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Abstract—Noise reduction in speech signals is a growing area 

that encountered several applications like communication 

channel transmission, automatic speech recognition, telephony 

and hearing aids, among others. This paper introduces a 

technique for noise reduction in speech signals that combines 

both Discrete-time Kalman filtering and Wavelet transforms. 

While filtering provides noise reduction, Wavelets transforms 

allow minimizing spectral distortion. In order to assess the 

efficiency of this combination, we compared both the segmental 

signal-to-noise ratio and the Itakura-Saito distance at the input 

to their respective values at the output of the proposed system.  

Also, we compared the noise reduction performance of the 

proposed system to that of Kalman filtering and the 

combination of Wavelet transforms with Kalman filtering has 

shown satisfactory results. 

 
Index Terms—Kalman filter, Itakura-saito distance, noise 

suppression, speech signals, wavelets 

I. INTRODUCTION 

oise reduction in speech signals is a field of study 

devoted to recovering an original signal from its noise 

corrupted version. The noise can be white, filtered, impulsive 

or even other types of noise usually found in speech 

communication systems. 

Over the past decades, the removal of this noise from 

speech signals has become an area of interest of several 

investigators around the world, since the presence of noise 

can significantly degrade the quality and intelligibility of 

these signals. In this sense, many studies have been conducted 

since the sixties, with the goal of developing algorithms for 

improving the quality of audio and speech signals [1], [3], [4], 

[8], [10] [11], [12] and [13]. Some techniques and methods 

gained greater prominence, among them: psychoacoustics, 

spectral subtraction, Wiener filter, Kalman and processed 

wavelet filters. 

Each of these techniques has both favorable characteristics 

and technical challenges for application in noise reduction. In 

the case of Spectral Subtraction, efforts have been made to 

eliminate the musical noise generated by the result of the 

subtraction [14] - [16].  

When using Wavelet transforms, the signal is divided into 

approximation and detail coefficients to which a threshold is 

applied for noise reduction. However, what values to adopt in 

thresholding as well as new kinds of thresholds still remain a 

matter under investigation [17] and [18].  

Yu Shao-and Chip-Hong Chang [21] used a Kalman filter 

based on a wavelet filter bank for the enrichment of speech 

signals corrupted by noise. The adaptation of this filter in the 

Wavelet domain effectively reduced non-stationary noise. At 

the end, a perceptual weighting filter was applied to the 

Kalman filter output signal. The application of this last filter 

sought to take advantage of psychoacoustic model properties 

to improve speech intelligibility. It was observed that the 

human auditory model could be used both in the time and 

frequency domain. The developed system was able to reduce 

the noise in different environments for low degradation of the 

speech signal.  

Dhivya and Justin [22] proposed a noise reduction 

technique based on a combination of wavelet and spectral 

subtraction. In this technique, spectral subtraction is applied 

to the approximation coefficients while the threshold is 

applied to the detail coefficients. They compared five 

Wavelet filters and found the best filter based on the signal-

to-noise ratio. To check the performance of the proposed 

technique, they employed the signal-to-noise ratio, the 

correlation coefficient and the perceptual evolution of speech 

quality (PESQ). 

Although the advances in these algorithms show how noise 

removal was satisfactory, they do not show how much they 

are able to minimize it for spectral distortion. 

The purpose of this work is to combine discrete-time 

Kalman filtering with wavelet transform such that while the 

filter is used to reduce the noise, the transform is used to 

minimize the spectral distortion.  

This paper is organized as follows: section II describes 

both Kalman filtering and Wavelet transforms; the proposed 

combination and its corresponding results are shown in 

sections III and IV respectively. Finally, section V brings the 

conclusions. 
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II. DESCRIPTION OF THE ALGORITHMS 

A. Discrete Kalman Filtering (KF) 

In the sixties, Rudolf Emil Kalman published his seminal 

paper entitled “A New Approach to Linear Filtering and 

Prediction Problems” in which he described a recursive 

solution to discrete-time linear filtering problem [1].  

Since then, due to major advances in digital computing, 

Kalman filtering has become a very important tool in such 

diverse areas as navigation, processes monitoring, Economics 

and signal reconstruction from noisy samples.  

In that paper, Kalman filtering is derived according to the 

heuristics proposed by Vaseghi [8], in which the speech 

signal is initially modeled by an auto-regressive (AR) process 

of order P (AR(P)) such that: 

 

𝑥(𝑛) = ∑ 𝑎𝑃(𝑘)𝑥(𝑛 − 𝑘) + 𝑤(𝑛)

𝑃

𝑘=1

 (1) 

 

where 𝑎𝑃(𝑘) are the linear prediction coefficients of order 𝑃, 

𝑤(𝑛) is the prediction error associated to the excitation of the 

source-filter model of speech production, and 𝑥(𝑛) is the 

speech signal. 

As the acquisition of speech and audio signals occurs in the 

presence of some type of additive noise, this should be 

considered in the modeling process: 

 

𝑦(𝑛) = 𝑥(𝑛) + 𝑣(𝑛) (2) 

 

where 𝑦(𝑛) is the noisy speech signal and 𝑣(𝑛) is the 

Gaussian additive noise. 

Deriving a state-space representation to (1) and (2), we can 

rewrite them as: 

 

𝒙(𝑛) = 𝑨(𝑛 − 1)𝒙(𝑛 − 1) + 𝒘(𝑛) (3) 

 

𝒚(𝑛) = 𝑯(𝑛)𝒙(𝑛) + 𝒗(𝑛) (4) 

 

such that 𝒙(𝑛) is the 𝑃 × 1 state vector at time n; 𝑨(𝑛 − 1) is 

the 𝑃 × 𝑃 state transition matrix from time 𝑛 − 1 to 𝑛; 𝒘(𝑛) 

is an the 𝑃 × 1 input excitation vector, modeled as white 

noise; 𝒚(𝑛) is the 𝑀 × 1 observation vector; 𝑯(𝑛) is a 𝑀 ×
𝑃 channel distortion matrix; 𝒗(𝑛) is a 𝑀 × 1 additive white 

noise vector [8]. 

According to Vaseghi [8], 𝒘(𝑛) and 𝒗(𝑛) are considered 

to be independent white noise processes such that: 

 

𝐸[𝒗(𝑛)𝒗𝑇(𝑘)] = {
𝑅(𝑛);     𝑘 = 𝑛
0;            𝑘 ≠ 𝑛

 (5) 

 

𝐸[𝒘(𝑛)𝒘𝑇(𝑘) = {
𝑄(𝑛);     𝑘 = 𝑛
0;            𝑘 ≠ 𝑛

 (6) 

 

where 𝑅(𝑛) and 𝑄(𝑛) are respectively the diagonal elements 

of the additive noise and prediction error covariance matrices. 

The Kalman filter estimates a process by using a kind of 

feedback control: first, the filter estimates the process state at 

a given time, then the feedback is obtained in the form of a 

new measure. 

According to Brown and Hwang [2] and Vaseghi [8], 

Kalman filter equations can be divided into time-update 

(prediction) and measurement-update (correction) equations. 

Time-update equations are given by: 

 

𝒙̂(𝑛/𝑛 − 1) = 𝑨(𝑛 − 1)𝒙̂(𝑛 − 1/𝑛 − 1) (7) 

 

and measurement-update equations are given by: 

 

     𝑲(𝑛) = 𝑷(𝑛/𝑛 − 1)𝑯𝑇(𝑛) 

                 × [𝑯(𝑛)𝑷(𝑛/𝑛 − 1)𝑯𝑇(𝑛) + 𝑅(𝑛)]−1 
(8) 

 

     𝒙̂(𝑛/𝑛) = 𝒙̂(𝑛/𝑛 − 1) + 

                 𝑲(𝑛)[𝒚(𝑛) − 𝑯(𝑛)𝒙̂(𝑛/𝑛 − 1)] 
(9) 

 

𝑷(𝑛/𝑛) = [𝑰 − 𝒌(𝑛)𝑯(𝑛)]𝑷(𝑛/𝑛 − 1) (10) 

 

where 𝑷(𝑛/𝑛) is the covariance matrix of the prediction error 

at time 𝑛; 𝑲(𝑛) is the Kalman gain matrix, responsible for 

minimizing the diagonal elements of 𝑷(𝑛), the covariance 

matrix of the estimation error, and 𝒙̂(𝑛/𝑛) is the estimate at 

time n , given past observations 𝒚(𝑛). 

 

B. Wavelet Based Noise Reduction (WT) 

The Wavelet transform of a signal 𝑓(𝑡) is defined as [5]: 

 

𝑊𝑓(𝑎, 𝑏) = ∫ 𝑓(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡
∞

−∞

 (11) 

 

For a N-sample discrete signal, this integral can be 

approximated by a summation: 

 

𝑊𝑓(𝑎, 𝑏) = ∑ 𝑓(𝑡)𝜓𝑎,𝑏(𝑡)

𝑁−1

𝑡=0

 (12) 

 

The function 𝜓𝑎,𝑏(𝑡), called Wavelet, is derived from a 

function  t  by making: 

 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
) (13) 

 

where 𝑏 stands for wavelet position or translation and a is the 

scale parameter associated to the width of the time window. 

There is a broad class of functions 𝜓(𝑡), called mother 

Wavelets, to be chosen: Daubechies, symlets, coiflet, etc [5].  

Dubey and Gupta [20] compared two different wavelet 

families, Daubechies and Coiflets, for noise reduction in 

speech signals. This comparison was performed using cross-

correlation to determine the best noise reduction setting. They 

used Coiflet wavelets with order 5 and Daubechies with 

orders 9 and 10. The speech signals resulting from the use of 

Daubechies 9 wavelets have sounded more pleasant. 
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The WT allows successively decomposing the original 

signal into approximation and detail coefficients to form 

decomposition tree. Approximation coefficients 𝐴𝑚 carry the 

low frequency information of the signal while detail 

coefficients 𝐷𝑚 carry the high frequency content associated 

to the mother wavelet. In the present work, we adopted 

Daubechies 9 wavelets and proceeded to decompose the 

signals until the level 𝑚 = 3. 
The basic principle of noise reduction is choosing a 

threshold to select which coefficients will be kept in order to 

preserve the signal information while minimizing the noise 

level.  

We found that detail coefficients at level 1 were those with 

higher noise content, such that we applied the threshold 

directly on them. This have been already stated by Duarte, 

Vieira Filho and Villarreal [19] who said that adding white 

noise to the original signal can improve the estimated signal 

by reducing more significantly the noise at high frequencies. 

Therefore, we have chosen applying the threshold to 𝐷1, 

which is related to highest frequencies. 

Among the thresholds found in the literature, we adopted 

Hard Thresholding [9] that replaces by zero the smaller 

coefficients, according to: 

 

𝐷1(𝑛) = {
𝐷1(𝑛),     𝐷1(𝑛) ≥ 0.3 × Max(𝐷1(𝑛))

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
 (14) 

 

III. APPLICATION OF NOISE REDUCTION 

ALGORITHMS 

A. Using Discrete-time Kalman Filtering 

In order to evaluate the performance of the proposed 

algorithm, multiple speech signals have been previously 

recorded in ".wav" format at a sampling frequency of 

22050 𝐻𝑧, using 16 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒. Next, the samples 

where normalized to lie in the range [−1, 1] and added 

Gaussian noise. Then, the signal was segmented using 

Hamming windows with 512 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 each and 50% 

overlapping. 

Kalman filtering requires processing each block according 

to the algorithm in Fig. 1. 

After the signal is processed, we calculate the segmental 

signal-to-noise ratio (𝑆𝑁𝑅𝑠𝑒𝑔) an the Itakura-Saito distance 

to evaluate the performance of the algorithm. 

 

B. Using Discrete-time Kalman Filtering combined with 

Wavelet Transform (Proposed Technique) 

Applying the proposed technique requires the same initial 

steps described here in section III, item A. The only 

difference is that we apply the WT to the signal estimate 

provided by the Kalman filter. Fig. 2 resumes the proposed 

algorithm. 

Kalman filtering used the same parameters that we adopted 

in the last section. The Wavelet transform algorithm 

performed signal decomposition until the level 3 using the 

Daubechies 9 wavelet.  

 

 
Fig. 1. Block diagram of Kalman filtering. 

 

 
Fig. 2. Block diagram of Kalman filtering combined with wavelet transforms. 

IV. RESULTS 

In order to evaluate the performance of the proposed 

algorithm, we used different speech signals sampled at 

22050 𝐻𝑧 and using 16 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒. Those samples 

where contaminated with additive white Gaussian noise and 

the resulting signal was segmented using Hamming windows 

with 512 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 each and 50% overlapping. Both Kalman 

filtering and Wavelet transform algorithms were 

implemented using Matlab R2013b. 

We employed the segmental signal-to-noise ratio 

(𝑆𝑁𝑅𝑠𝑒𝑔) and the Itakura-Saito distance (𝑑(𝑏, 𝑎)) to 

compare the performance of the proposed technique to that of 

the Kalman filter alone. 

The segmental signal-to-noise ratio is an effective measure 

that can be computed used in short speech segments in order 

to balance the weights according to the signal strength of each 

segment. It can be calculated using [6]: 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016



𝑆𝑁𝑅𝑠𝑒𝑔 =
10

𝑀
∑ log10 [ ∑

𝑥2(𝑛)

[𝑥(𝑛) − 𝑥(𝑛)]2

𝑚𝑗

𝑛=𝑚𝑗−𝑁+1

]

𝑀−1

𝑗=0

 (15) 

  

where mj  represents the bounds of each of the M N-sized 

frames. 

𝑆𝑁𝑅𝑠𝑒𝑔 does not provide a significant performance 

measure when comparing signals with different spectra.  

However, distance measurements are quite sensitive to 

spectral variation. In those cases, Itakura-Saito distance 

provides better results and it can be calculated using linear 

prediction coefficients (LPC) [7]: 

 

𝑑(𝒂, 𝒃) = log [
𝒂𝑹𝒂𝑇

𝒃𝑹𝒃𝑇
] (16) 

 

where 𝒂 is the LPC vector of the original signal; 𝑹 is the 

original signal correlation matrix and 𝒃 is the LPC vector of 

the estimated signal.  

When the result of (16) is close to zero, the spectra of the 

original and estimated signals are close to each other. If the 

result is exactly zero then the spectra are equal to each other.  

In order to illustrate the efficiency of the proposed 

technique regarding noise reduction and spectral distortion, 

Figure 3 shows the application of the Kalman filtering to the 

utterance “elétrica” with input 𝑆𝑁𝑅 = 3 𝑑𝐵. The filtered 

signal allows noting a significant reduction in the noise level, 

especially during silence intervals. The resulting output 𝑆𝑁𝑅 

was 10 𝑑𝐵 and the Itakura-Saito distance was 0.4844. 

Figure 4 shows the application of the proposed technique 

to the same utterance also with input 𝑆𝑁𝑅 = 3 𝑑𝐵. Again, the 

filtered signal allows noting a significant reduction in the 

noise level, especially during silence intervals. However, the 

resulting output 𝑆𝑁𝑅 was 11 𝑑𝐵 and the Itakura-Saito 

distance was 0.2924. This indicates that the Kalman filtering 

combined with Wavelet transforms performed better than 

Kalman filtering alone. 

 

 
Fig. 3 – Processing using FKT. 

 

 
Fig. 4 – Processing using FKT combined with TW. 

 

In Figures 5, 6 and 7 we extend this analysis to a set of 11 

different utterances for input 𝑆𝑁𝑅 0 𝑑𝐵, 3 𝑑𝐵 and 6 𝑑𝐵, 

respectively. 

In almost all cases, the output 𝑆𝑁𝑅 provided by the 

proposed technique remained larger than that provided by 

Kalman filtering alone. In the worst cases, we got a draw. 

Also, both techniques provided larger output 𝑆𝑁𝑅 

improvement for smaller 𝑆𝑁𝑅 (0 𝑑𝐵). 

 

 
Fig. 5 – Comparison of the techniques FKT e FKT combined with TW in 

relation to 𝑆𝑁𝑅𝑂 for 𝑆𝑁𝑅𝐼 = 0 𝑑𝐵. 

 

 
Fig. 6 – Comparison of the techniques FKT e FKT combined with TW in 

relation to 𝑆𝑁𝑅𝑂 for 𝑆𝑁𝑅𝐼 = 3 𝑑𝐵. 

 

 
Fig. 7 – Comparison of the techniques FKT e FKT combined with TW in 

relation to 𝑆𝑁𝑅𝑂 for 𝑆𝑁𝑅𝐼 = 6 𝑑𝐵. 
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Fig. 8 – Comparison between the techniques of FKT e FKT combined with 

TW for 𝑆𝑁𝑅𝐼 = 0 𝑑𝐵, using the distance of Itakura Saito. 

 

 
Fig. 9 – Comparison between the techniques FKT e combined FKT with TW 

for 𝑆𝑁𝑅𝐼 = 3𝑑𝐵, using the distance of Itakura Saito. 

 

 
Fig. 10 – Comparison between the techniques of FKT and FKT combined 

with TW for 𝑆𝑁𝑅𝐼 = 6 𝑑𝐵, using the distance of Itakura Saito. 

 

An important issue in speech noise reduction is the ability 

to suppress/reduce the noise without producing large 

distortion on the estimated signal. In order to assess the level 

of distortion provided by the techniques under study, in 

Figures 8, 9 and 10, we show the Itakura-Saito distance 

between the estimated signal and the original signal for the 

same 11 utterances with input 𝑆𝑁𝑅 0 𝑑𝐵, 3 𝑑𝐵 and 6 𝑑𝐵, 

respectively. 

Combining Kalman filtering with Wavelet transforms 

provided estimated signals closer to their respective original 

versions in 10 out of the 11 utterances under analysis.  

In Figures 11 and 12, we compare the average behavior in 

terms of the input 𝑆𝑁𝑅, measured along the 11 utterances. Be 

it regarding the output 𝑆𝑁𝑅 or the Itakura-Saito distance, the 

proposed technique performed better than using Kalman 

filtering alone, providing smaller spectral distortion. 

Indeed, the use of Wavelet transforms practically halved 

the Itakura-Saito distance provided by the Kalman filtering. 

V. CONCLUSION 

This paper presented a technique which combines discrete-

time Kalman Filter with Wavelet Transform for reducing 

spectral distortion in speech signal denoising. In order to 

assess the denoising effectiveness, we compared the input and 

output segmental signal-to-noise ratios. Also, we used 

Itakura-Saito distance to measure the amount of spectral 

distortion produced by each approach under study.  

After several tests, combining Kalman filtering with 

Wavelets showed better results in reconstructing signals 

corrupted by white noise than using Kalman filtering alone, 

as well as practically halved spectral distortion.  

Then, the proposed technique of noise reduction proved to 

be more reliable than the Kalman filtering alone for 

producing low spectral distortion. 

 

 
Fig. 11 – Average result of 11 words for 𝑆𝑁𝑅𝐼′𝑠 of 0, 3 and 6 𝑑𝐵, using the 

technics of FKT e FKT with TW for 𝑆𝑁𝑅𝑂. 

 

 
Fig. 12 – Average result of 11 words for 𝑆𝑁𝑅𝐼′𝑠 of 0, 3 and 6 𝑑𝐵, using the 

technics of FKT and FKT with TW for 𝑑(𝑏, 𝑎). 
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