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Abstract—A sequential method of unknown autoregressive
parameters estimation of TAR(p)/ARCH(1) model, which all
are assumed to be unknown, is presented. This procedure is
based on the construction of the special stopping rule and
weights for weighted least square estimation method, which
allow us to guarantee the prescribe accuracy of the estimation.
Also a sequential procedure of change point detection is
proposed. Upper bounds for its basic characteristics, such as
the probability of false alarm and the delay probability, are
obtained.

Index Terms—AR/ARCH, guaranteed parameter estimation,
change point detectionAR/ARCH, guaranteed parameter esti-
mation, change point detectionT

I. I NTRODUCTION

Threshold autoregressive (TAR) models proposed by Tong
[1] definitely are one of the most popular classes of nonlinear
time series models for conditional mean, because they not
only provide a better fit than linear models, but also reveal
strictly nonlinear behavior (e.g. limit cycles, jump resonance,
harmonic distortion) which linear models cannot duplicate
[2]. But sometimes such models have to be completed by
a specification of the conditional variance. ARCH/GARCH
type models first introduced by Engle [3] are often consid-
ered for the conditional variance.

Estimators of the unknown parameters based on the idea
of usage of a special stopping rule in order to guarantee
precisely their quality in a special sense were first proposed
in [4] and are also very popular. So, in [5] a sequential pro-
cedure for estimation of parameters in TAR(1) model, which
allows one to construct LSE asymptotically risk efficient esti-
mator, was proposed. In [6] sequential sampling methods was
used for construction of confidence intervals for unknown
parameters with fixed size and prescribed coverage proba-
bility. Konev and Galtchouk [7] proposed sequential least
square estimator with stopping rule determined by the trace
of the observed Fisher information matrix, which is asymp-
totically normally distributed in the stability region. The
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sequential procedure for estimation of unknown parameters
of TAR(1)/ARCH(1) process, which can guarantee precise
accuracy of estimators was considered in [8]. The problem
of change point detection for autoregressive processes with
conditional heteroskedasticity is well known and extremely
interesting. With different assumption and for different types
of models such problem was recently considered for example
in [8], [9], [10]. Properties of commonly used algorithms are
studied asymptotically or by simulations, because theoretical
investigation is extremely difficult or even impossible. Usage
of the special stopping rule for construction of the LSE with
guaranteed accuracy of unknown parameters allows us to
investigate both asymptotic and non-asymptotic properties
of algorithms, such as false alarm and delay probabilities. In
this paper the guaranteed weighted least square estimators
of unknown autoregressive parameters of TAR(p)/ARCH(1)
process are proposed. Asymptotic properties for the esti-
mators are considered and the upper bounds for standard
deviation (asymptotic and non-asymptotic) are constructed.
The procedure of change point detection with guaranteed
characteristics for this process is presented.

II. PROBLEM STATEMENT

We consider TAR(p)/ARCH(1) autoregressive process
specified by the equation

xk = XkΛ11{xk−1≥0} + XT
k Λ21{xk−1<0}

+
√

ω + α2x2
kξk;

Xk = [xk−1, ..., xk−p];
Λj = [λj

1, ..., λ
j
p]

T , j = 1, 2,

(1)

where{ξk}k≥0 is a sequence of independent identically dis-
tributed random variables with zero mean and unit variance,
ω > 0, 0 < α2 < 1, 1A is the indicator of the setA, T
is the transposition sign. One can see that the process un-
der consideration is thep-order autoregressive process with
ARCH noise and the autoregressive parameters depending on
the previous value of the process. The value of the parameter
vectorΛ = [Λ1,Λ2] changes fromµ = [µ1

1, ..., µ
1
p, µ

2
1, ..., µ

2
p]

to β = [β1
1 , ..., β1

p , β2
1 , ..., β2

p ] at the change pointθ. Values
of the parameters before and afterθ are supposed to be
unknown. The difference betweenµ and β satisfies the
condition

(µj − βj)T (µj − βj) ≥ ∆, j = 1, 2, (2)

where∆ is the known value defining the minimum difference
between the parameters before and after the change point.
The problem is to detect the change pointθ from observa-
tions xk.

In [16] and [17] we proposed to detect the instant of pa-
rameters change in autoregressive process by making use of
guaranteed sequential estimators. The sequence of estimators
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is constructed and the estimators obtained on different time
intervals are compared. In this paper we apply this approach
to more complicated model with unbounded noise variance.

III. E RGODICITY OF THEPROCESS

For investigation of asymptotic properties of estimators
of unknown parameters of given models it is important to
obtain necessary and sufficient conditions for ergodicity or
even strongly for geometric ergodicity of such models . There
are three main approaches to establish geometrical ergodicity
in nonlinear conditionally heterockedastic autoregression [2].
The first approach is based on the assumption that linear
regression part becomes main part for the stability research
due to usage of infinite number of values of the process con-
sidered and the assumption that the radius of the companion
matrix of this linear regression part is less than one [11], [12]
for AR/ARCH model. The second one uses the concept of the
Lyapunov exponent for AR/ARCH [13] and TAR/ARCH [14]
and allows one to obtain geometric ergodicity within more
general assumptions in much larger parameters space than in
[11], [12] but the assumptions appear much more difficult to
validate. The last one is approach, which first was proposed
by Liebscher [15] and then extended for AR/ARCH model
[3], based on concept of the joint spectral radius of a set of
matrices and also allows to obtain geometric ergodicity in
lager regions of parameter space than [11], [12].

IV. GUARANTEED PARAMETER ESTIMATOR

Since the parameters both before and after the change
point are unknown, it is logical to use estimators of the
unknown parameters in the change point detection procedure.
In this section we construct guaranteed sequential parameter
estimators for the parameter vectorsΛj , j = 1, 2. Such esti-
mators were proposed in [17] for an autoregressive process.
The main advantage of the estimators is their preassigned
mean square accuracy depending on the parameter of the
estimation procedure.

It should be noted that if parametersω andα are unknown
then process (1) has unknown and unbounded from above
noise variance. To obtain a process with bounded noise
variance we denotemax{1, |xk−1|} as mk and rewrite the
process in the form

yk = Y 1
k Λ1 + Y 2

k Λ2 + γkξk;

Y 1
k =

1
mk

Xk1{xk−1≥0}. Y 2
k =

1
mk

Xk1{xk−1<0};

yk =
xk

mk
, γk =

√
w + α2x2

k−1

mk
.

(3)

The noise variance of the process{yk} is bounded from
above by the unknown value(ω + α2). To eliminate the
influence of the unknown constant in [8] we proposed to use
the special factorΓN constructed by firstN observations in
the following form

ΓN = CN

N∑
k=1

(
xk

min{1, |xk|}

)2

;

CN = E

(
N∑

k=1

ξ2
k

)−1

,

(4)

whereN observations are taken at the interval where all the
values|xk| are sufficiently large. It was proved in [8] that

for p = 1 the compensating factor satisfies the following
condition

E
1

ΓN
≤ 1

ω + α2
. (5)

This proof can be generalized for the casep > 1 with
minimum changes so we omit it.

If {ξk} have standard normal distribution then the sum
N∑

k=1

ξ2
k has χ2 distribution with N degrees of freedom. In

this case one has

CN =
1

2N/2Γ(N/2)

+∞∫
0

xN/2−3e−x/2dx =
1

(N − 2)(N − 4)
.

This constant is defined forN ≥ 5.
Consider now a weighted least squares estimator for

process (3). The process can be rewritten in the form

yk = YkΛ + γkξk;
Yk = [Y 1

k , Y 2
k ]. (6)

So a weighted least squares estimator has the following form

Λ̂ = C−1(m)
m∑

k=N+1

vk(Yk)T yk;

C(m) =
m∑

k=N+1

vk(Yk)T Yk,
(7)

where0 < vk ≤ 1. According to definition (3)(Y j
k )T Y i

k =
Op for i 6= j (hereOp stands for a zero matrix of the order
p). Hence, taking into account (6) one obtains that the matrix
C(m) has a block structure

C(m) =
[

C(1,m) Op

Op C(2,m)

]
C−1(m) =

[
C−1(1,m) Op

Op C−1(2,m)

]
C(j, m) =

m∑
k=N+1

vj,k(Y j
k )T Y j

k , j = 1, 2.

Using this result and (3), (6) one can obtain

Λ̂1 = [C−1(1,m) Op]
m∑

k=N+1

vk(Yk)T yk

= [C−1(1,m) Op]
m∑

k=N+1

vk(Yk)T (YkΛ + γkξk)

= [C−1(1,m) Op]
[

C(1,m)Λ1

C(2,m)Λ2

]
+[C−1(1,m) Op]

m∑
k=N+1

vk(Yk)T γkξk.

Hence,
Λ̂1 = Λ1 + C−1(1,m)η(1,m);

η(1,m) =
m∑

k=N+1

vk(Y 1
k )T γkξk.

(8)

The same result can be obtained forΛ̂2. It allows us to
construct estimators forΛ1 andΛ2 separately, i.e.

Λ̂j = C−1(j;m)
m∑

k=N+1

vk(Y j
k )T yk, j = 1, 2. (9)

The obtained estimator can be modified in order to bound
the standard deviation of the estimator from above. It can be
done if we change the sample sizem for a special random
stopping timeτ j and if we use special weightsvj,k for
every estimator. LetH > 0 be a parameter of the estimation
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procedure. Further we prove that it defines the accuracy of
the proposed parameter estimators. Then the estimators are
constructed using the weighted least squares method and
hence can be written in the following form

Λ̂j = Λ̂j(H) = C−1(j; τ j)
τj∑

k=N+1

vj,k(Y j
k )T yk;

C(j, m) =
m∑

k=N+1

vj,k(Y j
k )T Y j

k , j = 1, 2.

(10)

Let νmin(j, m) be the minimum eigenvalue of the matrix
C(j,m). Then the stopping timeτ j = τ j(H) are defined by
the following conditions

τ j = inf (m > N : νmin(j,m) ≥ H) . (11)

Now we consider the choice of the weightsv(j, k). Let for
m = N + 1, ..., N + σ the matrixC(j, m) is degenerate and
C(j,m + 1) is not degenerate. The weights on the interval
[N + 1, N + σ] are taken in the following form

v(j, k) =


1√

ΓNY j
k (Y j

k )T

,
if Y j

N , . . . , Y j
k

are linearly
independent;

0, otherwise.

(12)

The weights on the intervals[N + σ + 1, τ j − 1] are found
from the following condition:

νmin(j, k)
ΓN

=
k∑

l=N+σ

v2(j, l)Y j
l (Y j

l )T . (13)

At the instantsτ j , the weights are determined by the condi-
tion:

νmin(j, τ j)
ΓN

≥
τj∑

l=N1+n+σ

v2(j, l)Y j
l (Y j

l )T ;

νmin(j, τ j) = H.

(14)

Theorem 1.Let the parameter vectorΛj in (1) be constant.
Then the stopping timeτ j (11) is finite with probability one
and the mean square accuracy of estimator (10) is bounded
from above

E||Λ̂j(H)− Λj ||2 ≤ H + p− 1
H2

. (15)

Proof. According to the definition of the instantτ j (11) it
is finite with probability one if

k∑
l=N+σ

v2(j, l)Y j
l (Y j

l )T →∞ ask →∞. (16)

The series converges if and only if∀ε > 0 asM →∞ (see
[18])

P

∑
l≥M

v2(j, l)Y j
l (Y j

l )T ≥ ε

→ 0. (17)

The factor Y j
l (Y j

l )T does not tend to zero because
the absolute value of first component is equal to
|xl−1|/max{1, |xl−1|} and, according to equation (1),|xl−1|
exceeds unity with non-zero probability and can be both
negative and positive. So condition (17) can hold true only
because of the choice of the weightsv(j, l).

Suppose that matrixC(j,M −1) is not diagonal. Accord-
ing to the definition of the minimum eigenvalue of matrix

νmin(j, M) = min
x:||x||=1

(x,C(j, M)x),

where (x, y) is the scalar product of the vectorsx and y.
Then using (10), we obtain

νmin(N1, N)
= min

x:||x||=1
(x, ((C(j,M − 1) + v(j, M)(Y j

M )T Y j
M )x)

= min
x:||x||=1

((x, C(j, M − 1)x) + vN (Y j
Mx)2).

Let zM be the argument of the minimum in the last
equation. According to (13), we obtain

(zM , C(j, M − 1)zM ) + v(j, M)(Y j
MzM )2

= νmin(j, M − 1) + v(j,M)2Y j
M (Y j

M )T .

So we have derived the quadratic equation forv(j, M) with
roots in the form

v1,2 =
1

2Y j
M (Y j

M )T

[
(Y j

MzM )2 ±
(
(Y j

MzM )4

+4Y j
M (Y j

M )T ((zM , C(j,M − 1)zM ) −νmin(j, M − 1)))1/2
]
.

It is obvious that

(z, C(j, M − 1)z)− νmin(j, M − 1) ≥ 0.

Thus the following two cases are possible.
Case 1.The equation has two zero roots:v1 = v2 = 0.

This is possible if and only ifz is the eigenvector of the
matrix C(j, M − 1) corresponding toνmin(j, M − 1) and
Y j

Mz = 0. However, the first component ofY j
Mz depends

on the random variableξM , which is independent on the
{xk}k<N . Hence the vectorY j

M is orthogonal to the given
eigenvector of the matrixC(j, M −1) with zero probability.

Case 2.The equation has one non-positive and one positive
root. Taking the major root asv(j,M), one obtains

v(j, M)2Y j
M (Y j

M )T ≥
(Y j

MzM )4

Y j
M (Y j

M )T

+(zM , C(j, M − 1)zM )− νmin(j, M − 1).
(18)

The first term in (18) is equal toY j
M (Y j

M )T cos4(αM )/2,
where αM is the angle betweenY j

M and zM . Since
Y j

M (Y j
M )T does not converge to zero, the first term converges

to zero if and only ifcos(αM ) → 0 whenM →∞. On the
other hand, if the second term in (18) converges to zero then
zM converges to the eigenvector of the matrixC(j, M − 1)
corresponding toνmin(j, M − 1). If v(j, M) → 0, then the
matrix C(j, M) changes slightly with increasingM . Hence,
the eigenvectors of the matrix change slightly too, andzM

converges to a certain vectorz∗. Therefore, the right side of
(18) converges to zero if the cosine of the angle betweenY j

M

and z∗ converges to zero. However, the first component of
Y j

M depends onxM−1 which can take any value, this cosine
can be sufficiently large with non-zero probability.

Note that condition (17) can hold true if all eigenvalues
of the matrix C(j, M − 1) are equal for certainM . It is
possible if and only if the matrixC(j, M − 1) is diagonal.
The matrixC(j, N +k) = vj,N+k(Y j

N+k)T Y j
N+k, wherek is

the least number such asY j
N+k is non-zero, is not diagonal.

It can be easily proved that if the matrixC(j, M − 1) is not
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diagonal, then the next matrixC(j, M) is diagonal with zero
probability.

Hence, condition (17) does not hold true for AR process
(1), and this implies (16).

According to (8) one has

Λ̂j = Λj + C−1(j, τ j)η(j, τ j);

η(j, τ j) =
τj∑

k=N+1

vj,k(Y j
k )T γkξk.

Using the norm properties and (13) one has

||Λ̂j(H)− Λj ||2 ≤ (νmin(j, τ j))−2||η(j, τ j)||2

≤ ||η(j, τ j)||2

H2
.

(19)

Let Fk = σ{ξ1, ..., ξk} be a sigma-algebra generated by the
random variables{ξ1, ..., ξk} and τ j(M) = min{τ j ,M} is
a truncated stopping instant. According to (11) the instant
{τ j(M) = k} ∈ Fk−1. Using the properties of conditional
expectations one obtains

E||η(j, τ j(M))||2

= E
M∑

k=N+1

E[v2
j,kY j

k (Y j
k )T γ2

kξ2
k1τj≤k|Fk−1]

+2E
M∑

k=N+2

k−1∑
l=N+1

E[vj,kvj,lY
j
k (Y j

l )T γkγlξkξl1τj≤k|Fk−1]

= E
M∑

k=N+1

v2
j,kY j

k (Y j
k )T γ2

k1τj≤kE[ξ2
k|Fk−1]

+2E
M∑

k=N+2

k−1∑
l=N+1

vj,kvj,lY
j
k (Y j

l )T γkγlξl1τj≤kE[ξk|Fk−1].

Sinceξk does not depend onFk−1 the second summand is
equal to zero and one obtains

E||η(j, τ j(M))||2 = E
M∑

k=N+1

v2
j,kY j

k (Y j
k )T γ2

k.

Due to the choice of the weightsvj,k (12–13) one obtains

E
τj∑

k=N+1

v2
j,kY j

k (Y j
k )T = E

Nσ∑
k=N+1

v2
j,kY j

k (Y j
k )T

+E
τj∑

k=N+σ+1

v2
j,kY j

k (Y j
k )T ≤ p− 1

ΓN
+

H

ΓN
.

According to (3) one can see thatγ2
k ≤ ω + α2. Note that

τ j(M) → τ j asM →∞, hence

E||η(j, τ j)||2 ≤ (ω + α2)(H + p− 1)E
1

ΓN
.

Due to property (5) of the factorΓN and inequality (19) one
obtains

||Λ̂j(H)− Λj ||2 ≤ E
H + p− 1

H2
.

The theorem has been proved.
Theorem 2. If process (1) is ergodic, and the compensat-

ing factorΓN satisfies the following conditions

N →∞, N/H → 0 asH →∞,

then for sufficiently largeH

P
{∣∣∣∣∣∣Λ̂j − Λ

∣∣∣∣∣∣2 > x

}
≤ 1−

(
2Φ

(√
xH2

H + p− 1

)
− 1

)p

,

(20)

whereΦ(·) is the standard normal distribution function
An analogous theorem for the AR(p) process with un-

known variance has been proved in [17]. Theorem 2 can be
proved in much the same way. We omit the proof because
of the limited volume of the paper.

V. CHANGE POINT DETECTION PROCEDURE

Consider now the change point detection problem for pro-
cess (1). At the first stage, we define intervals[τ j

n−1 +1, τ j
n],

n ≥ 1. The estimatorŝΛj
n of the parameters of process (1) are

constructed on each interval. Then the estimators on intervals
[τ j

n−l−1 + 1, τ j
n−l] and [τ j

n−1 + 1, τ j
n], where l > 1 is an

integer, are compared. If the interval[τ j
n−l−1 + 1, τ j

n] does
not include the change pointθ, then vectorΛj on this interval
is constant. It can be equal to the initial valueµj or the final
value βj . Thus for certainn, if τ j

n−l < θ < τ j
n−1 + 1,

the difference between values of the parameters on intervals
[τ j

n−l−1 +1, τ j
n−l] and [τ j

n−1 +1, τ j
n] is no less then∆. This

is the key property for the change point detection.
We construct a set of sequential estimation plans

(τ j
n, Λ̂j

n) = (τ j
n(H), Λ̂j

n(H)), n ≥ 1, j = 1, 2,

where{τ j
n}, n ≥ 0 is the increasing sequence of the stopping

instances (τ0 = N ), and Λ̂j
n is the guaranteed parameter

estimator on the interval[τ j
n−1 + 1, τ j

n]. Then we choose an
integerl > 1 and define the statisticsIj

n

Ij
n = ||Λ̂j

n − Λ̂j
n−l||

2. (21)

This statistic is the squared deviation of the estimators with
numbersn andn− l. Properties of the statistics are given in
the following theorem.

Theorem 3. The expectation of the statisticsIj
n (21)

satisfies the following inequality:

E
[
Ij
n

∣∣ τ j
n < θ

]
≤ 4(H + p− 1)

H2
;

E
[
Ij
n

∣∣ τ j
n−l < θ ≤ τ j

n−1

]
≥ ∆.

(22)

Proof. Denote the deviation of the estimatorΛ̂j
n from the

true value of the parameterΛj asζj
n. Let the parameter value

remain unchanged until the instantτ j
n, i.e., θ > τ j

n. In this
case,Λ̂j

n = µj + ζj
n, λ̂j

n−l = µj + ζj
n−l and statistic (21) can

be written in the form

Ij
n =

∣∣∣∣∣∣ζj
n − ζj

n−l

∣∣∣∣∣∣2 .

According to the Theorem 1,

E||ζj
n||2 ≤

H + p− 1
H2

(23)

To estimate the expectation of the statistic, we use property
(23) and the inequality||a− b||2 ≤ 2||a||2 + 2||b||2:

EIj
n ≤ E

(
2||ζj

n||2 + 2||ζj
n−l||

2
)
≤ 4

P (H)
H2

. (24)

Let the change of the parameter take place on the interval
[τ j

n−l, τ
j
n−1] i.e. τ j

n−l < θ ≤ τ j
n−1. In this case,̂Λj

n = βj +
ζj
n, Λ̂j

n−l = µj + ζj
n−l, and statistic (21) is

Ij
n = ||βj − µj + ζj

n − ζj
n−l||

2.
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To estimate the expectation of the statistics, we take advan-
tage of the inequality||a − b|| ≥ ||a|| − ||b|| and condition
(23)

EIj
n ≥ E

(
||βj − µj || − ||ζj

n − ζj
n−l||

)2

≥ ||βj − µj ||2 − 2||βj − µj ||E||ζj
n − ζj

n−l||

≥ ∆− 4

√
∆

H + p− 1
H2

.

The theorem has been proved.
Hence, the change of the expectation of the statisticIj

n

allows us to construct the following change point detec-
tion algorithm. TheIj

n values are compared with a certain
thresholdδ, where 4(H + p − 1)/H2 < δ < ∆. When
the value of the statistic exceedsδ then the change point
is considered to be detected. If at least one parameter of the
vectorΛ = [Λ0,Λ1] changes then the change pointθ can be
detected.

The probabilities of false alarm and delay in the change
point detection in any observation cycle are important char-
acteristics of any change point detection procedure. Due to
the application of the guaranteed parameter estimators in the
statistics, we can bound these probabilities from above.

Theorem 4. The probability of false alarmP0,n and the
probability of delayP1,n in n-th observation cycle[τ j

n−1 +
1, τ j

n] are bounded from above

P0,n ≤
2(H + p− 1)

δH2
;

P1,n ≤
2(H + p− 1)

(
√

∆−
√

δ)2H2
.

(25)

Proof. First we consider the false alarm probability, i.e.
the probability that the statisticJi exceeds the threshold
before the change point. Using the norm properties and the
Chebyshev inequality, we obtain

P0,n = P
{

Ij
n > δ

∣∣ τ j
n < θ

}
= P

{
||ζj

n − ζj
n−l||2 > δ

}
≤

2E
(
||ζj

n||2 + ||ζj
n−l||2

)
δ

.

This and (23) imply the first inequality from (25).
Then we consider delay probability, i.e., the probability

that the statisticIj
n does not exceed the threshold after the

change point

P1,n = P
{

Ij
n < δ

∣∣ τ j
n−l < θ < τ j

n−1

}
= P

{
||βj − µj + ζj

n − ζj
n−l||2 < δ

}
= P

{
||+ ζj

n − ζj
n−l|| <

√
δ
}

.

Taking into account that||βj − µj ||2 > ∆ and using the
norm properties and the Chebyshev inequality, one obtains

P1,n ≤ P
{
||βj − µj || − ||ζj

n − ζj
n−l|| <

√
δ
}

≤ P
{√

∆− ||ζj
n − ζj

n−l|| <
√

δ
}

= P
{
||ζj

n − ζj
n−l|| >

√
∆−

√
δ
}

≤
2E
(
||ζj

n||2 + ||ζj
n−l||2

)
(
√

∆−
√

δ)2
.

This and (23) imply the second inequality from (25).
The theorem has been proved.

Then we consider asymptotic properties of the proposed
change point detection procedure forH →∞ if process (1)
is ergodic, i.e. the asymptotic inequalities for the probabilities
of false alarm and delay.

Theorem 5. If process (1) is ergodic, and the compen-
sating factorΓN satisfies the following conditionsN →∞,
N/H → 0 as H → ∞, then for sufficiently largeH the
probabilities of false alarm and delay inn-th observation
cycle [τ j

n−1 + 1, τ j
n] are bounded from above

P0,n ≤ 1−

(
2Φ

(
δH√

2(H + p− 1)

)
− 1

)p

;

P1,n ≤ 1−

2Φ


(√

∆−
√

δ
)

H√
2(H + p− 1)

− 1

p

.

(26)

whereΦ(·) is the standard normal distribution function
These results can be obtained along the lines of the proof

of Theorem 4 if instead of the Chebyshev inequality one uses
the result of the Theorem 2.

These estimators can be used instead of (25) for suffi-
ciently largeH.

VI. CONCLUSION

The results in this paper were derived with strong math-
ematical evidence and are theoretical, but it can be very
interesting to test them on the real data. So we plan to do
simulation experiments in order to demonstrate efficiency of
the procedures proposed.
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