
 

 

Abstract—Reliability-based design optimization (RBDO) is to 

find the optimal structural design with minimum cost subject to 

the required level of reliability. Since the target failure 

probability is usually small, surrogate models have been created 

in the single-loop RBDO method to replace the time-consuming 

reliability analysis. The present study includes three parts: 

perform Monte Carlo sampling in the solution space, build a 

surrogate model based on the concept of data mining, and use 

the surrogate model to perform the reliability analysis. In this 

empirical study, we adopt three commonly used methods, 

Classification and Regression Tree (CART), Artificial Neural 

Network (ANN) and Support Vector Machine (SVM). The goal 

is to examine the performance of the methods in estimating the 

reliability states (failed or safe). A ten-bar truss project is 

adopted as the case study where the design options are selected 

from a commercial list. We also investigate the effect of the input 

types (discrete or continuous) on classification accuracy. The 

findings of the present study can assist in choosing a suitable 

surrogate model so the RBDO analysis can be performed with 

better accuracy and higher efficiency. 

 
Index Terms—Design optimization, reliability, data mining, 

simulation, classification 

 

I. INTRODUCTION 

ELIABILITY-BASED  design optimization (RBDO) aims to 

find the optimal design with minimum structure cost or 

weight subjected to specified reliability constraint such as 

maximum failure probability limit. RBDO includes two 

processes: design optimization and reliability analysis. In 

practical projects, RBDO involves highly non-linear limit 

state functions, non-normally distributed random variables 

and discrete design variables. All of these practical issues 

create significant challenges for RBDO [5]. Moreover, civil 

structures are usually designed to have a relatively small 

failure probability. Thus, it demands a long period of 

computation time to estimate the failure probability [17]. 

The RBDO analysis may be performed in various ways. 

The conventional approach for RBDO is the double-loop 

method. The double-loop method requires a full reliability 
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analysis at every step of the design optimization process. It is 

too computationally expensive to be applied in practical 

applications [16]. In contrast, the single-loop method creates 

a surrogate model or an approximation function to replace the 

time-consuming reliability analysis process [12]. Despite the 

improved efficiency, the single-loop method may be 

inaccurate in estimating the structure failure probability 

because the surrogate model and approximation function may 

associate with certain errors [18].  

This study enhances the single-loop RBDO method by 

providing a better surrogate model based on data mining 

approaches. The judgement criterion is being able to predict 

whether a structural design will fail with higher accuracy. 

This need leads to a binary classification problem where data 

mining is employed to find the hidden rules and to create a 

surrogate model. The surrogate model will replace the 

time-consuming reliability analysis in RBDO to achieve 

efficiency. 

A benchmark ten-bar plane truss is used to examine and 

compare popular data mining methods in creating the 

surrogate model. The present study includes the following 

steps. First, Monte Carlo Simulation (MCS) is carried out to 

generate a data set where design variables (bar sizes) are input 

and binary reliability states (failed or safe) are output. Second, 

popular data mining methods are used to estimate the binary 

results given the design variables. Third, the comparisons 

among the data mining methods are made based on both 

accuracy and efficiency. More insights are given to whether 

the transformation of input data can improve the performance 

of the surrogate model. 

A preliminary experiment is conducted to select the data 

mining methods for further examinations. We consider seven 

state-of-the-art methods: Classification and Regression Tree 

(CART), Artificial Neural Network (ANN), Support Vector 

Machine (SVM), CHi-Squared Automatic Interaction 

Detection (CHAID), Bayesian Network (BAYES), Quick, 

Unbiased and Efficient Statistical Tree (QUEST), and 

Logistic Regression (LOG). Among the seven methods, 

CART, ANN, and SVM, are selected because they yield the 

highest accuracy in predicting the failure probability. In the 

following section, we introduce MCS, along with the three 

data mining methods. 

II. METHODS 

A. Monte Carlo Simulation 

The Monte Carlo Simulation is a robust, but the most 
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computationally expensive method to perform probabilistic 

reliability analysis of a component or a system [11]. 

According to the Law of Large Number, the average of the 

results obtained from a large number of trials in a simulation 

should be close to the expected value and tend to get closer as 

more trials are performed to the simulation. Using MCS to 

estimate the failure probability of a structural design is as 

follows 

 

(1) 

where Pf = failure probability; 

E = expected value; 

Z(D,X) = limit state function with design variables D and 

random variables X; 

N = number of samples; 

I[.] = indicator function; 

Zi = the i-th sample of Z. 

 The limit state function described in (1) is the condition 

where a structure exceeds a specific limit as the structure is 

unable to perform as required. The limit state function 

indicates the margin of safety between the resistance and the 

load of structures. 

 (2) 

where R is the resistance and L is the load. The structure is 

considered failed when Z is negative, i.e., when the load 

exceeds the resistance of the structure. 

As the sample size increases, simulation accuracy also 

increases. When the sample size is large, MCS is quite 

accurate in estimating the failure probability yet very 

computationally expensive as the target failure probability is 

usually very small. The main advantage of MCS is that it is 

flexible enough in modeling non-linear limit state functions 

and non-Gaussian distributions. 

 

B. Classification and Regression Tree 

The classification and regression tree (CART) is a decision 

tree method by constructing a classification tree or regression 

tree according to its output variable data type, which can be 

either categorical or numerical [2]. The construction of the 

surrogate model using CART is extremely fast because it can 

provide a clear indication of which inputs are more important 

for making the prediction easier. This is done by constructing 

a decision tree.  

In the beginning, the decision tree is started with a single 

parent node and then this parent node will split into two 

partition nodes. To split a parent node, we need to select a 

tree-split that gives the smallest impurity among possible 

splits. Impurity in the CART method is the measurement of 

how many records in a data set would be incorrectly classified 

associated with the chosen tree-split. Commonly used 

impurity measurements are Entropy and Gini Index. 

 

C. Artificial Neural Network 

Artificial Neural Network (ANN) is a computational 

method that is based on the neuron cell structure of the 

biological nervous system.  Given a training set of data, the 

neural network can learn the pattern of the data set with a 

learning algorithm. Through propagation, the neural network 

forms a mapping between inputs and desired outputs from the 

training set by altering weighted connections within the 

network [1]. An ANN has one input layer, one output layer 

and one or more hidden layers with a certain number of 

neurons. Each neuron is associated with a weight and bias. 

The algorithmic parameters are the numbers of hidden layers 

and neurons in each layer. 

This study adopts a feedforward backpropagation neural 

network that has input-to-unit and unit-to-unit connection 

modified by a weight. Each unit has an extra input that is 

assumed to have a constant value of one. The weight that 

modifies this extra input is called the bias. In the feedforward 

phase, all of the information from the input layer is fed to the 

network in forward direction from the first hidden layer to the 

output layer. This phase will activate the activation functions 

in the output layer. In the backpropagation phase, the 

activated output layer will propagate backward the error or 

difference between the predicted output and the actual output 

through the network. Then, the weight in every connection is 

adjusted by the error proportions that were propagated 

backward, thus improving the model [9]. 

 

D. Support Vector Machine 

Support vector machine (SVM) is a supervised learning 

algorithm that builds a hyperplane of classification based on 

the training samples. The training data and the corresponding 

labels are expressed as follows: 

 (3) 

where D is the set of training data; X is the p-dimensional 

design vector; and y is the corresponding labels (safe or 

failure). 

 To perform classification, two boundary functions are 

defined to separate data points 

   
 

(4) 

where w is the normal vector of the hyperplane of the 

classification and b is the distance between the origin and the 

hyperplane.  

The goal of SVM is to maximize the margin between two 

support vectors [15]. This is equivalent to the minimization of 

w because the width of separation between two support 

vectors is 2/||w||. The selection of parameters w and b can be 

formulated as a non-linear optimization problem, which has 

been discussed in [4]. 

 

 
Fig. 1.  Illustration of Artificial Neural Network. 
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Fig. 2.  Classification Margin of Support Vector Machine. 

 

When the data points are not linearly separable, the original 

space should be transformed into a higher-dimensional space. 

The training process for SVM then requires the selection of 

proper kernel functions (linear, radial basis, polynomial, or 

sigmoid function) to do such transformation [7]. Default 

values of kernel parameters are highly dependent on their 

kernel type. The SVM model requires the user to specify two 

algorithmic parameters, the regularization parameter and the 

kernel parameter. The regularization parameter represents the 

tradeoff between model complexity and training error. The 

kernel parameter controls the kernel width used to fit the 

training data. 
 

E. Cross Validation 

Cross-fold validation is adopted to estimate the accuracy of 

the surrogate models. In the present study, a model is given a 

data set with known output which served as training data set 

and a data set with unknown output which served as testing 

data set. The training data set is used to construct the 

prediction model while the testing data set is used to estimate 

the output value based on the prediction model. 

The k-fold cross validation has been widely used for 

validation because it can minimize bias associated with 

random feature of training data set sampling process [6]. 

Ten-fold cross validation is usually considered as the optimal 

k-fold cross validation in terms of computational time [10]. In 

the ten-fold cross validation method, a fixed number of data 

samples from a data set are divided into ten folds. Among 

these ten folds, nine folds will served as training data set to 

build surrogate model, while the rest one fold will served as 

testing data set to verify and validate the accuracy of surrogate 

model. To reduce variability, every round from ten-fold cross 

validation process is performed using different partitions. The 

accuracy of the surrogate model can be expressed as the 

average accuracy acquired by the ten rounds of validation 

process. 

III. PROCEDURE 

As the focus is placed upon CART, ANN, and SVM, the 

procedure of the present study includes the following steps: 

1. Use MCS to prepare a data set: design options as the input 

while the corresponding probability of failure as the output. 

2. Divide the data set into ten folds and separate the training 

data set from testing data set. 

3. Train the surrogate models based on the three methods. 

4. Use the surrogate models to perform classification for the 

testing data set. 

5. Compare the classification results with the actual output. 

6. Repeat Steps 2 through 5 for the ten folds. 

7. Report the classification statistics for each surrogate 

models. 

 

IV. BENCHMARK CASE 

The benchmark case used in this study is a ten-bar truss 

structure. The shape, geometry and loading of the ten-bar 

truss structure are shown in [8]. The ten-bar truss is 

pin-jointed and subjected to two external loads, P1 and P2. 

Every bar is made of hollow carbon steel pipes and may have 

different sizes. The carbon steel pipes are selected from the 

local industry standard [3]. There are 36 options in the size list. 

The selection of bars represents a discrete set with three 

features: pipe outside diameter (D), wall thickness (t) and 

cross-sectional area (A).  

The steel pipe also has the following mechanical properties: 

modulus of elasticity (E) of 200,000 N/mm2 and density () of 

2.768 x 10-6 kg/mm3. As there are 36 discrete options that can 

be selected for the 10 bars, there are 3610 discrete 

combinations, i.e., roughly 3.65 x 1015 options. This amount 

of possible options is considered huge even for a relatively 

small RBDO problem. This demonstrates the computational 

burden for the RBDO problem. 

 

 
Fig. 3.  Ten-Bar Truss Structure Geometry. 

TABLE I 

RANDOM VARIABLES 

Variable Distribution Mean Dispersion 

P1, P2 Extreme 

Value Type I 

150 kN 10% c.o.v. 

A1~10 Uniform Ᾱ ±4% 

Fy Lognormal 517.28 N/mm2 (9th Bar),  

172.43 N/mm2 (Others) 

8% c.o.v. 

 

 
TABLE II 

ERROR 

Error Distribution Mean Dispersion 

eP1, eP2 Uniform 0 ±10% 

eA1~10 Uniform 0 ±3% 

eF Uniform 0 ±20% 

e Uniform 0 ±5% 
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There is variability and error of the random variables due to 

the randomness nature and manufacturing variation in real 

situation as follows: 

 

 Randomness of external loads: P1 and P2 

 Manufacturing variation of cross section area: A1~10 

 Randomness of steel yield stress: Fy 

 Estimation error of external loads: eP1 and eP2 

 Estimation error of cross section areas: eA1~10 

 Estimation error of steel yield stress: eF 

 Error in the mathematical modeling of stress: e 

Tables I and II show the probabilistic distributions with 

mean value and dispersion for modeling the random variables 

and error. The loads are assumed to follow the extreme value 

distribution. The cross-sectional areas are uniformly 

distributed within a certain range caused by manufacturing 

imperfections. The yield stress is assumed to follow the 

lognormal distributions.  

Two structural failure modes are considered in this case: 

yield stress and buckling stress. The truss is considered failed 

when any of the members fails either in terms of yield stress or 

buckling stress. For yield stress, a failure occurs when the 

axial stress exceeds the yield strength of the bar. Buckling 

stress takes place when the bars are subjected to high 

compressive stress. The bar would lose stiffness and strength 

capacity. 

We consider two criteria for the performance of surrogate 

models: classification accuracy and computational efficiency.  

The classification accuracy is calculated by using a confusion 

matrix. A confusion matrix is a specific table layout that 

allows visualization of the classification model performance 

from a typically supervised learning algorithm [13]. Each 

column of the matrix represents the predicted output class 

while each row of the matrix represents the actual output class. 

The idea of the confusion matrix is to separate and count the 

total number of actual output class correspond to the 

predicted output class. Computational efficiency is measured 

by the total time spent in the prediction process, including the 

time for tuning the algorithmic parameters. 

V. COMPARISONS 

Grid search is performed to tune the algorithmic 

parameters. The selected ANN model has 3 hidden layers, 

each of which has 5 neurons with the training functions being 

the Scale Conjugate Gradient method. The transfer function is 

Log-Sigmoid. For SVM, we choose Least Square Support 

Vector Machine [14] with the radial basis function being the 

kernel function. 

Table III compares the classification accuracy of the three 

methods: CART, ANN, and SVM after ten-fold cross 

validation. All the methods can achieve more than 90% 

accuracy. The performance of ANN is the best while the 

difference between ANN and CART is moderate. All the 

three methods are quite consistent because the standard 

deviation is relatively small. Both ANN and CART are 

significantly better than SVM. However, ANN and SVM take 

a lot more computation time (7.96 and 14.31 minutes, 

respectively) than CART (0.3 minute) in performing the 

prediction of reliability states. 

VI. TRANSFORMATION OF INPUT 

It has been realized that the data types of input data may 

influence classification accuracy. In the present study, we 

investigate the effect of transforming the types of input. This 

is to suggest the suitable type of input to achieve higher 

classification accuracy. 

Two input types are considered: discrete input represented 

by bar option (choice within the option list) and continuous 

input represented by bar cross-sectional area. Bar option is a 

discrete input because we cannot choose an option outside the 

list. In contrast, bar cross-sectional area is a continuous input. 

For CART, the average classification accuracy is 91.6% for 

the discrete input (bar option) and 93.9% for the continuous 

input (bar area). A hypothesis test is conducted to determine 

the significance of the difference between two cases. After 

conducting the t-test, we get the p-value of 0.011. Since the 

p-value is smaller than 5%, we should reject the null 

hypothesis. Thus, the continuous input (bar area) is 

significantly better than the discrete input (bar option). 

For ANN, the average classification accuracy is 90.7% for 

the discrete input (bar option) and 93.7% for the continuous 

input (bar area). The confidence interval of the discrete input 

type is completely above that of the continuous input type 

while both confidence intervals are not overlapped. Therefore, 

the continuous input (bar area) is significantly better than the 

discrete input (bar option). 

For SVM, the average classification accuracy is 86.7% for 

the discrete input (bar option) and 83.8% for the continuous 

input (bar area). The confidence intervals between two input 

types are overlapped and the mean value of one input type is 

within the confidence interval of the other. As the result, the 

discrete input (bar option) is not significantly better than the 

continuous input (bar area). 

VII. CONCLUSION 

In the present study, three data mining methods (CART, 

ANN, and SVM) are adopted to be the surrogate models in the 

single-loop RBDO analysis. The concept is using the 

surrogate models to replace time-consuming Monte Carlo 

Simulation in the classification of reliability levels (fail or 

safe) for structural designs. A ten-bar truss structure is used to 

compare the performance of the three methods in terms of 

classification accuracy and computational efficiency. The 

empirical results show that ANN is superior to SVM and the 

difference between ANN and CART is moderate. With 

respect to computational efficiency, CART takes much less 

time than both ANN and SVM. We also examine the effect of 

transforming the input data from discrete options to 

continuous values. The transformation is shown to be 

advantageous for CART and ANN. 

TABLE III 

CLASSIFICATION ACCURACY 

Method Mean Standard deviation 

CART 94.57% 1.44% 

ANN 95.83% 1.64% 

SVM 92.67% 1.05% 
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