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TAR(p)/ARCH(1) Process. Guaranteed Parameter
Estimation and Change-Point Detection

Yulia Burkatovskaya, Ekaterina Sergeeva, and Sergei Vorobeychikov

Abstract—A sequential method of unknown autoregressive sequential procedure for estimation of unknown parameters
parameters estimation of TAR(p)/ARCH(1) model, which all of TAR(1)/ARCH(1) process, which can guarantee precise
are assumed to be unknown, is presented. This procedure is 4ccyracy of estimators was considered in [8]. The problem
based on the construction of the special stopping rule and . . . .
weights for weighted least square estimation method, which of ch.a.nge point detectlon' fpr ?.UtOTegl’eSSIVG processes with
allow us to guarantee the prescribe accuracy of the estimation. conditional heteroskedasticity is well known and extremely
Also a sequential procedure of change point detection is interesting. With different assumption and for different types
proposed. Upper bounds for its basic characteristics, such as of models such problem was recently considered for example
the probability of false alarm and the delay probability, are in [8], [9], [10]. Properties of commonly used algorithms are
obtained. " . . . .

studied asymptotically or by simulations, because theoretical

Index Terms—AR/ARCH, guaranteed parameter estimation, jnvestigation is extremely difficult or even impossible. Usage
change point detectionAR/ARCH, guaranteed parameter esti- ¢ the gpecial stopping rule for construction of the LSE with
mation, change point detectionT

guaranteed accuracy of unknown parameters allows us to
investigate both asymptotic and non-asymptotic properties
of algorithms, such as false alarm and delay probabilities. In

Threshold autoregressive (TAR) models proposed by Totigs paper the guaranteed weighted least square estimators
[1] definitely are one of the most popular classes of nonlineaf unknown autoregressive parameters of TAR(p)/ARCH(1)
time series models for conditional mean, because they mobcess are proposed. Asymptotic properties for the esti-
only provide a better fit than linear models, but also revemiators are considered and the upper bounds for standard
strictly nonlinear behavior (e.g. limit cycles, jump resonancelgviation (asymptotic and non-asymptotic) are constructed.
harmonic distortion) which linear models cannot duplicat€he procedure of change point detection with guaranteed
[2]. But sometimes such models have to be completed bjiaracteristics for this process is presented.

a specification of the conditional variance. ARCH/GARCH
type models first introduced by Engle [3] are often consid- Il. PROBLEM STATEMENT
ered for the conditional variance.

Estimators of the unknown parameters based on the ided "~ .
of usage of a special stopping rule in order to guarantSBecified by the equation

I. INTRODUCTION

éNe consider TAR(p)/ARCH(1) autoregressive process

precisely their quality in a special sense were first proposed Ty = XkAll{xk,1>0} + XkTA21{g;,€,1<0}
in [4] and are also very popular. So, in [5] a sequential pro- t/w + o222, 2228
cedure for estimation of parameters in TAR(1) model, which Xi = [Thety o, Thp);
allows one to construct LSE asymptotically risk efficient esti- A — [/\Jl' NIT, j=1,2
)t D ) ) )

mator, was proposed. In [6] sequential sampling methods was
used for construction of confidence intervals for unknowwhere{¢x}x>o is a sequence of independent identically dis-
parameters with fixed size and prescribed coverage pro@'ﬂ)uted random variables with zero mean and unit variance,
bility. Konev and Galtchouk [7] proposed sequential least > 0, 0 < o < 1, 1, is the indicator of the sefl, T
square estimator with stopping rule determined by the traethe transposition sign. One can see that the process un-
of the observed Fisher information matrix, which is asymgsler consideration is thg-order autoregressive process with

totically normally distributed in the stability region. TheARCH noise and the autoregressive parameters depending on
the previous value of the process. The value of the parameter
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is constructed and the estimators obtained on different tirfig p = 1 the compensating factor satisfies the following
intervals are compared. In this paper we apply this approacbndition

to more complicated model with unbounded noise variance. Ei <1 : (5)
'y ~ w+a?
[1l. ERGODICITY OF THEPROCESS This proof can be generalized for the cgse> 1 with

For investigation of asymptotic properties of estimator®inimum changes so we omitit.
of unknown parameters of given models it is important toNIf {¢k} have standard normal distribution then the sum
obtain necessary and sufficient conditions for ergodicity o~ €2 has y? distribution with N' degrees of freedom. In
even strongly for geometric ergodicity of such models . Theke:
are three main approaches to establish geometrical ergodiditif case one has
in nonlinear conditionally heterockedastic autoregression [2]. 1 oo 1
The first approach is based on the assumption that lingdy = ————— NPR2=8e=2/2qp —

t app | ption 9 = SN (D) / S e gy

regression part becomes main part for the stability research 3
due to usage of infinite number of values of the process CORis constant is defined foN > 5.

sidered and the assumption that the radius of the companiora:Onsider now a weighted least squares estimator for

matrix of this linear regression part is less than one [11], [1 . .
’ ocess (3). The process can be rewritten in the form
for AR/ARCH model. The second one uses the concept of the 3) P

Lyapunov exponent for AR/ARCH [13] and TAR/ARCH [14] Uk = YA + & ©)
and allows one to obtain geometric ergodicity within more Y, = [V, Y.

general assumptions in much larger parameters space thag i, \yeighted least squares estimator has the following form
[11], [12] but the assumptions appear much more difficult to

m

validate. The last one is approach, which first was proposed A= Clm) S ve(Yi) Ty

by Liebscher [15] and then extended for AR/ARCH model k=N-+1 @
[3], based on concept of the joint spectral radius of a set of Cim)= S op(Ye)TVs,

matrices and also allows to obtain geometric ergodicity in k=N+1

lager regions of parameter space than [11], [12]. where(0 < v < 1. According to definition (BXY,g)TY,j =

O, for i # j (hereO, stands for a zero matrix of the order

IV. GUARANTEED PARAMETER ESTIMATOR o X )
. p). Hence, taking into account (6) one obtains that the matrix
Since the parameters both before and after the char@gem) has a block structure

point are unknown, it is logical to use estimators of the

unknown parameters in the change point detection procedure. C(m) = C(1,m) Op ]
In this section we construct guaranteed sequential parameter Op C(2,m
estimators for the parameter vectoxs, j = 1,2. Such esti- C1(m) = { Cc(1,m) Op }
mators were proposed in [17] for an autoregressive process. Op C~1(2,m)
The main advantage of the estimators is their preassigned ¢ ) = f: v (YOTY? j=1,2.
mean square accuracy depending on the parameter of the k=N+1 "
estimation procedure. Using this result and (3), (6) one can obtain
It should be noted that if parametessanda are unknown .
then process (1) has unknown and unbounded from above At =[C71(1,m) 0, > ve(Ye)Tyr
noise variance. To obtain a process with bounded noise k=N+1
variance we denotenax{1l,|z5_1|} asmy and rewrite the = [C~(1,m) O, i 0 (Vi) T (YA + v
process in the form k=N+1
vk = Y AL+ VA 4 il =[C7H(1,m) Oy { gg:z;t ]
1 _ 2 _ . m
Yi = mikal{wk—IZO}- Yy = mika1{$k71<0}’ 3) +[C=1(1,m) 0, X o (Ye) T k.
. Jw+a?ai o k=N+1
Yy = —, Yp=-——""—. Hence, .
Mg Mk A=Ay +C7H1,m)n(1,m);
The noise variance of the proce$s;} is bounded from & INT (8)
above by the unknown valuév +$a2)}. To eliminate the n(l,m) = k:%,:ﬂvk(yk) Ve

influence of the unknown constant in [8] we proposed to use ) N
the special factoF y constructed by firstV observations in The same result can be obtained ff. It allows us to

the following form construct estimators fak! and A? separately, i.e.
Al o, ? M=CGm) Y w®) Ty =12 (9)
'y =Cyn Z —_— ] k=N-+1
pot min{1, |z|} 4 . . o
TN -1 (4) The obtained estimator can be modified in order to bound
Cy=F (Z gi) , the standard deviation of the estimator from above. It can be
k=1 done if we change the sample sizefor a special random

where N observations are taken at the interval where all trtopping timer’/ and if we use special weights; for
values|z;| are sufficiently large. It was proved in [8] thatevery estimator. Lef7 > 0 be a parameter of the estimation

ISBN: 978-988-14047-6-3 IMECS 2016
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18,2016, Hong Kong

procedure. Further we prove that it defines the accuracy ofSuppose that matri€’'(j, M — 1) is not diagonal. Accord-
the proposed parameter estimators. Then the estimatorsiageto the definition of the minimum eigenvalue of matrix
constructed using the weighted least squares method and

hence can be written in the following form Vain(f, M) = min (z,C(j, M)z),

| |z||=1
P .. » where (z,y) is the scalar product of the vectotsand y.
N =NH)=C ;7 Vi k(Y Types - :
(H) N ( )k:%:ﬂ ik (Vi) (10) Then using (10), we obtain
C(,m)= > vj’k(ij‘)TY,g, j=12. Vmin (N1, V) ) )
k=N+1 = ﬁmﬁll(x’ ((CU, M = 1) + (), M)(Yi) " Yi))

Let vmin(j,m) be the minimum eigenvalue of the matrix : _mm ((z,C(j, M — 1)z) +vN(Yj )?).
C(j,m). Then the stopping time/ = 77(H) are defined by willall=1 M

the following conditions Let zy, be the argument of the minimum in the last

i =inf(m > N : vin(j,m) > H). (11) equation. According to (13), we obtain

; _ ) : J 2
Now we consider the choice of the weightg, k). Let for (221, C(J’,M Dzn) +.U(‘7’ éw)j(Yszf\é)
m = N+1,.., N+ ¢ the matrixC(j, m) is degenerate and = Vmin(J; M = 1) + 0 (j, M)*Y3,(Yy,)"
C(j,m + 1) is not degenerate. The weights on the intervé@o we have derived the quadratic equation«of, M) with

[N 4+ 1, N + o] are taken in the following form roots in the form
it i j 1 j j
o Y|M N .I,Yk %= s [(YJJVIZM)z + ((YJQZM)4
o(jk) = ST indevondent  (12) T g el 12
’ IaY] (YY) independent; +4YE, (VI (21, C Gy M = 1)201) —Vimin (G, M — 1))/ } :

0, otherwise. ] )
It is obvious that

The weights on the intervalsV + o + 1,77 — 1] are found

from the following condition: (2,C(, M = 1)z) = Vmin(j, M — 1) = 0.

g k Thus the following two cases are possible.
Vin (1, ) _ Z V2 (4, 1)Y (V7))L (13)  Case 1.The equation has two zero roots; = v, = 0.
Iy I=N+o This is possible if and only iz is the eigenvector of the

. matrix C(j, M — 1) corresponding taQ/min(j, M — 1) and
At the instantsr’, the weights are determined by the condin . - 0(‘7 Howevgr the fiFr)st corgponent(jdfj - de)pends
wz = 0. , M

tion: on the random variablé,;, which is independent on the
Vioin (G 77) 7 , o {zk}k<n. Hence the vectol’}, is orthogonal to the given
T > Z v (5, 0)Y (V)" (14) eigenvector of the matriK’'(j, M — 1) with zero probability.
N l=Ni+n+o Case 2The equation has one non-positive and one positive
Vmin(J,77) = H. root. Taking the major root as(j, M), one obtains

Theorem 1.Let the parameter vectd¥’ in (1) be constant. v it — (Yipzan)?
Then the stopping time’ (11) is finite with probability one (i M)y (Vi)™ 2 Yi.(YiT (18)
and the mean square accuracy of estimator (10) is bounded + (2, C (G, M — 1)zp) — l/nﬁi(jf\h —1).
from above

- . - Y y T 4
- / H+p—1 The first term in (18) is equal &7, (Yy,)" cos*(ans)/2,
E||A(H) = M|]? < Iz (15)  where ay, is the angle betweeny{, and z,. Since

vi,(Y{)T does not converge to zero, the first term converges
to zero if and only ifcos(aps) — 0 when M — oco. On the
other hand, if the second term in (18) converges to zero then

Proof. According to the definition of the instant (11) it
is finite with probability one if

k o zpr converges to the eigenvector of the maifixj, M — 1)
Z V2 (5,)Y7 (Y7)T — oo ask — oc. (16) corresponding ta/y, (5, M — 1). If v(j, M) — 0, then the
I=N+o matrix C(j, M) changes slightly with increasinyy/. Hence,

The series converges if and only¥E > 0 as M — oo (see the eigenvectors of 'ghe matrix change sllghtly. too, .amd
[18]) converges to a certain vectoet. Therefore, the right side of

(18) converges to zero if the cosine of the angle betvx)@@;n
P Z UZ(jJ)Ylj(Ylj)T >\ . (17) ar;_d z* converges to zero. However, the first component of
Y}, depends omx,;_; which can take any value, this cosine
can be sufficiently large with non-zero probability.
The factor ¥{/(Y/)” does not tend to zero because Note that condition (17) can hold true if all eigenvalues
the absolute value of first component is equal tef the matrixC(j, M — 1) are equal for certainV/. It is
|z;_1|/ max{1, |z;_1|} and, according to equation (1);_,| Possible if and only if the matrixC'(j, M — 1) is diagonal.
exceeds unity with non-zero probability and can be botfhe matrixC(j, N+k) = vj N1k (Y 1) Y34 Wherek is
negative and positive. So condition (17) can hold true onthe least number such z}$(,+k is non-zero, is not diagonal.
because of the choice of the weightsj, [). It can be easily proved that if the matriX(j, M — 1) is not

I>M
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diagonal, then the next matriX(j, M) is diagonal with zero where®(-) is the standard normal distribution function

probability. An analogous theorem for the AR(p) process with un-
Hence, condition (17) does not hold true for AR procedsown variance has been proved in [17]. Theorem 2 can be
(1), and this implies (16). proved in much the same way. We omit the proof because
According to (8) one has of the limited volume of the paper.
N =N+ C7 (G, )G, m);
(. r9) i (Yj)T ¢ V. CHANGE POINT DETECTION PROCEDURE
, T ) = Vj, . . . .
N k=N+1 PRR) TSk Consider now the change point detection problem fqr pro-
Using the norm properties and (13) one has cess (1). At the first stage, we define intenvals | + 1, 77,

n > 1. The estimatord/, of the parameters of process (1) are
constructed on each interval. Then the estimators on intervals
72, + 1,7 ) and[r!_; +1,7]], wherel > 1 is an

1A (H) = M| < (vmin (. 7)) 2 In(, 7)1
IinG. )1, R

HQ_ integer, are compared. If the interviaf! , | + 1,7J] does
Let I}, = o{&, ..., &} be a sigma-algebra generated by thaot include the change poifif then vectorA’ on this interval

random variableg¢;, ..., §x} and7/(M) = min{7/, M} is s constant. It can be equal to the initial vaj&or the final
a truncated stopping instant. According to (11) the instagélue 57. Thus for certainn, if <0< T +1,

n—1

<

{r7(M) = k} € Fy_1. Using the properties of conditionalthe difference between values of the parameters on intervals
expectations one obtains (77, +1,7 Jand[r]_, +1,77] is no less them\. This
El|n(j, 7 (M))||? is the key property for the change point detection.
M o We construct a set of sequential estimation plans
=E > B, YY) & <k Fr-1] L . -
N (3, A%) = () (H),AL(H)), n=1 j=12,
+2E k:%:w z:%:ﬂ Efvj 050V (V) inén&iles <l Fi] where{r]}, n > 0is the increasing sequence of the stopping
M o instances (r = N), and A/, is the guaranteed parameter
=E > v Y (V) 1<k El§]| Fr] estimator on the intervdl’ , + 1,7/]. Then we choose an
M kfffl . integer! > 1 and define the statistick
J J .
+2F k:%:+21:%:+1 06050 Y (Y ) &l < E[&k | Fr—1)- A - AP 1)

Since¢, does not depend ohj_; the second summand is

. This statistic is the squared deviation of the estimators with
equal to zero and one obtains

numbersn andn — [. Properties of the statistics are given in

- , M 2 i T2 the following theorem. ‘
Elln(G,w (M)|>=E Y v}, Y7 " Theorem 3. The expectation of the statisticE (21)
k=N+1 satisfies the following inequality:

Due to the choice of the weights ; (12—-13) one obtains

o 4(H+p—1
o N, B[H]r << 2, (22)
E 2. YYD = B 02 YI(YIT S .
k:%:—&-l g,k k( k) k:%/:+l J.k k( k) E[IrJL‘Trjlfl <9S7—'rJL—Ij ZA
J
T . . p— 1 H o . -
tE 3 YY" < T TTo Proof. Denote the deviation of the estimataf, from the
k=N+o+1 N N

true value of the paramet@¥ as(¢;. Let the parameter value
According to (3) one can see thaf < w + a®. Note that remain unchanged until the instanf, i.e., & > 7. In this
(M) — 77 as M — oo, hence case A = pd + (I, N, =/ + ¢’ _, and statistic (21) can

e ) 1 be written in the form
EllnG, I < (w+a”)(H+p—-1)E-—

T I?:‘gi_jl’r.
Due to property (5) of the factdf and inequality (19) one " e
obtains According to the Theorem 1
~ . . H —_— 1 L
IA9(H) — AP < BEEE G Hep—1
ElGI? < ——5— (23)
The theorem has been proved. H?

Theorem 2.1f process (1) is ergodic, and the compensatrp estimate the expectation of the statistic, we use property
ing factorI'y satisfies the following conditions (23) and the inequalityja — b]|2 < 2||a||? + 2||b]|%:

N — o0, N/H—0asH — oo, _ _ , P(H
B < B (2P 4216 )7) <4t @4

then for sufficiently largeH

. 2 Let the change of the parameter take place on the interval
7’{’ A — AH > CC} [, ) ie ), <6 <7l . Inthis caseAd = 37 +
ZH? P (20) ¢, A, =p? + ¢ _,, and statistic (21) is
<1—|(20(/—— |- , . L
- H+p—1 L= = + ¢ = Gl
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To estimate the expectation of the statistics, we take advanThen we consider asymptotic properties of the proposed
tage of the inequalityja — b|| > ||a|| — ||b]| and condition change point detection procedure fir— oo if process (1)
(23) is ergodic, i.e. the asymptotic inequalities for the probabilities
of false alarm and delay.

Theorem 5. If process (1) is ergodic, and the compen-
sating factorl"; satisfies the following conditiond” — oo,
N/H — 0 as H — oo, then for sufficiently largeH the
probabilities of false alarm and delay mth observation
cycle [ _, + 1,7J] are bounded from above

- . . . . 2
B 2 B (1167 - 1]l = I - ¢l
> 169 — |2 = 2018 = wl| BliG - &3

H+p-1
>A—4 AT'

The theorem has been proved.

Hence, the change of the expectation of the statific 0H g
- - Popn<1—[20 —— | -1 ;
allows us to construct the following change point detec- , 2H +p-1) ’
tion algorithm. Thel/ values are compared with a certain P (26)
thresholdd, where 4(H + p — 1)/H? < § < A. When P <1 0 (VZ_ ‘/5) H 1
the value of the statistic exceedsthen the change point Ln =27 20H+p—1) -

is considered to be detected. If at least one parameter of the

vector A = [Ag, A;] changes then the change pofhtan be where®(.) is the standard normal distribution function

detected. These results can be obtained along the lines of the proof
The probabilities of false alarm and delay in the changsf Theorem 4 if instead of the Chebyshev inequality one uses

point detection in any observation cycle are important chahe result of the Theorem 2.

acteristics of any change point detection procedure. Due toThese estimators can be used instead of (25) for suffi-

the application of the guaranteed parameter estimators in tently large H.

statistics, we can bound these probabilities from above.
Theorem 4. The probability of false alarnf ,, and the

probability of delayP; ,, in n-th observation cyclér; ; +

1,77] are bounded from above

VI. CONCLUSION

The results in this paper were derived with strong math-
ematical evidence and are theoretical, but it can be very

Py, < 2H+p-1), interesting to test them on the real data. So we plan to do
T Q(Hi_HQ_ 1 (25) simulation experiments in order to demonstrate efficiency of
P, < P the procedures proposed.

’ (\/Z_\/ngz'
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