

Abstract—An algorithm is presented for in situ

omnidirectional vision-based bee counting on landing pads of

Langstroth beehives. The concept of the 1D Haar Wavelet

Spike is developed. The spikes are detected in the 1D Haar

Wavelet Transforms of image rows. The algorithm is

implemented in Python 2.7.9 with OpenCV 3. The performance

of the algorithm was tested in situ on a Raspberry Pi 3 Model B

computer with an ARMv8 processor and 1GB RAM with a

sample of 382 720 x 480 PNG images. The images were

captured by a Raspberry Pi Camera Board v2 connected to a

multi-sensor electronic beehive monitoring device. The

algorithmic bee counts approached a human beekeeper’s counts

within a margin of 5 bees on 63% of the images, within a

margin of 10 bees on 94% of the images, and within a margin of

15 bees on 99% of the images.

Index Terms—computer vision, discrete wavelet transform,

biosensors, electronic beehive monitoring, sustainable

computing

I. INTRODUCTION

rofessional and amateur beekeepers use visual estimates

of forager traffic levels to evaluate bee colonies’ health.

Higher levels of forager traffic may indicate onsets of

swarms or colony robbing activities; lower levels of forager

traffic may indicate mite infestations, failing queens, or

chemical poisonings [1, 2].

Advances in electronic sensors have made it feasible to

transform apiaries into sensor networks that collect multi-

sensor data in situ to estimate bee colonies’ health [3].

Electronic beehive monitoring (EBM) can help researchers

and practitioners collect data on colony behavior and

phenology without invasive beehive inspections [4].

In this paper, an in situ computer vision (CV) algorithm is

presented for omnidirectional bee counting on landing pads

of Langstorth beehives [5] used by many U.S. apiarists [6].

The algorithm is omnidirectional, because it does not

distinguish between incoming and outgoing bee traffic. Bee

counts can be used as forager traffic level estimates.

The algorithm has been developed with open source

software tools and tested on a hardware device assembled

with off-the-shelf hardware components. A fundamental

objective of this project is to create a suite of replicable

hardware and software tools for citizen scientists to build

their own EBM devices (EBMDs) and to promote the

grassroots development of EBM cyberinfrastructures [7].

 Manuscript received December 5, 2016; revised December 24, 2016.

 Vladimir A. Kulyukin is with the Department of Computer Science of

Utah State University, Logan, UT 84322 USA (phone: 434-797-2451; fax:

435-791-3265; e-mail: vladimir.kulyukin@usu.edu).

The remainder of this paper is organized as follows. In

Section II, related work is reviewed. In Section III, the

hardware and software details of BeePi© [8], a multi-sensor

solar-powered EBMD, are presented. In Section IV, the

concept of a 1D Haar Wavelet Spike (1D HWS) is formally

developed. Section V describes the proposed algorithm. In

Section VI, the algorithm performance is analyzed. In

Section VII, conclusions are drawn.

II. RELATED WORK

EBM has been evolving for over half a century. In the

1950’s, Woods placed a microphone in a beehive and

subsequently built Apidictor, an audio beehive monitoring

tool [4]. Bencsik [9] equipped several hives with

accelerometers and observed increasing amplitudes a few

days before swarming, with a sharp change at the point of

swarming. Evans [10] developed Arnia, a beehive

monitoring system that uses weight, temperature, humidity,

and sound. The system breaks down hive sounds into flight

buzzing, fanning, and ventilating and sends digital alerts to

beekeepers.

S. Ferrari et al. [11] assembled a system for monitoring

swarm sounds in beehives. The system consisted of a

microphone, a temperature sensor, and a humidity sensor

placed in a beehive and connected via underground cables to

a computer in a nearby barn. Rangel and Seeley [12]

investigated signals of honeybee swarms. Five custom

designed observation hives were sealed with glass covers.

The captured video and audio data were monitored daily by

human observers. The researchers found that approximately

one hour before swarm exodus, the production of piping

signals gradually increased and ultimately peaked at the start

of the swarm departure.

Meikle and Holst [13] placed four beehives on precision

electronic scales linked to data loggers to record weight for

over sixteen months. The researchers investigated the effect

of swarming on daily data and reported that empty beehives

had detectable daily weight changes due to moisture level

changes in the wood. Bromenshenk et al. [14] developed

electronic SmartHive© devices equipped with electronic

scales, infrared bee counters, temperature and humidity

sensors, digital weather stations, and wireless

communication lines for Internet-based remote monitoring.

The investigation in this paper continues our research on

CV algorithms for omnidirectional bee counting [15]. Two

algorithms have been previously proposed [16]. Unlike the

algorithm in this paper, the previous algorithms were not in

situ and had lower bee counting accuracies (see Sections VI

and VII for comparative performance details).

In Situ Omnidirectional Vision-Based Bee

Counting Using 1D Haar Wavelet Spikes

Vladimir A. Kulyukin

P

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

Fig. 1. Main hardware components of BeePi: 1) battery; 2) RPi; 3)

RPi camera board; 4) car charger; 5) breadboard; 6) solar charge

controller; 7) solar panel wires.

III. MULTI-SENSOR EBM

CV is one of the sensors in BeePi, a multi-sensor, solar-

powered EBMD. Each BeePi consists of a Raspberry Pi

(RPi) computer, a camera, a solar panel, a temperature

sensor, a battery, a hardware clock, and a solar charge

controller. The current version of BeePi is 1.1. The main

BeePi hardware components are shown in Fig. 1 and

include a RPi 3 Model B with 1GB RAM (Model B+

512MB RAM was used in BeePi 1.0), an RPi T-Cobbler, a

full-size breadboard for sensor integration, a waterproof

DS18B20 digital temperature sensor, an RPi Camera Board

(CB), and a USB microphone hub.

Unlike BeePi 1.0, the previous version of BeePi, BeePi

1.1 uses the RPi CB v2 instead of v1. In BeePi 1.0, the

camera of the RPi CB was protected only with a plastic

cover, which was found to provide inadequate protection

against rain, snow, and strong wind after five weeks of field

deployment in Northern Utah in 2014-2015 [15, 16]. In

BeePi 1.1, the camera is not only placed under a plastic

cover, but also is attached to a wooden plank for improved

balance; the plank is attached with screws and metallic

brackets to the super with the BeePi hardware, as shown in

Fig. 2. The camera is protected from the elements by a

wooden protection box opened at the bottom and attached to

a hive lid with screws and metallic brackets (see Fig. 3a).

When the lid is placed on the super with the BeePi hardware

(see Fig 3b), the box protects the camera (and all other

sensors on the plank) against the elements from above and

the four sides.

For solar harvesting, we continue to use Renogy 50 watts

12 Volts monocrystalline solar panels, Renogy 10 Amp

PWM solar charge controllers, Renogy 10ft 10AWG solar

adaptor kits, and the UPG 12V 12Ah F2 sealed lead acid

AGM deep-cycle rechargeable batteries. The solar panels

are placed either to the right or left of a beehive or behind a

beehive on the ground.

It takes approximately 25 minutes to wire a BeePi EBMD

for deployment. Fig. 4 shows the author wiring two EBMDs

for deployment in Northern Utah in early May 2016. Data

collection is done on the RPi. The collected data are saved

on a 32G sdcard inserted into the RPi. Data collection

software is written in Python 2.7.9. When the system starts,

three data collection threads are spawned. The first thread

collects temperature readings every 5 minutes and saves

them into a text file. The second thread collects 30-second

wav recordings every 5 minutes. The third thread saves PNG

pictures of the beehive’s landing pad every 5 minutes. A

cronjob monitors the threads and restarts them after

hardware failures.

Fig. 2. Camera (1) under plastic cover attached to wooden plank

(2); plank is attached with metallic brackets (3) to box with BeePi

hardware; camera looks down on hive’s landing pad (4).

(a) Protection box from inside

(1); box is attached to

migratory lid (2).

(b) Hive lid (1) with protection

box (2) on hive; solar panel (3)

on ground.
Fig. 3. RPi camera board protection against elements.

Fig. 4. Wiring BeePi 1.1 hardware for deployment.

IV. 1D HAAR WAVELET SPIKES

In the 1D Haar Wavelet Transform (1D HWT), a signal is

a vector in .,2, NknR kn Following the formalization

in [17], let
 k

aW be a
kk 22 matrix for computing k scales

of the 1D HWT. This matrix can be effectively computed

from the n canonical base vectors of .nR If

120 ,...,

 kxxx is a signal in
nR , then y is the k-scale

1D HWT of x is defined in (1).

 yxW Tk

a (1)

Then

 1

12

1

0

1

1

1

0

0

0

0

0 1,...,,...,,,,

 kkT

kcccccay (2)

In (2),
 0

0a = y and
 j
ic is the coefficient of the

thi

basic Haar wavelet at scale j [18].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

Fig. 5. Up-down spikes.

HWTs are used to detect significant changes in signal

values [19]. In this paper, it is proposed that some changes

can be characterized as signal spikes. Specifically, four types

of spikes are proposed: up-down triangle, up-down

trapezoid, down-up triangle, and down-up trapezoid. The

difference between up-down and down-up spikes is the

relative positions of the climb and decline segments. In

trapezoid spikes, flat segments are always in between the

climb and decline segments. Fig. 5 shows up-down triangle

and trapezoid spikes; Fig. 6 shows down-up triangle and

down-up trapezoid spikes. In both figures, the lower graphs

represent possible values of the corresponding Haar

wavelets at a given scale k. Formally, a spike is a nine

element tuple whose elements are real numbers given in (3).

 ,,,,,,,, eseses ddffuu (3)

The first two elements, su and eu , are the abscissae of the

beginning and end of the spike’s climb segment,

respectively, when the wavelet coefficients of the 1D HWT

increase. If
 k

scu and
 k

ecu are the k-th scale wavelet

coefficient ordinates at su and ,eu respectively, then the

climb segment of the spike is measured by the angle
 .,1tan 1 k

s

k

ese cucuuu The decline segment of the

spike is characterized by ,sd ,ed and , where

sd and ed are the abscissae of the beginning and end of the

spike’s decline segment, respectively, when the wavelet

coefficients decrease. If k

scd and k

ecd are the k-th scale

wavelet coefficient ordinates at sd and ,ed respectively,

then the decline segment of the spike is measured by the

angle k

s

k

ese cdcddd ,1tan 1 .

In trapezoid up-down or down-up spikes, the flat segment

is characterized by ,sf ,ef and , where sf and ef are the

abscissae of the beginning and end of the spike’s flat

segment, respectively, over which the wavelet coefficients

either remain at the same ordinate or have minor ordinate

fluctuations. If
 k

scf and
 k

ecd are the k-th scale wavelet

coefficients corresponding to sf and ,ef respectively, the

spike’s flatness angle is k

s

k

ese cfcfff ,tan 1 .

The absolute values of are close to 0.

V. BEE COUNTING ALGORITHM

Given an image, spikes can be computed for each row.

When spikes are computed for row r , the column indices of

the actual pixels covered by each spike at scale j are

computed by the formula in (4), where s and e are the

positions of the starting and ending wavelet coefficients in

the 1D HWT at scale j, respectively. For up-down spikes

sus and edd , whereas, for down-up spikes,

sds and .eue

 1122|,, eisiesjp jj (4)

Fig. 6. Down-up spikes.

Let n be the number of rows in an image and let rU be the

set of up-down spikes in row ,r .10 nr The set

of pixel columns in row r covered by the up-down spikes in

r is given in (5), where j is a scale and zs and ze are the

beginning and end positions of an up-down spike z in row

,r respectively.

rUz

zz

r

jU esjpZ

 ,,,

 (5)

Let rD be the set of down-up spikes in row ,r

.10 nr The set of pixel columns in r covered by

the down-up spikes is given in (6), where j is a given scale

and zs and ze are the beginning and end positions of a

down-up spike z in row ,r respectively.

rDz

zz

r

jD esjpZ

 ,,,

 (6)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

The number of unique column pixels covered by the up-

down and down-up spikes in row r is given in (7). The

formula in (8) gives the actual number of pixels covered by

the up-down and down-up spikes in an image I with n rows.

 r

jU

r

jD

r

jU

r

jD

r

jD

r

jU

r

j ZZZZZZZ ,,,,,, (7)

1

0

n

r

r

jj ZIX (8)

For example, consider three 16 x 16 images in Fig. 7.

Suppose it is required to separate bee pixels from non-bee

pixels in the original bee image on the left. The bee pixels

are those covered by up-down and down-up spikes in each

row. The middle image in Fig. 7 shows the only up-down

spike detected in row 8 after a single scale of the 1D HWT.

The right image in Fig. 7 shows the only down-up spike

detected in row 7. Both spikes are triangle ones.

Fig. 7. Bee image (left); up-down spike in row 8; down-up spike in row 8;

up-segments are red; down-segments are blue.

The up-down spike, shown in the middle image in Fig. 7,

is defined in (9), where, per notation in equation (3),

,4/ ,3/ ,0 and the rest of the values are as

follows: 3su , 4eu , 5sd , and 5ed . The value

of 1 for sf and ef indicates that the spike does not have a

flat segment.

 ,5,5,,1,1,,4,3 (9)

The down-up spike (see the right image in Fig. 7) is

defined in (10). Since this is a down-up spike, the beginning

and end positions of the climb segment, i.e., 3 and 4, follow

the beginning and end positions of the decline segment, i.e.,

1 and 2, and the absolute values of , , and are

approximately the same as in the up-down spike in (9).

 ,2,1,,1,1,,4,3 (10)

Using (5), the pixel columns of the up-down spike in (9)

are given in (11).

 116|5,3,18

1, iipZU
 (11)

Using (6), the pixel columns of the down-up spike in (10)

are given in (12).

 92|4,1,18

1, iipZD
 (12)

Using (7), the set of pixel columns covered by the two

spikes in row 8 in Fig. 7 (middle and right) is given in (13).

 11,10,9,8,7,6,5,4,3,29,8,7,65,4,3,211,10

8

1,

8

1,

8

1,

8

1,

8

1,

8

1,

8

1

 UDUDDU ZZZZZZZ

(13)

Given the number of scales 1j , the number of bee

pixels in the left image in Fig. 7 is given in (14), where I is

the left image in Fig. 7.

 44
15

0

11
r

rZIX (14)

The pseudocode of the bee counting algorithm is given in

Fig. 8. The algorithm takes an image I (e.g. the upper image

in Fig. 9), the normalizer N, and the number of scales j of the

1D HWT. The algorithm also takes the thresholds for the

angles of up-down, flat, and down-up spikes, i.e., α, γ, β,

omitted for simplicity. In the current implementation, α = β

= 60° and γ = 5°.

Fig. 8. Algorithm’s pseudocode.

In line 2 of Fig. 8, the landing pad is detected and cropped

from the original image. In Fig. 9, the lower image shows

the landing pad cropped from the upper image. The landing

pad localization algorithm is described in [15, 16].

In Fig. 10, all stages of image pre-processing, defined in

lines 2 – 7 in Fig. 8, are shown beginning from the cropped

landing pad region (Fig. 10a). The image in Fig. 10b is the

result of the Gaussian blur of the image in Fig. 10a with a 7

x 7 kernel followed by the pyramid mean shift filter. The

image in Fig. 10c shows the result of applying the max RGB

filter to the image in Fig. 10b. The image in Fig. 10d shows

the image where all blue pixels in Fig. 10c are set to white,

which eliminates some shades that turn out as blue after the

application of the max RGB filter. This bleached image in

Fig. 10d is converted into grayscale, as shown in Fig. 10e.

In line 8 of Fig. 8, all pixels covered by up-down and

down-up spikes in all rows are counted and the total count is

normalized. The total count of bee pixels is normalized by

N. In the current implementation, N=60 since the average

number of pixels per bee is 60. The total number of bee

pixels detected by spikes normalized by the average number

of pixels per bee gives an integer approximation to the

number of bees on the pad.

VI. EXPERIMENTS

The algorithm’s accuracy was evaluated on a sample of

three-hundred eighty two images captured by a BeePi

EBMD deployed in Northern Utah. The images on which the

1. procedure countBees(I, N, j)

2. L = localizeLandingPad(I);

3. gaussianBlur(L);

4. pyramidMeanShiftFilter(L);

5. maxRGBFilter(L);

6. bleachBluePixels(L);

7. convertToGrayscale(L);

8. return NLX j / ;

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

proposed algorithm was evaluated were captured in

September 2016 when it is vital for beekeepers to keep

abreast of colonies’ health as they prepare them for winter.

In each image, the landing pad was localized and

automatically cropped by the landing pad localization

algorithm described in [15, 16]. A human beekeeper

manually counted the bees in each image with a cropped

pad. This beekeeper’s bee counts were taken as the ground

truth. The algorithm was run on the same images and the

number of bees detected in each image was recorded. Table

I gives several lines from a file that contains the human and

computer counts of bees for each image.

Fig. 9. Original image (above); cropped landing pad (below).

Fig. 10. Original image (a); blurred and mean shifted (b); max RGB

filtered (c); bleached (d); grayscaled (e).
Table II gives the accuracy of the computer algorithm

compared with the ground truth. The first column, Error

Margin, gives the allowed margin of error between the

human and computer counts for each image. Images where

the counts differed by more than the set margin were

classified as inaccurate whereas images where the counts

were within the allowed margin of error were classified as

accurate.

TABLE I

Human vs computer counts of bees in images.

Image Name Human Counts Computer Counts

2016-09-20_11-24-40.png 31 21

2016-09-21_18-14-43.png 30 33

2016-09-20_12-34-40.png 11 8

2016-09-21_07-54-42.png 1 1

The second column, Accuracy, in Table II gives the

percentage of accurate images. Thus, for the margin of error

equal to 5, 63% of the images were classified as accurate.

When the margin of error is 10, 94% percent of the images

were classified as accurate. When the margin of error is 15,

99% of the images were classified as accurate. The results in

Table II suggest that the proposed algorithm is reasonably

accurate in approximating human bee counts on pads.

Further analysis revealed that all errors, i.e., images where

algorithmic counts differed from human counts by more than

a given error margin were either excessively bright or had

many shades. In Fig. 11, two sample images are shown on

which the human and computer counts differed by more than

10 bees. Both images were taken by an EBMD mounted on a

hive facing south. The upper image has a luminosity (a total

amount of energy radiated by an object) above 253. On

bright images, taken between 12:00 and 1:00pm, when the

sun was directly above the hive, the algorithm undercounted.

Specifically, in the upper image in Fig. 11, the human

beekeeper counted 12 bees whereas the algorithm found

only 1 bee.

Table II

Error margin vs accuracy.

Error Margin Accuracy (%)

5 63

10 94

15 99

Fig. 11. Two sample images on which bee counts differ by more than 10.

The lower image in Fig. 11 shows an image, taken

between 4:00 and 6:00pm, when the sun was west of the

hive. While the luminosity of such images is lower (the

luminosity of the lower image in Fig. 11 is 206), there are

noticeable shades to the east of some bees. Since some of

these shades were not removed by the bleaching operation,

the detected spikes included some shade pixels, which

caused higher bee counts. Specifically, in the lower image of

Fig. 11, the human beekeeper counted 33 bees whereas the

algorithm found 65 bees.

Since the primary objective of the proposed algorithm is

to keep abreast of the forager traffic levels and their changes

over a period of time, the exact bee counts are less important

than reliable, albeit approximate, indicators of traffic

volumes. For example, it is insignificant, when forager

traffic increases, to detect 60 bees when a human beekeeper

detects 65 or 70, because both counts indicate an increase in

forager traffic. Similarly, at smaller traffic levels, it is

acceptable to detect 2 or 3 bees when a human beekeeper

detects 5 or 7 bees, because both counts indicate a decline in

forager traffic.

While algorithms’ accuracy is important, smaller RAM

footprints should not be discounted, because they make

feasible in situ execution on smaller computational devices

with smaller power consumption footprints. Toward that

end, the algorithm was implemented in Python 2.7.9 with

OpenCV 3.0 on a RPi 3 Model B with an ARMv8 processor

and 1GB of RAM. The real performance of the algorithm

was evaluated with the Python timeit utility on the RPi. The

timings, measured in seconds, for three different runs on all

test images were 868.40, 869.76, and 863.07, with the mean

time equal to 867.08. Thus, the algorithm, on average, took

2.27 seconds to process one image in situ. Since in deployed

 (a)

 (b)

 (c)

 (d)

 (e)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

BeePi EBMDs static frames of landing pads are taken every

five minutes, the proposed algorithm, when executed on

EBMDs, has sufficient time to process each picture and log

timestamped bee counts.

VII. CONCLUSION

An algorithm was presented for in situ omnidirectional

bee counting on Langstroth landing pads. The concept of the

1D Haar Wavelet Spike was developed. The algorithm was

implemented in Python 2.7.9 with OpenCV 3.0 on a

Raspberry Pi 3 Model B computer with an ARMv8

processor and 1GB of RAM.

The performance of the algorithm was tested in situ on the

same computer with a sample of 382 720 x 420 PNG

images. The algorithm took an average of 2.27 seconds per

image. The algorithmic counts approached a human

beekeeper’s counts within a margin of 5 bees on 63% of the

images, within a margin of 10 bees on 94% of the images,

and within a margin of 15 bees on 99% of the images. The

algorithm is more accurate than our previous two algorithms

for omnidirectional bee counting: the highest accuracy of the

previous algorithms within a margin of 10 bees was 85.5%

[8, 16]. Furthermore, unlike the algorithm presented in this

paper, our previous two algorithms were not in situ in that

they were implemented in JAVA with OpenCV 2 and

evaluated on a 10GB RAM PC with Ubuntu 12.02 LTS.

Since the presented algorithm can operate on low voltage

devices with smaller RAMs, it is more suitable for

ecologically sustainable computing. Most approaches to

EBM depend on the grid for power and on the cloud for data

transmission (e.g., [9, 10, 11]). However, grid- and cloud-

dependent EBM enlarges the electricity consumption and

carbon footprints of cloud data centers which already

account for two percent of overall U.S. electrical usage [20].

According to the Smart 2020 forecast by the Climate

Group of the Global e-Sustainability Initiative [21], so far

quite accurate, the global carbon footprint of cloud data

centers is expected to grow, on average, 7% per annum

between 2002 and 2020. In 2010, McAfee, a U.S. computer

security company, reported that the electricity required to

transmit the trillions of spam e-mails annually is equivalent

to powering two million U.S. homes and generates the same

amount of greenhouse gas emissions as that produced by

three million cars [22]. Thus, there is a critical need to seek

ecologically sustainable EBM solutions that use renewable

power sources, capture data with software tools with smaller

electricity consumption footprints, and minimally depend or

do not depend at all on the cloud for data transmission or

analysis. The proposed algorithm is a step on the long

journey to ecologically sustainable EBM.

ACKNOWLEDGMENT

The author is grateful to Mr. Craig Huntzinger and Dr.

Richard Mueller for letting him use their property in

Northern Utah for longitudinal EBM tests. The author

expresses his gratitude to Mr. Craig Huntzinger and Mr.

Nathan Huntzinger for their help with inspecting monitored

beehives and logging observations. All bee packages, bee

hives, and beekeeping equipment used in this study were

personally funded by the author.

REFERENCES

[1] J. Tautz. The Buzz about bees: biology of a superorganism.

Heidelberg: Springer, 2008.

[2] D. Sammataro, A. Avitable. The Beekeeper’s handbook, 4th Edition.

Ithaca, NY: Cornell University Press, 2011.

[3] M. T. Sanford. "2nd international workshop on hive and bee

monitoring," American Bee Journal, December 2014, pp. 1351-1353.

[4] M.E.A. McNeil. “Electronic Beehive Monitoring,” American Bee

Journal, Aug. 2015, pp. 875 - 879.

[5] Rev. L. L. Langstroth. Langstroth on the hive and the honey bee: a

bee keeper's manual. London: Dodo Press, 2008; orig. published in

1853.

[6] L. Crowder, H. Harrell. Top-bar beekeeping: organic practices for

honeybee health. White River Junction, Vermont: Chelsea Green

Publishing, 2012.

[7] http://honeybeenet.gsfc.nasa.gov/, NASA HoneyBeeNet Project.

[8] V. Kulyukin and S. Reka. “Toward sustainable electronic beehive

monitoring: algorithms for omnidirectional bee counting from images

and harmonic analysis of buzzing signals.” Engineering Letters, vol.

24, no. 3, pp. 317-327, Aug. 2016

[9] M. Bencsik, J. Bencsik, M. Baxter, A. Lucian, J. Romieu, M. Millet.

“Identification of the honey bee swarming process by analyzing the

time course of hive vibrations.” Computers and Electronics in

Agriculture, vol. 76, pp. 44-50, 2011.

[10] W. Blomstedt. “Technology V: understanding the buzz with arnia.”

American Bee Journal, Oct. 2014, pp. 1101 - 1104.

[11] S. Ferrari, M. Silvab, M. Guarinoa, D. Berckmans. "Monitoring of

swarming sounds in bee hives for early detection of the swarming

period," Computers and Electronics in Agriculture. vol. 64, pp. 72 -

77, 2008.

[12] J. Rangel and T. D. Seeley. "The signals initiating the mass exodus of

a honeybee swarm from its nest," Animal Behavior, vol. 76, pp. 1943

- 1952, 2008.

[13] W.G. Meikle and N. Holst. "Application of continuous monitoring of

honey bee colonies," Apidologie, vol. 46, pp. 10-22, 2015.

[14] J. Bromenshenk, C.B. Henderson, R.A. Seccomb, P.M. Welch, S. E.

Debnam, D. R. Firth. “Bees as biosensors: chemosensory ability,

honey bee monitoring systems, and emergent sensor technologies

derived from the pollinator syndrome.” Biosensors, 2015, vol. 5, pp.

678-711; doi:10.3390/bios5040678.

[15] V. Kulyukin, M. Putnam, S. Reka. “Digitizing buzzing signals into

A440 piano note sequences and estimating forager traffic levels from

Images in solar-powered, electronic beehive monitoring. Proc. of Intl.

MultiConf. of Engineers and Computer Scientists (IMECS 2016):

Intl. Conf. on Computer Science, vol. I, pp. 82-87, Mar. 16-18,

Kowloon, Hong Kong, IA ENG, ISBN: 978-988-19253-8-1.

[16] V. Kulyukin, S. Reka. “A Computer vision algorithm for

omnidirectional bee counting at langstroth beehive entrances.” Proc.

of Intl. Conf. on Image Processing, Computer Vision, and Pattern

Recognition (IPCV'16), pp. 229-235, ISBN: 1-60132-442-1, CSREA

Press. Las Vegas, NV, USA, Jul. 2016.

[17] A. Jensen, A. Cour-Harbo. Ripples in mathematics: the discrete

wavelet transform. New York: Springer, 2001.

[18] Y. Nievergelt. Wavelets made easy. Boston: Birkhäser, 2001.

[19] S. Mallat, W. Hwang. “Singularity detection and processing with

wavelets.” IEEE Trans. on Information Theory, vol. 38, no. 2, Mar.

1992, pp. 617-643.

[20] B. Walsh. “Your data is dirty: the carbon price of cloud computing.”

Time, Apr. 2, 2014.

[21] “Smart2020: Enabling the low carbon economy in the information

age.” The Global e-Sustainability Initiative. Avail. at

http://www.smart2020.org/_assets/files/02_smart2020Report.pdf.

[22] M. Berners-Lee and D. Clark. “What’s the carbon footprint of …

email?” The Guardian, Oct. 7, 2010.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

