
 

 

Abstract—Traditional approaches used in sample calculation 

for superiority trials comparing two low proportions usually 

provide very large sample sizes. Furthermore, such 

calculations may be inaccurate due to asymptotic normality 

that is often assumed but may not hold in such cases. Bayesian 

approach could reduce sample size by integrating historical 

information prior to data collection. It allows also single arm 

design to be conducted e.g. when it would not be ethical to 

enroll participants into a control group. In this analysis, a 1:1 

randomized two-arm Bayesian trial designed to test for 

superiority was compared in terms of power and Bayesian 

Type I error with 1) a single-arm Bayesian trial and 2) a two-

arm frequentist trial. Via Monte Carlo simulations, sample 

sizes required and trial powers were compared for various 

scenarios of efficacy results, using various prior distributions. 

Our analysis was applied to a real-world case study in the area 

of a trial to test the efficacy of a strategy to reduce mother-to-

child transmission of HIV. 

As a result, regardless of the prior distributions used, power 

to detect superiority was found systematically higher with 

single-arm Bayesian design compared to two-arm Bayesian 

 
Manuscript received December 22, 2015; revised January 8, 2016. 

Patumrat Sripan received scholarships from Faculty of Science, Kasetsart 

University and the Graduate School Kasetsart University to participate this 

conference. She received a scholarship of French Embassy in Thailand and 

Science Achievement Scholarship of Thailand for her PhD study. 

Patumrat Sripan is with Department of Statistics, Faculty of Science, 

Kasetsart University, Bangkok, Thailand; Institut de Recherche pour le 

Développement (IRD) UMI 174-PHPT, Marseille, France and Ecole 

Doctorale de Santé Publique, Université Paris Saclay, Paris, France 

(Patumrat.Sripan@phpt.org) 

Lily Ingsrisawang is with Department of Statistics, Faculty of Science, 

Kasetsart University, Bangkok, Thailand  (corresponding author, phone: 
+66 2 5625555 ext 3873; e-mail: fscilli@ku.ac.th).  

Billy Amzal is with LASER Analytica, London, UK (Billy.Amzal@la-

ser.com) 

Sophie Le Cœur is with Institut National d'Etudes Démographiques 

(INED), Paris, France; Institut de Recherche pour le Développement (IRD) 

UMI 174-PHPT, Marseille, France and Department of Medical Technology, 

Faculty of Associated Medical Science Chiang Mai University, Chiang 

Mai, Thailand (sophie.lecoeur@phpt.org) 

Tim R. Cressey is with Institut de Recherche pour le Développement 

(IRD) UMI 174-PHPT, Marseille, France; Department of Medical 

Technology, Faculty of Associated Medical Science, Chiang Mai 

University, Chiang Mai, Thailand and Harvard T.H. Chan School of Public 

Health, Boston, MA, USA (Tim.Cressey@phpt.org) 

Marc Lallemant is with Institut de Recherche pour le Développement 

(IRD) UMI 174-PHPT, Marseille, France. This author contributed equally 

as last authors to this work (marc@phpt.org) 

Saïk Urien is with EAU08 Université Paris Descartes, Sorbonne Paris 

Cité, Paris, France; Unité de Recherche Clinique Necker Cochin, AP-HP, 

Hôpital Tarnier, Paris, France and CIC1419 INSERM, Cochin-Necker, 

Paris, France (saik.urien@cch.aphp.fr) 

design. However when the size of the effect becomes smaller, 

the power of a two-arm Bayesian design becomes higher than 

single-arm. In our case study, using the model predictive prior 

for the experimental arm (transmission rate decrease from 

2.3% to 0.7%), power to detect superiority (RR<1) could reach 

80% with optimistically as low as 50 subjects. In the two-arm 

frequentist design, using Farrington and Manning method, the 

power to demonstrate superiority of the experimental over 

control arm would be far below 80% with 350 subjects (34% 

power). Similarly, in a two-arm Bayesian design, the power 

would not reach 80% using a prior set identical to the 

predictive prior in the control arm or the inflated 170% 

coefficient of variation (CV). Finally, based on single-arm 

Bayesian design, power reaches 80% with 350 subjects when 

using the inflated 170% CV to the control arm predictive 

prior.  

 

Index Terms—Bayesian approach, rare outcome, relative 

risk, superiority, historical prior 

I. INTRODUCTION 

Superiority testing of a new medical treatment or new 

strategy over the standard of care (control) is often required 

for regulatory registration. When the standard of care is 

highly efficacious the probability of the outcome may be 

very low, thus a large sample size is required to demonstrate 

superiority. When a superiority test is based on the absolute 

difference, it is poorly meaningful to compare low 

proportions (i.e. standard of care (θ1) with a new treatment 

(θ2)) when the reference θ1 is close to zero. It is then more 

relevant to use relative risks and odds ratios to test for 

superiority since both θ1 and θ2 are positive numbers 

between 0 and 1. When the probability of the outcome is 

low, relative risks and odds ratios are quite similar but 

relative risks are easier to interpret.  

Based on relative risk, Farrington and Manning [1] 

proposed to replace the sample proportions with the 

restricted maximum likelihood estimates of θ1 and θ2 under 

the null hypothesis to improve the accuracy of the sample 

size calculation. However, this frequentist approach is based 

on asymptotic normality and may be inaccurate for the risk 

distribution of rare event.  

Bayesian methods are powerful alternatives to sample 

size calculation for sequential study designs. Bayesian 

calculations combine historical information with data to be 

prospectively collected [2]. Typically, historical data are 

only available from a control arm and act as prior 

information for the concurrent control. Non-informative 
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prior distributions are used when prior information is not 

available. 

The objective of the present analysis is to compare the 

statistical performances (power to detect superiority and 

Bayesian Type I error) of different clinical trial designs 

based on a Bayesian or frequentist framework using relative 

risk to determine superiority. Based on a simulation study, a 

two-arm Bayesian study design was compared with 1) a 

single-arm Bayesian design [3]; and 2) a two-arm 

frequentist design.  The sample size calculation based on 

Bayesian predictive probability [4], [5] was used for 

Bayesian design whereas Farrington and Manning 

methodology was used for frequentist design.  

Finally, we apply our analysis to a case study: PHPT-5 

clinical trial (NCT01511237) [6], phase III clinical trial to 

evaluate the efficacy of an antiretroviral (ARV) 

intensification strategy to reduce the risk of transmission of 

HIV from mother to infant during labor and delivery. This 

clinical trial used a single-arm Bayesian design as the 

inclusion since a control arm was not possible for ethical 

reasons. Prior knowledge was obtained from historical data 

collected within other perinatal trials performed in the same 

clinical setting. The statistical power to detect superiority of 

the proposed strategy over the standard of care in the PHPT-

5 second phase trial—a single-arm Bayesian trial—was 

compared to a two-arm Bayesian and to a frequentist study 

design. 

II. PROCEDURE FOR SAMPLE SIZE CALCULATION 

USING A BAYESIAN APPROACH 

Suppose that in a two-arm study, 
CONT

n subjects are 

randomized to receive the standard treatment (active 

control) and 
EXP

n subjects randomized in the experimental 

arm. Let 
CONT

y  and 
EXP

y  denote the number of outcomes in 

the corresponding treatment groups observed over a pre-

defined follow-up study period, we further assume that  

CONT
y  and 

EXP
y  are independent and follow binomial 

distribution with probability of interestCONT  and EXP , 

respectively. 

 

CONT CONT CONTy Binomial( ,n )  

EXP EXP EXPy Binomial( ,n )  

 

The sample size to demonstrate the superiority of the new 

strategy over standard of care was calculated under the 

following hypothesis: 

 

0 EXP CONTH :   versus 1 EXP CONTH :    

or 0 0H : RR R versus 1 0H : RR R  

Under 0H , we chose a relative risk 0R =1. Accordingly, 

the sample size to achieve 80% power can be determined. 

The procedure for sample size calculation based on 

predictive probability was as follow: 

a) Step 1: Computing the posterior distribution 

For each implementation of the simulations, we assumed 

that the risk distribution in the control arm and in the 

experimental arm followed Beta distributions.  

 

CONT CONT CONT
ˆ ~ Beta( a ,b )  

EXP EXP EXP
ˆ ~ Beta( a ,b )  

 

This is determined for each arm, based on the observed 

data and the prior distribution. The posterior probability 

distributions for each group follow a beta form as follow:  

 

  CONT CONT CONT CONT CONT CONT~ Beta( a y ,b n y )

  EXP EXP EXP EXP EXP EXP~ Beta( a y ,b n y )  

 

b) Step 2: Simulating outcomes  

Outcomes CONTŷ  and EXPŷ  to be observed were simulated 

from predictive distributions based on CONT  and EXP given 

the respective sample sizes CONTn  and EXPn : 

 

CONT CONT CONTŷ ~ Binomial( n , )  

EXP EXP EXPŷ ~ Binomial( n , )  

 

In the single-arm design, EXPn subjects enroll only in the 

experimental arm.  

 

TOTAL EXPn n
 

 
For the two-arm design, a 1:1 randomization scheme is 

considered. 

CONT EXPn n =n 

2TOTALn n  

 

c) Step 3: Simulating posterior distributions on risk of 

events   

In the single-arm design, the posterior outcome risk in the 

experimental arm, EXP was simulated, whereas the risk in 

the control group could only be predicted from the historical 

estimate (
CONT̂ ). 

In the two-arm design, the simulated risk for each arms 

are: 

 

  CONT CONT CONT CONT CONT CONT
ˆ ˆ~ Beta( a y ,b n y )

  EXP EXP EXP EXP EXP EXP
ˆ ˆ~ Beta( a y ,b n y )  

 

 

d) Step 4: The relative risk prediction 

For single-arm and two-arm designs, the prediction of 

relative risks were EXP CONT
ˆ/  and EXP CONT/  , 

respectively. Where 
CONT̂  was estimated from the historical 

data. 
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e) Step 5: Predictive power 

We repeated 20,000 replicates from step (1) to step (4) to 

obtain the set of predicted relative risk. The prospective 

sample size TOTALn  can demonstrate the superiority of the 

new strategy to the standard care if the probability of 

RR<R0 was higher than 80%.  

III. CHOICE OF PRIOR DISTRIBUTION  

The choice of the prior distribution impacts the sample 

size calculation. When historical data are not available, a 

non-informative prior is typically used for proportion 

parameters.  Alternately, when relevant data from previous 

trials are available, prior distribution informed by historical 

data can be used [2].  A prior estimated using historical data 

could be used for the control arm. We investigated the 

performance of the designs using different sets of non-

informative prior distributions for the experimental 

including flat prior, Beta (1, 1) and Jeffreys' prior, Beta (0.5, 

0.5)[7]. 

We also proposed the three different historical priors for 

the experimental arm as follows. 

 

1) A model predictive prior: a prior estimated through 

linear mixed model using historical data.  

2) A prior similar to the control arm prior: a prior set 

identical to the control arm. 

3) A prior with a 170% inflated coefficient of variation 

(CV) in the control arm. The CV corresponds to the 

standard deviation divided by the mean of the distribution of 

the risk. Since the CV of the model predictive prior for the 

control arm was assumed to at 85%, we used an inflated CV 

set to twice the CV of model predictive prior (170%) to 

reflect the hypothesis that the distribution of the risk in the 

experimental arm was close to the distribution of the risk in 

the control arm but less likely than a prior set identical to 

the control arm.  

Shape parameters based on estimates from historical data 

were computed given the mean and variance [8]. For a beta 

density with mean m and standard deviation s the shape 

parameters, a  and b are 

 

Beta( a,b )  

 
2

m(1 m )
a m 1

s

 
  

 
 (1) 

 
2

m(1 m )
b (1 m ) 1

s

 
   

 
 (2)  

IV. SIMULATION STUDY  

 In this section, using several sets of simulated data we 

compared sample sizes from three designs including 1) 

single-arm Bayesian design, 2) two-arm Bayesian design 

and 3) frequentist design (Farrington and Manning method).  

In the two-arm design, the sizes were set such as nCONT 

=nEXP = {25, 50, 75, 100, 125, 150, 175}. Therefore the total 

sample sizes including the control and the experimental arm 

in the 1:1 randomization scheme, is nTOTAL = nCONT +nEXP = 

{50, 100, 150, 200, 250, 300, 350}. To be comparable with 

the single-arm design, the sample sizes of the experimental 

arm nEXP should be = {50, 100, 150, 200, 250, 300, 350}. 

a) Evaluation of power to detect superiority  

Power to detect superiority = 1-Probability (RR ≥1/H1 is 

true).  

Assuming that H0 was true, the true θCONT value was 0.03 

and the true θEXP values were {0.003, 0.006, 0.015}. Various 

θEXP values were used in order to evaluate power when the 

true effect size varies. The dataset was simulated 20,000 

times assuming that the distribution of the outcome 

followed a binomial distribution with nCONT = nEXP =10,000. 

b) Evaluation of Type I error 

Bayesian Type I error=Probability (RR<1/H0 is true) 

Assuming that H0 was true, true θCONT values were 

{0.003, 0.006. 0.015) and the true θEXP value was 0.03. 

Various θCONT values were used to evaluate the Type I error 

when effect sizes differ. Using 20,000 replicates, the 

binomial data were simulated with nCONT = nEXP =10,000.   

c) Simulated historical prior 

In the control arm, historical prior of risk distribution was 

defined with 85% CV of the true parameter assuming that 

some uncertainty could not be explained by using the model 

based tool with the historical data. A 85% CV was also 

assumed for the experimental arm as model predictive prior 

(optimistic prior).  

V. CASE STUDY: MOTHER-TO-CHILD 

TRANSMISSION (MTCT) OF HIV 

The high efficacy of current preventive strategies lead to 

MTCT rates as low as 2% or less. Consequently, the 

demonstration of the superiority of a new drug, drug 

combinations or strategies for the prevention of mother to 

child transmission (PMTCT) over an active control with 

already high efficacy requires large sample sizes.   

PHPT-5 second phase was a single arm, Bayesian phase 

III clinical trial to evaluate the efficacy of an experimental 

strategy, i.e. ARV intensification to reduce the transmission 

risk during labor and delivery (intra-partum transmission) 

in women initiating ZDV+3TC+LPV/r late during 

pregnancy (cARV duration ≤ 8 weeks). The ARV 

intensification was defined as single dose NVP at onset of 

labor for women, and for neonates ZDV+3TC+NVP for 2 

weeks followed by 2 weeks ZDV+3TC (experimental arm).  

In our study, this designed was compared with an 

hypothetical two-arm design, with a control arm composed 

of women also initiating therapy late during pregnancy 

(received ZDV+3TC+LPV/r for 8 weeks or less) but who 

did not receive the experimental strategy, i.e. ARV 

intensification. 

a) Historical prior  

A previous analysis [9] had investigated the predictors of 

intra-partum transmission using previous perinatal trials, 

(PHPT-1(NCT00386230) [10], PHPT-2(NCT00398684) 

[11] and PHPT-5 first phase (NCT00409591) [12]). 

The transmission risk was predicted using the observed 

data from 28 women who received combination of antiviral 
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therapy (cART) less than 8 weeks in these previous trials 

and did not receive any ARV intensification. The prediction 

of the model provided the prior information that was used in 

the clinical trial design.  

The predicted risks of intra-partum transmission of the 

control arm and experimental arm were 
CONT̂ = 0.023 ± 

0.028 and 
EXT̂ =0.007 ± 0.016, respectively. 

1) Prior distribution for control arm 

Shape parameters were computed given the means and 

variances using (1) and (2). 

 

0 64 27CONT
ˆ Beta( . , )  

2) Prior distribution for experimental-arm. 

We used the model historical prior estimate for the 

experimental arm together with two different choices of 

prior  including a prior set identical to the control arm and a 

prior with 170%  inflated CV to the control arm. 

VI. RESULTS  

a) Power comparison 

Table I, Table II and Table III show the power to detect 

superiority with the θEXP varying as 0.003, 0.006, 0.015 

compared to a θCONT =0.03 in order to evaluate the power 

when the  effect size  varies.  

 

TABLE I 

POWER (%) WITH θCONT =0.03 AND θEXP =0.003  

BASED ON VARIOUS PRIOR DISTRIBUTIONS FOR 

EXPERIMENTAL ARM AND SAMPLE SIZES. 

 

Designs 
Sample Sizes 

50 100 150 200 250 300 350 

Farrington and 

Manning 
18 28 36 44 51 58 63 

Two-arm Bayesian design 

Non-informative prior 45 63 74 81 85 89 91 

Jeffreys' prior 67 78 85 89 91 93 94 

Historical prior        

Model predictive prior 95 96 97 98 98 99 99 

Same as control arm 62 72 79 84 87 90 92 

170% CV control arm  82 87 90 92 94 95 96 

Single-arm Bayesian design 

Non-informative prior 61 74 80 83 85 87 88 

Jeffreys' prior 77 84 87 88 90 91 90 

Historical prior        

Model predictive  95 94 94 94 94 95 94 

Same as control arm 69 77 80 84 86 87 88 

170% CV control arm  86 89 90 91 92 92 92 

 

 

 

 

 

 

 

 

 

 

 

TABLE II 

POWER (%) WITH θCONT =0.03 AND θEXP =0.006  

BASED ON VARIOUS PRIOR DISTRIBUTIONS FOR 

EXPERIMENTAL ARM AND SAMPLE SIZES. 

 

Designs 
Sample Sizes 

50 100 150 200 250 300 350 

Farrington and 

Manning 
16 23 29 36 41 47 52 

Two-arm Bayesian design 

Non-informative prior 43 60 69 75 79 83 86 

Jeffreys' prior 63 74 80 83 86 88 90 

Historical prior        

Model predictive  89 90 92 93 95 95 96 

Same as control arm 61 70 76 79 83 86 88 

170% CV Control arm  79 83 86 87 90 91 92 

Single-arm Bayesian design 

Non-informative prior 57 69 74 77 78 80 81 

Jeffreys' prior 72 78 81 82 83 84 84 

Historical prior        

Model predictive prior 88 87 88 88 88 88 87 

Same as control arm 66 72 76 78 79 81 81 

170% CV control arm  81 83 84 85 86 86 86 

 

TABLE III 

POWER (%) WITH θCONT =0.03 AND θEXP =0.015  

BASED ON VARIOUS PRIOR DISTRIBUTIONS FOR 

EXPERIMENTAL ARM AND SAMPLE SIZES. 

 

Designs 
Sample Sizes 

50 100 150 200 250 300 350 

Farrington and 

Manning 
10 13 15 18 20 22 24 

Two-arm Bayesian design 

Non-informative prior 38 48 56 60 63 66 68 

Jeffreys' prior 56 62 66 68 70 71 74 

Historical prior        

Model predictive prior 71 73 75 76 78 80 80 

Same as control arm 57 61 65 68 70 72 74 

170% CV control arm  70 71 72 73 75 77 77 

Single-arm Bayesian design 

Non-informative prior 48 55 58 60 61 62 62 

Jeffreys' prior 61 63 64 65 65 65 65 

Historical prior        

Model predictive  69 68 68 68 68 68 68 

Same as control arm 58 61 62 63 63 64 65 

170% CV control arm  70 68 67 67 67 67 67 

 

Based on our simulation study, we found that when the 

size of the effect is large, even non-informative prior can be 

used when historical data are not available. However, 

historical prior improve the power compared to non-

informative prior. Regardless the prior distributions used, 

the power to detect superiority (RR<1) was generally higher 

in single-arm Bayesian design compared to two-arm 

Bayesian design with larger effect size. In contrast, when 

the size of the effect was smaller, the power became higher 

in two-arm Bayesian design. 

b) The evaluation of Type I error based on simulation 

study 

Of the two non-informative priors, the flat prior produces 

smaller type I error than the Jeffrey’s prior. Using the 

historical prior, model predictive prior provided the smallest 

Type I error followed by inflated 170% CV control arm 

prior and then the prior set identical to the control arm. The 

Type I error was generally higher for the two-arm Bayesian 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016



 

design compared to the single-arm Bayesian design for all 

prior distributions. Patterns of Type I errors are similar 

regardless the effect size. 

c) Power evaluations in case study 

TABLE IV 

POWER IN CASE STUDY: MTCT OF HIV BASED ON 

VARIOUS PRIOR DISTRIBUTIONS FOR 

EXPERIMENTAL ARM AND SAMPLE SIZES. 

 

Designs 
Sample Sizes 

50 100 150 200 250 300 350 

Farrington and 

Manning 
12 16 20 24 27 31 34 

Two-arm Bayesian design 

Non-informative prior 32 44 49 53 56 58 59 

Jeffreys' prior 51 59 64 65 66 67 68 

Historical prior        

Model predictive prior 80 79 79 79 79 78 79 

Same as control arm 57 61 63 65 66 66 67 

170% CV Control arm  68 71 72 73 74 74 74 

Single-arm Bayesian design 

Non-informative prior 45 55 62 64 67 69 70 

Jeffreys' prior 60 68 71 73 75 75 76 

Historical prior        

Model predictive prior 80 80 81 81 81 81 82 

Same as control arm 62 67 70 72 74 74 76 

170% CV control arm  72 75 76 77 78 78 80 

 

Table IV shows power according to different design with 

sample sizes ranging from 50 to 350 and 
CONT̂  and 

EXP̂ defined as 0.023 and 0.007, respectively. The power is 

higher in the single-arm design using all prior distribution 

compared to the two-arm design. Power does not reach 80 

% when using a non-informative prior or the same prior in 

the experimental and control arm. Using the model 

predictive prior for the experimental arm, power to detect 

superiority (RR<1) could reach 80% with optimistically as 

low as 50 subjects. 

Using the Farrington and Manning method, the power to 

demonstrate superiority of the experimental over control 

arm would be far below 80% with 350 subjects (34% power 

only) and it would require 1,426 subjects to reach 80% 

power. Similarly, power could not reach 80% with 350 

subjects in a two-arm design using a prior set identical to 

the predictive prior in the control arm or the inflated 170% 

CV. However, with the single-arm design using the inflated 

170% CV to control arm predictive prior, the power would 

reaches 80% with only 350 subjects. 

VII. CONCLUSION 

When the effect size is large, non-informative priors can 

be used in the experimental arm. However, increased power 

could be provided by using the priors set identical to the 

model predictive prior of the control arm or with an inflated 

170% CV. Generally, power is higher in single-arm design 

than in two-arm design regardless of the prior distribution 

when the effect size is large. In contrast, when the true 

effect size is smaller, power is higher in the two-arm 

Bayesian design. 

 

ACKNOWLEDGMENT 

We would like to thank all members of hospital teams, 

and patients who participated in PHPT studies from which 

we used as historical data. We are also grateful to Dr. 

Patrinee Traisathit for statistical advices.  

REFERENCES 

[1] C. P. Farrington and G. Manning, “Test statistics and sample size 

formulae for comparative binomial trials with null hypothesis of non-

zero risk difference or non-unity relative risk,” Stat Med, vol. 9, no. 

12, pp. 1447–1454, Dec. 1990. 

[2] D. J. Spiegelhalter, K. R. Abrams, and J. P. Myles, Bayesian 

Approaches to Clinical Trials and Health-Care Evaluation. John 

Wiley & Sons, 2004. 

[3] K. Viele, S. Berry, B. Neuenschwander, B. Amzal, F. Chen, N. Enas 

et al., “Use of historical control data for assessing treatment effects in 

clinical trials,” Pharmaceut. Statist., vol. 13, no. 1, pp. 41–54, Jan. 

2014. 

[4] Bruno Lecoutre, “Bayesian predictive procedure for designing and 

monitoring experiments,” Bayesian Methods with Applications to 

Science, Policy and Official Statistics, Luxembourg: Office for 

Official Publications of the European Communities, pp. 301–310, 

2001. 

[5] S. C. Choi and P. A. Pepple, “Monitoring Clinical Trials Based on 

Predictive Probability of Significance,” Biometrics, vol. 45, no. 1, pp. 

317–323, 1989. 

[6]  M. Lallemant, B. Amzal, S. Urien, P. Sripan, T. R. Cressey, N. Ngo-

Giang-Huong, et al., “Antiretroviral Intensification to Prevent 

Intrapartum HIV Transmission in Late Comers,” in the IAS Conf. on 

HIV Pathogenesis, Treatment and Prevention, Vancouver, British 

Columbia, Canada, 2015. 

[7] S. H. Jeffreys, The Theory of Probability, Third Edition. Oxford 

Classic Texts in the Physical Sciences, 1998. 

[8] John K. Kruschke, Doing Bayesian Data Analysis: A Tutorial with R 

and BUGS, 1 edition. Burlington, MA: Academic Press, 2010. 

[9] P. Sripan, S. Le Coeur, B. Amzal, L. Ingsrisawang, P. Traisathit, N. 

Ngo-Giang-Huong, et al., “Modeling of In-Utero and Intra-Partum 

Transmissions to Evaluate the Efficacy of Interventions for the 

Prevention of Perinatal HIV,” PLoS ONE, vol. 10, no. 5, p. e0126647, 

2015. 

[10] M. Lallemant, G. Jourdain, S. Le Coeur, S. Kim, S. Koetsawang, A. 

M. Comeau, et al., “A trial of shortened zidovudine regimens to 

prevent mother-to-child transmission of human immunodeficiency 

virus type 1. Perinatal HIV Prevention Trial (Thailand) Investigators,” 

N. Engl. J. Med., vol. 343, no. 14, pp. 982–991, Oct. 2000. 

[11] M. Lallemant, G. Jourdain, S. Le Coeur, J. Y. Mary, N. Ngo-Giang-

Huong, S. Koetsawang, et al., “Single-dose perinatal nevirapine plus 

standard zidovudine to prevent mother-to-child transmission of HIV-1 

in Thailand,” N. Engl. J. Med., vol. 351, no. 3, pp. 217–228, Jul. 

2004. 

[12] M. Lallemant, S. Le Coeur, W. Sirirungsi, T. R. Cressey, N. Ngo-

Giang-Huong, P. Traisathit, et al., “Randomized noninferiority trial of 

two maternal single-dose nevirapine-sparing regimens to prevent 

perinatal HIV in Thailand,” AIDS, vol. 29, no. 18, pp. 2497–2507, 

Nov. 2015. 

 

 

 

 

 

 
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016




