vol.16, no.4, pp.2181,2206, Fourthquarter 2014

[5] Msahli, M.; Pujolle, G.; Serhrouchni, A.; Fadlallah, A.; Guenane, F.,

"Openflow and on demand networks," Network of the Future (NOF),

2012 Third International Conference on the , vol., no., pp.1,5, 21-23

Nov. 2012

[6] Giroire, F.; Moulierac, J.; Phan, T.K., "Optimizing rule placement in

software-defined networks for energy-aware routing," Global

Communications Conference (GLOBECOM), 2014 IEEE , vol., no.,

pp.2523,2529, 8-12 Dec. 2014

[7] Carpa, Radu; Gluck, Olivier; Lefevre, Laurent, "Segment routing based

traffic engineering for energy efficient backbone networks," Advanced

Networks and Telecommuncations Systems (ANTS), 2014 IEEE

International Conference on , vol., no., pp.1,6, 14-17 Dec. 2014

[8] Jianchao Zhang; Boon-Chong Seet; Tek-Tjing Lie; Chuan Heng Foh,

"Opportunities for Software-Defined Networking in Smart

Grid," Information, Communications and Signal Processing (ICICS)

2013 9th International Conference on , vol., no., pp.1,5, 10-13 Dec.

2013

[9] Khondoker, R.; Zaalouk, A.; Marx, R.; Bayarou, K., "Feature-based

comparison and selection of Software Defined Networking (SDN)

controllers," Computer Applications and Information Systems

(WCCAIS), 2014 World Congress on , vol., no., pp.1,7, 17-19 Jan. 2014

[10] Jmal, R.; Chaari Fourati, L., "Implementing shortest path routing

mechanism using Openflow POX controller," Networks, Computers and

Communications, The 2014 International Symposium on , vol., no.,

pp.1,6, 17-19 June 2014

[11] Pakzad, F.; Portmann, M.; Wee Lum Tan; Indulska, J., "Efficient

topology discovery in software defined networks," Signal Processing

and Communication Systems (ICSPCS), 2014 8th International

Conference on , vol., no., pp.1,8, 15-17 Dec. 2014

[12] Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P., "Fast

failure recovery for in-band OpenFlow networks," Design of Reliable

Communication Networks (DRCN), 2013 9th International Conference

on the , vol., no., pp.52,59, 4-7 March 2013

[13] Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P.,

"Enabling fast failure recovery in OpenFlow networks," Design of

Reliable Communication Networks (DRCN), 2011 8th International

Workshop on the , vol., no., pp.164,171, 10-12 Oct. 2011

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

